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As a key technology for highly reliable communication in the ffth generation mobile communication for railway (5G-R) high-
speed railway wireless communication system, once the handover fails, it will pose a serious risk to the safe operation of high-
speed railway. As the speed of high-speed trains continues to increase, the handover will become more frequent, and how to
improve the success rate of the handover is a key problem that needs to be solved. In this paper, we proposed an optimization
algorithm based on the interval type 2 feature selection recurrent fuzzy neural network (T2RFS-FNN), which is a recurrent fuzzy
neural network with interval type 2 feature selection, to address the problem of fxed hysteresis threshold and single consideration
for the handover algorithm between the control plane and the user plane of the high-speed railway under 5G-R. Te algorithm
integrates reference signal receiving power (RSRP). Reference signal receiving quality (RSRQ) and throughput to optimise the
hysteresis threshold. First, a feedforward neural network structure is designed to implement fuzzy logic inference, and an interval
type-two Gaussian subordination function is used to improve the nonlinear expressiveness of the model. Ten, a feature selection
layer is added to determine the output of the afliation function, which completes the optimization of the hysteresis threshold and
overcomes the drawback of the fxed hysteresis threshold of the handover algorithm. Finally, simulation analysis of the control-
plane and user-plane handover algorithms is carried out separately. Te results show that the proposed method can efectively
improve the success rate and reduce the ping-pong handover rate compared to the comparison algorithms. Te results provide a
theoretical reference for the speedup of high-speed railway trains and the evolution of the global system for mobile commu-
nications for railway (GSM-R) to 5G-R.

1. Introduction

At present, China’s high-speed railway wireless communi-
cation system uses GSM-R wireless system, but GSM-R
belongs to a 2G narrowband system, and this system can no
longer meet the requirements of high-speed railway wireless
communication for low latency and high reliability [1].
High-speed railway wireless communication system will
evolve to 5G-R. Te 5G high-speed railway mobile com-
munication system has the advantages of a high informa-
tion-data transmission rate, low transmission delay, and
high system capacity [2]. During train operation, in order to
maintain uninterrupted communication, the train needs to
constantly handover the area to the base station. As a key
technology for 5G-R communication, handover is crucial to
ensure trafc safety [3], and as high-speed trains continue to

increase speed, handover will becomemore frequent, so how
to improve the success rate of handover is a key problem that
needs to be solved.

Te literature [4] proposes a fuzzy neural network
(FNN)-based handover algorithm that uses fuzzy neural
networks in the handover decision to optimise the handover
performance, but the algorithm sufers from co-channel
interference and the network’s poor handling of nonlinear
data. In [5], a handover scheme based on CoMP and bicast
technology in C/U separation architecture is proposed to
establish a connection at the target user plane before dis-
connecting the source base station by using cooperative
multipoint transmission and bicast technology, but the
scheme sufers from the problem of fxed hysteresis
threshold. Subsequently, in [6], a handover scheme with dual
antennas and beam focusing is proposed, where dual
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antennas are installed at the front and rear of the vehicle to
ensure the communication link in a C/U separated archi-
tecture, while beam focusing is used to improve the signal
quality, but the scheme is less efective in optimising the
handover success rate. Te literature [7] proposes handover
algorithms for the control plane and user plane, respectively,
by using a speed-based handover scheme for the control
plane and a CoMP-based handover scheme for the user
plane, but the scheme sufers from the problem of a single
consideration in the user plane handover algorithm. Te
literature [8] proposes a Bayesian regression-based handover
algorithm that uses a Bayesian regression model to predict
the RSRP of the control plane and the user plane to achieve
early handover, but the method is less capable of handling
nonlinear data.

In summary, this paper proposes an optimization al-
gorithm based on the recurrent fuzzy neural network of
interval type 2 feature selection recurrent fuzzy neural
network (T2RFS-FNN) for the control-plane and user-plane
handover algorithm with fxed hysteresis thresholds and a
single consideration factor under 5G-R. Te main work
carried out in this paper includes the following: (1) con-
structing a fuzzy neural network model for predicting and
optimising the hysteresis threshold, using interval binary
afliation functions, and adding a feature selection layer to
improve the network model’s ability to optimise the hys-
teresis threshold. (2) Adjusting the inputs to the network to
optimise the threshold between the control plane and the
user plane, considering the functional diferences between
the control plane and the user plane. Te performance of the
designed handover optimization algorithm is simulated in
terms of handover success rate and ping-pong handover
rate. Te results show that the proposed T2RFS-FNN
handover optimization algorithm for the high-speed 5G-R
railway can efectively improve the handover success rate
and reduce the ping-pong handover rate compared with the
traditional A3 handover algorithm.

Te remainder of this paper is organized as follows:
Section 2 presents the basic theory of handover. Section 3
introduces the T2RFS-FNN-based optimization algorithm
for handover. Te handover algorithm performance indi-
cators are provided in Section 4. Experimental results and
analysis are presented in Section 5. Finally, the paper is
concluded in Section 6.

2. Basic Theory of Handover

2.1. Handover. To ensure the continuity of communication,
the trainmust disconnect from the source cell and establish a
connection with the target cell when entering the signal
coverage overlap area, a process called handover, which is
shown in Figure 1 [9].

2.2. Traditional A3 Event Crossing Handover Algorithm.
Te algorithm used for the handover under 5G-R is the A3
event-based crosszone handover algorithm [10]. Te core
idea is that the reference signal receiving power RSRP or
reference signal receiving quality RSRQ of the source and

target cells are measured periodically, and if equation (1) is
satisfed, when the RSRP of the target cell is higher than the
RSRP value of the source cell by Hys, then the UE performs a
crosszone handover after triggering the time delay TTT, as
shown in Figure 2. Te triggering conditions for the A3
event.

Mt − Hys>Ms, (1)

where Mt and Ms are the signal strengths of the target and
source cells, respectively, and Hys is the hysteresis threshold.

2.3. Handover in C/U Separated Architectures. Te signal
coverage overlap zone exists between adjacent base stations,
where the blue area is the signal coverage overlap zone of
adjacent small base stations and the red area is the signal
coverage overlap zone of adjacent macro base stations, and
the train needs to disconnect from the current base station,
and establish a connection with the target base station when
entering the signal coverage overlap zone for handover. Te
schematic diagram of handover, as shown in Figure 3, where
the base station communicates with the MME/S-GW
through the S1 interface and the macro base station com-
municates with the small base station through the X3 in-
terface [11].

In the 5G-R wireless communication system, the key
technology is the network architecture based on C/U sep-
aration [12]. Te C/U separation architecture in the 5G-R
network is divided into macrobase station handover and
small base station handover [7], where both the macrobase
station handover and small base station handover algo-
rithms use the A3 event-based handover algorithm.

3. T2RFS-FNN-Based Optimization
Algorithm for Handover

To address the problems of fxed hysteresis thresholds and
single considerations in control-plane and user-plane
handover algorithms, this paper proposes a crosszone
handover optimization algorithm based on interval type 2
feature selection recurrent fuzzy neural network (T2RFS-
FNN). Te algorithm uses a feedforward neural network
structure to implement FL inference, adopts an interval type
II Gaussian subordination function to improve the non-
linear expression capability of the model, adds a feature
selection layer to determine the output of the subordination
function, and uses uncertainty inference to perform fuzzy
inference to complete the optimization of the hysteresis
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Figure 1: Schematic diagram of high-speed railway handover.
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threshold. Te control plane and user plane are separated in
the 5G-R overzone handover process, with the macrobase
station and MME forming the control plane for reliable
transmission of critical control signalling, and the user plane
with high throughput requirements being carried by the 5G
base station. Terefore, this paper adopts the T2RFS-FNN-
based crossover handover optimization algorithm to opti-
mize the handover hysteresis threshold by considering
RSRP, RSRQ, and throughput, and adjusts the inputs of the
network to optimize the threshold values of the control plane
and user plane, respectively, due to the functional diferences
between the control plane and the user plane. Tis means
that the hysteresis threshold is optimised by considering
RSRP, RSRQ, and throughput for control-plane handover
and by considering RSRP, RSRQ, and throughput for user-
plane handover.

3.1.Network Structure. Te network structure of the method
in this paper is shown in Figure 4. Te network is structured
as a cyclic. Te structure of the loop neural network

implements the inference process of interval type II fuzzy
logic, which consists of six layers of neuron nodes, namely
the input layer, the subordinate degree function layer, the
feature selection layer, the rule layer, the defuzzifcation
layer, and the output layer [13].

Te frst layer is the input layer, which contains three
input parameters, namely RSRP, RSRQ, and throughput
received by the train from the target base station, and the
input-output relationship for each node in the input layer is
as follows:

node1i (N) � x
1
i (N)w

1
i (N)y

6
o(N − 1),

y
1
i (N) � f

1
i node1i (N)􏼐 􏼑 � node1i (N).

(2)

Equation (2) represents the input of nodes and the
output of the frst layer network, and node1i denotes the
input of the node, i� 1,2, . . .,m, N is the sampling period, is
the network output of the previous sampling period, w

denotes the cyclic weight, and y1
i (N) is the output of the

input layer.
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Figure 3: Schematic diagram of handover in the framework of separation of C/U.

RS
RP

 (d
bm

)

0

Hys

TTT

Source cell RSRP

Target cell RSRP

Figure 2: Diagram of A3 algorithm.
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Te second layer is the layer of afliation function, where
each node in this layer performs a Gaussian interval type II
afliation function, which is mapped to a region by the
interval type II afliation function, rather than just to an
exact value on the interval [0, 1], where the values in the
region are more random, as shown in Figure 5.

For each node j in the layer:

y
2
j(N) � exp −

1
2

x2
i (N) − u

j

i

σj

i

)
2⎛⎝ ⎞⎠,⎛⎝ (3)

y̲
2
j(N) � exp −

1
2

x2
i (N) − u

j
i

σ j
i

⎛⎝ ⎞⎠

2

⎛⎝ ⎞⎠. (4)

Equations (3) and (4) represent the uplink and downlink
output of the layer 2 node, where x2

i (N) � y1
i (N) is the

input to the nodes in this layer, y2
i (N) is the output of the

second layer, exp is the exponential function, (i� 1, . . ., m,
j� 1, . . ., n) denoted as the average of the Gaussian functions
in the j-th term associated with the i-th input, the σj

i are
denoted as the standard deviations of the upper and lower
Gaussian afliation functions in the j-th term relative to the
i-th input, respectively.

Te third layer is the feature selection layer, for each
node in this layer, and the feature degree is measured by
using a feature selection algorithm. Equations (5) and (6) are
executed for the j-th node:

y
3
j(N) �

0, �aj(N)≤ �TJ,

�y
2
j(N) 1 − exp −�βj(n)􏼐 􏼑􏽨 􏽩, aj(N)>TJ,

⎧⎪⎨

⎪⎩
(5)

y̲
3
j(N) �

0, a̲ j(N)≤ T̲J,

y̲
2
j(N) 1 − exp −β̲j(n)􏼐 􏼑􏽨 􏽩, a̲j(N)> T̲J,

⎧⎨

⎩

aj(N) � 1 − exp −βj(N)􏼐 􏼑,

a̲j(N) � 1 − exp −β̲j(N)􏼐 􏼑,

(6)

where x3
i (N) is the input to the layer, y3

i (N) is the output of
the nodes in the layer, and ai(N) represents the feature degree
of each node. Ti(N) is denoted as [Ti(N) T̲

i
(N)]ϵ[0, 1] and

represents the threshold for judging unfavourable nodes. Te
feature selection algorithm is described as follows: if ai(N) is
equal to 1, the output value of the upstreamGaussian function
y2

i (N) is y3
i (N) , meaning that the j-th node has complete

and valid feature information. y2
i (N) is fully input to the next

layer. If ai(N) is between Ti(N) and 1, it means that the j-th
node has partially valid feature information and the input into

the next layer should be the product of ai(N) and y2
i (N). If

the value of ai(N) is less than or equal to Ti(N), then the
feature information of the j-th node is an invalid feature value,
in which case y2

i (N) will not be transmitted to the next layer.
Te output of the T-2 type Gaussian subordination function
will be fed back to the next layer in whole or in part,
depending on the evaluation of the feature information, and
will not even be transmitted to the next layer [13].

Te fourth layer is the fuzzy rule layer, where each node
is connected to any of the three inputs corresponding to the

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

yj2 (N)
yj2 (N)

A
ffi

lia
tio

n

Input value

μi
j

σi
j

σi
j

Figure 5: Schematic diagram of type-2 Gaussian membership
function.
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third layer, respectively. Each input variable defnes three
levels, low, medium, and high, which constitute three fuzzy
sets. Each node in this layer corresponds to a combination of
diferent fuzzy sets, so there are 33 � 27 nodes in this layer
[14]. Each node corresponds to a fuzzy rule, and the input
data on the node is fuzzy-operated according to equations
(7) and (8).

y
4
k(N) � 􏽙ω4

jy
3
j(N), (7)

y̲
4
k
(N) � 􏽙ω4

jy
3
j(N). (8)

Te ffth layer is the defuzzifcation layer, in which two
nodes perform the center-of-gravity method of defuzzif-
cation. Te process in layer 5 can be described as the fol-
lowing expression:

y
5
H(N) �

􏽐
n
k�1 ω

5
Hky

4
k

􏽐
n
k�1 y

4
k

� WHYH, (9)

y
5
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􏽐
n
k�1 ω

5
Lky

4
k

􏽐
n
k�1 y

4
k

� WLYL. (10)

Tenode defuzzifcation operation is shown in equations
(9) and (10), where y5

L(N) and y5
H(N) are the node outputs

of the ffth defuzzifcation layer. W is the center of mass of
the set of type two.

Te sixth layer is the output layer; the main purpose of
equation (11) is to achieve linear integration between y5

H and
y5

L.

y
6
o � ηy

5
H +(1 − η)y

5
L � ηWHYH μ, σ, β,ωr􏼐 􏼑

+(1 − η)WLYL μ, σ, β̲,ωr􏼒 􏼓,
(11)

where y6
o denotes the output of T2RFS-FNN, i.e., the hys-

teresis threshold at the future moment.

3.2. Network Model Training. Te structure of T2RFS-FNN
can be seen as a multilayer feedforward network and,
therefore, can be trained with errors by using the gradient
descent method, just like BP networks. Te RSRP, RSRQ,
and throughput data received from the target base station
are extracted as the training dataset based on the mea-
surement reports reported by the high-speed train as it
travels from the source base station to the target base station
and are also used as the input to the FL system [15] to
calculate the expected values. Te same training dataset is
used as input to the T2RFS-FNN, and for each set of training
data input, the actual output value is calculated, and the
error is calculated against the expected value. In the di-
rection of error reduction, the weights are corrected layer by
layer from the sixth layer of the network forward, and
learning is continued to reduce the error until it is infnitely
close to zero, then training is completed.

Te error between the actual value and the expected
value is calculated as shown in equation (12):

e �
1
2

y(t + 1) − yd(t + 1)􏼂 􏼃
2
, (12)

where y (t+ 1) and yd (t+ 1) denote the actual and expected
values at the moment (t+ 1), respectively. Te weights at the
moment (t+ 1) are calculated from the weights at moment t.

4. HandoverAlgorithmPerformance Indicators

In order to verify the performance of the algorithm in this
paper, ping-pong handover and crosszone handover success
rates are used as performance metrics.

4.1.Ping-PongHandover. Ping-pong handover refers to the
phenomenon of mobile terminals handover back and
forth between the serving cell and the adjacent cell. When
the train is switched to the target gNB base station, if the
signal strength of the source base station and the signal
strength of the target base station at this time satisfes
equation (13) within the lag time, the ping-pong handover
is triggered.

PSa − PSb ≥Hys, (13)

where PSa and PSb are the signal strengths of the source and
target cells received by the train, respectively.

4.2. Handover Success Rate. If the train still satisfes the
handover conditions after the trigger time delay TTT, the
train executes the crosszone handover. In general, the
success rate is defned as the probability that the train does
not experience a communication interruption before trig-
gering the handover and the probability that no commu-
nication interruption occurs even after the successful
execution of the handover is completed since the following
conditions are met [16]. Where a communication inter-
ruption is indicated as a communication interruption due to
poor quality of the received signal [17]. Assuming that the
signal-to-noise ratio threshold of the base station is c, if the
received signal quality is less than c then a communication
interruption occurs; the control-plane and user plane in-
terruption probabilities are calculated as shown in equations
(14) and (15):

PCbreak � P[SQ< c] � Q
PS − I − ctm

σn

􏼠 􏼡, (14)

PUbreak � P[SQ< c] � Q
PS − I − cts

σn

􏼠 􏼡. (15)

In the abovementioned equation, SQ is the signal quality
of the current service cell received by the train, I is the
interference signal strength of the cochannel base station,
and σn is the standard deviation of shadow fading, and then
the success rate of the user-plane handover is defned as
shown in equation (16):

PUsuccess � 1 − Pbreak+􏼂 􏼃∙Phando ver∙ 1 − Pbreak−􏼂 􏼃. (16)
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Since control-plane handover and user-plane handover
are independent of each other, control-plane handover is
only successful when both user-plane handover and control-
plane handover are successful, so the success rate of control-
plane handover is as shown in equation (17):

PCsuccess � PUsuccess∙Pcsuccess, (17)

where Pcsuccess is the handover success rate between mac-
robase stations in the control plane.

5. Experimental Results and Analysis

5.1. Parameter Confguration. Tis paper uses MATLAB
software to build the proposed model and compare the
performance of the algorithm. Te main parameter con-
fgurations in the simulation experiment are shown in
Table 1.

5.2. Predictive Performance Analysis. After the prediction
parameters have been confgured, the proposed prediction
model is trained iteratively below. Te RMSE is used to
evaluate the predictive capability of the model.

To test the prediction capability of the proposed dynamic
prediction network for the transgressive handover hysteresis
parameters in this paper, the optimized hysteresis threshold
sequence of the fuzzy logic system was selected as the test
data to verify the prediction efect, and the prediction results
are shown in Figure 6. Figure 6 shows the prediction results
of the threshold values of the trained network for the user
plane compared with the actual observed values, and the
blue curve in the fgure shows the prediction results. Te
predicted values obtained by the method in this paper ba-
sically match the actual observed values, thus illustrating the
efectiveness of the proposed model. In addition, Figure 7
shows the prediction error of the user plane hysteresis
threshold, from which the mean squared error of the model
in the prediction process of this paper is 0.0197.

Figure 8 shows the comparison between the predicted
results of the control-plane threshold value and the actual
observed values by the method in this paper; the blue curve
in the fgure is the predicted result. Figure 8 shows that the
prediction results basically match the observed values, which
illustrates the efectiveness of the method in this paper.
Figure 9 shows the prediction error of the control-plane
hysteresis threshold predicted by the algorithm in this paper,
and the mean square error value is 0.01991, indicating that
the prediction efect of the algorithm on the hysteresis
threshold value in this paper is good and can meet the
requirement of high precision of the prediction of the
hysteresis threshold [18].

5.3. Algorithm Simulation Analysis. In this paper, corre-
sponding handover algorithms are designed for the control
plane and user plane, respectively. Te handover algorithm
is selected from the traditional A3 algorithm, the FNN-based
crosszone handover algorithm, and the algorithm in this
paper for algorithm simulation analysis. Figure 10 shows the

comparison of the handover success rate of the user-plane
handover algorithm; the success rate of the optimized
crosszone handover algorithm is higher than that of the
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Table 1: Parameter settings of the experimental test.

Name Specifc parameters
Macrobase station carrier frequency 2GHz
Small base station carrier frequency 5GHz
Macrobase station transmitting power 43 dBm
Small base station transmitting power 33 dBm
Macrobase station signal-to-noise ratio
threshold 18 dB

Small base station signal-to-noise ratio
threshold 15 dB

Shadow decay bias 4 dB
Fixed hysteresis threshold 3 dB
Macrobase station antenna height 30m
Small base station antenna height 5m
Macrobase station path loss model COST231-Hata
Small base station path loss model WINNER-IID2a
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traditional A3 handover algorithm and the FNN crosszone
handover algorithm because the algorithm of this paper
considers the three factors of RSRP, RSRQ, and throughput.
Degree function is to improve the processing capability of
the model for nonlinear data while adding a feature selection
layer to improve the prediction accuracy so that the
threshold value of high-speed trains can be better adjusted
according to the channel environment when handover at the
user plane, stabilizing the handover performance of trains,
and better solving the problem of low handover success rate
due to the fxed handover hysteresis threshold value of the
A3 algorithm; in addition, it can be seen from the fgure that
with the increase of x-axis, that is, the distance between the
train and the source small base station is getting farther and
farther, and the handover success rate is gradually in-
creasing. Tis is because as the train runs, the train gradually
moves away from the source small base station and ap-
proaches the target small base station, and the quality of
service of the target small base station such as RSRP and

RSRQ is obviously improved at this time; thus, the success
rate of crosszone handover gradually increases. Tis con-
clusion is consistent with the fndings of the study in [10],
which further illustrates the efectiveness of the method in
this paper.

Figure 11 shows a comparison of the ping-pong hand-
over rate of the user-plane handover algorithm where the
ping-pong handover generally occurs near the middle region
of the overlapping area of the overzone handover, and the
ping-pong handover occurs when the train handover to the
target base station and then cuts back to the source base
station in reverse. If the ping-pong handover rate is larger, it
means that the more unstable the performance of the
crosszone handover algorithm is, the greater its adverse
impact on the crosszone handover [19]. Compared with the
FNN-based handover algorithm, the ability of this algorithm
to express nonlinear data, such as the hysteresis threshold, is
higher than that of the FNN-based handover algorithm,
indicating that the handover performance of this proposed
algorithm is optimal, while the traditional A3 algorithm has
the highest ping-pong handover rate, indicating that it
cannot continuously provide stable handover services for
train crossing handover and is difcult to meet the handover
requirements.

Figure 12 shows the comparison of the interruption rate
of the user-plane handover algorithm, where the x-axis is
the location of the train from the source small base station
and the vertical coordinate is the probability of interruption
of the handover, as shown in the fgure, and the probability
of interruption of the handover of the proposed algorithm
in this paper is lower than that of the traditional A3 al-
gorithm and the FNN-based handover algorithm; this is
because the algorithm in this paper takes RSRP, RSRQ, and
throughput factors into account during handover, so
compared to the comparison algorithm can adjust the
appropriate threshold for handover, efectively reducing
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Figure 8: Comparison of predicted results for control-plane
hysteresis thresholds.
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Figure 11: Comparison of the ping-pong handover rate of user-plane handover algorithm.
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Figure 12: Comparison diagram of handover interruption rate of user-plane handover algorithm.
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Figure 13: Comparison of the handover success rate of the control-plane handover algorithm.
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the handover interruption probability caused by premature
handover.

Figure 13 shows a comparison of the success rate of the
control-plane handover algorithm, where the control-
plane and user-plane handover are relatively independent,
i.e., the user-plane handover is completed before the
control-plane handover, so the control-plane handover is
performed with a relative lag compared to the user-plane
handover. It can be seen from the graph that the handover
success rate of the algorithm in this paper is higher than
that of the comparison algorithm because compared with
the FNN-based handover algorithm, the algorithm in this
paper uses an interval type II afliation function on the
basis of FNN, and the values of the afliation are mapped
to intervals, which increases its randomness and improves

the nonlinear expression capability of the algorithm, and
at the same time, adds a feature selection layer to select
data with valid features for input, which efectively re-
duces the prediction error of the model. Te model
prediction error is reduced, so the handover performance
is optimal.

Figure 14 shows the comparison of the handover in-
terruption probability of the control plane handover al-
gorithm. As shown in Figure 14, the interruption
probability of the control plane handover algorithm pro-
posed in this paper is lower than that of the comparison
algorithm because the processing capability of the control
plane handover algorithm proposed in this paper for
nonlinear data is higher than that of the comparison al-
gorithm, and the optimization of the handover threshold is
better, so the interruption probability of the algorithm in
this paper is lower.

Finally, the ping-pong handover rate of the control plane
handover algorithm is analyzed, as shown in Figure 15. In
the central region of the handover overlap area where ping-
pong handover is frequent, the ping-pong handover rate of
this algorithm is lower than that of the comparison algo-
rithm, indicating that the handover performance of this
algorithm is stable and can provide stable handover services
for train crossing handover.

6. Conclusions

(1) In response to the problems of fxed hysteresis
thresholds and single considerations in traditional
handover algorithms, this paper proposes a cross-
zone handover optimization algorithm based on
interval type 2 feature selection recurrent fuzzy
neural networks. A feedforward neural network
structure is used to implement FL inference, and an
interval type II Gaussian subordination function is
used to improve the nonlinear expression capability
of the model, while a feature selection layer is added
to determine the output of the subordination
function and uncertainty inference is used to carry
out fuzzy inference to complete the optimization of
the hysteresis threshold.

(2) Te inputs to the network model are adjusted to
account for the functional diferences between the
control plane and user plane, and the hysteresis
threshold is optimised for the control-plane hand-
over algorithm by considering RSRP and RSRQ, and
for the user-plane handover algorithm by consid-
ering RSRP, RSRQ, and throughput.

(3) Tis method outperforms the traditional A3 hand-
over algorithm in terms of handover success rate,
handover interruption rate, and ping-pong handover
rate, solving the problem of fxed handover pa-
rameters and single consideration of the traditional
method, and efectively improving the handover
performance. Te research results can provide some
theoretical reference basis for high-speed railway
train speedup and 5G-R evolution.
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Figure 14: Comparison diagram of handover interruption rate of
control-plane handover algorithm.
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Figure 15: Comparison chart of ping-pong handover rate of
control-plane handover algorithm.
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