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Fault diagnosis of rotating machinery is an attractive yet challenging task. �is paper presents a novel intelligent fault diagnosis
scheme for rotating machinery based on ensemble dilated convolutional neural networks. �e novel fault diagnosis framework
employs a model training strategy based on early stopping optimization to ensemble several one-dimensional dilated con-
volutional neural networks (1D-DCNNs). By varying the dilation rate of the 1D-DCNN, di�erent receptive �elds can be obtained
to extract di�erent vibration signal features. �e early stopping strategy is used as a model update threshold to prevent over�tting
and save computational resources. Ensemble learning uses a weighted mechanism to combine the outputs of multiple 1D-DCNN
subclassi�ers with di�erent dilation rates to obtain the �nal fault diagnosis. �e proposed method outperforms existing state-of-
the-art classical machine learning and deep learning methods in simulation studies and diagnostic experiments, demonstrating
that it can thoroughly mine fault features in vibration signals. �e classi�cation results further show that the EDCNN model can
e�ectively and accurately identify multiple faults and outperform existing fault detection techniques.

1. Introduction

Rotating machinery is widely used in manufacturing,
transportation, aerospace, and other industries [1, 2].
However, rotating machinery systems frequently operate
in high-speed, heavy-duty environments, inevitably
resulting in internal components (such as bearings and
gears) that are susceptible to damage. While the e�ciency
of rotating machinery can be reduced by minor failures,
the consequences of serious failures can be catastrophic.
Furthermore, vibration signals monitored in harsh in-
dustrial environments are subject to signi�cant noise
interference, which poses a signi�cant challenge for ro-
bust fault diagnosis. Fortunately, with the rapid devel-
opment and integration of sensor technology in the
modern industry, condition monitoring and fault diag-
nosis have become the most e�ective methods to avoid
damage using the measured monitoring vibration signals
[3, 4]. As a result, prognostics and health management
(PHM) of rotating machinery under changeable working
circumstances has emerged as a critical technique for

economic e�ciency and a hot topic of various research
studies [5].

1.1. Problems and Motivation. �e diagnosis of rotating
machinery faults is essentially a pattern recognition issue
related to the health condition. Traditional fault diagnosis
techniques, such as the wavelet transform [6, 7], variable
modal decomposition [8, 9], and empirical modal decom-
position [10–13], are challenging to extract fault discrimi-
native features from vibration signals with nonstationary
and nonlinear characteristics and demand excessive ex-
pertise and expert knowledge, limiting their practical ap-
plication. Furthermore, the development of arti�cial
intelligence technologies has increased their application in a
variety of industries, such as mechanical fault diagnostics.
Intelligent fault diagnosis has two main forms: machine
learning combined with manual feature extraction [14, 15]
or deep learning with automated feature extraction [16–18].
Deep learning-based approaches have gained a lot of at-
tention and popularity as a result of their ability to achieve
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good end-to-end fault diagnosis and automated fault feature
extraction. Traditional fault diagnosis methods or a com-
bination of manual feature extraction and machine learning
cannot accomplish the task [19, 20].

While deep learning-based mathematical frames de-
crease the requirement for expert knowledge and manual
feature engineering, it is an effective tool for mechanical fault
identification. Artificial neural networks (ANNs), recurrent
neural networks (RNNs), and convolutional neural net-
works (CNNs) are the most common deep learning tech-
niques. For example, Moosavi et al. [21] used a multilayer
ANN for fault detection and diagnosis of electric motors.
Mao et al. [22] proposed a semirandom subspace method
with a bidirectional gate recurrent unit (a modified RNN
algorithm) to take full advantage of fusion features for
bearing fault diagnosis. Wu and Ma [23] proposed an im-
proved RNN method for wind turbine fault diagnosis based
on long short-term memory and Kullback–Leibler diver-
gence. .e abovementioned deep learning-based research
approaches produced good fault diagnostic conclusions.
However, when compared to the other two deep learning
approaches, the ANN-based diagnostic method suffers from
weak nonlinear fitting ability. Furthermore, the RNN-based
diagnostic technique suffers from gradient dispersion and
gradient explosion conundrum in model training, as well as
containing too many model parameters.

In this work, CNNwas chosen over the other approaches
because of its superior region feature extraction capabilities
and unique model parameter sharing mechanism [24].
Many experts and researchers have conducted extensive
research on CNN models. For example, Chen et al. [25]
suggested a rolling element-bearing fault approach based on
cyclic spectrum consistency and CNN to achieve high di-
agnostic accuracy. Plakias and Boutalis [26] proposed an
attention-intensive CNN with improved generalization ca-
pabilities for recognizing rolling element-bearing faults. Guo
et al. [27] developed a fault diagnosis model capable of
reliable and quick fault identification of multichannel data
utilizing multilinear principal component analysis and
CNN. Han et al. [28] suggested a CNN-support vector
machine system with high robustness in diagnosing bearing
faults.

1.2. Proposed Methods. However, the abovementioned
CNN-based fault diagnosis method achieves advanced di-
agnostic performance due to its robust local feature ex-
traction and flexible structure. .e abovementioned CNN-
based fault diagnosis research, on the other hand, has such
limitations as follows:

(1) .e above CNN models are constrained by the
classic convolution process, which is incapable of
accurately diagnosing faults in complicated indus-
trial diagnostic situations.

(2) In the case of a single receptive field (RF), fault
diagnosis of the CNN frequently relies on a few
featuremaps to create unreliable judgments, posing a
significant risk to decision-making.

.erefore, the purpose of this study is to investigate a
mechanical health monitoring method with strong ro-
bustness in order to reduce the negative noise impact under
various complex operating situations. To address the
aforementioned limitations of classic CNN, this paper
proposes an intelligent rotating machinery fault diagnosis
model based on the ensemble dilated convolutional neural
network (EDCNN) and early stopping optimization. Dilated
convolutional neural network (DCNN) not only has a large
RF but can also maintain the size of the model. EDCNN
takes the concept of ensemble learning and applies it to fault
classification by ensembling multiple weak classifiers to
jointly consider multiple feature maps for decision making.

1.3. Contributions and Structure of 'is Paper. .e main
contributions of this work are as follows:

(1) A novel deep learning algorithm called EDCNN is
proposed, which ensembles multiple dilated con-
volutional neural networks with different dilation
rates to extract features effectively.

(2) An intelligent model training approach based on
early stopping optimization is implemented. .is
technique conserves computing resources while
minimizing overfitting and performance
degradation.

(3) A novel EDCNN-based fault diagnosis framework
applied to rotating machinery is proposed. .e ef-
fectiveness and superiority of the proposed method
are confirmed by the benchmark rolling bearing
dataset and the wind turbine simulator dataset.

.e rest of this paper can be summarized as follows. .e
proposed EDCNN and the suggested EDCNN-based in-
telligent fault diagnostic method for rotating machinery are
described in Section 2. .e proposed fault diagnostic model
is validated using the rolling bearing and wind turbine
datasets in Section 3. Finally, the main conclusions are
summarized in Section 4.

2. Intelligent Fault Diagnosis Method for
Rotating Machinery Based on the EDCNN

In this section, the basic theory of the proposed EDCNN
method is first discussed. Subsequently, the proposed
framework for intelligent fault diagnosis is presented.

2.1. Mathematical Model of the Proposed EDCNN

2.1.1. One-Dimensional Dilated Convolutional Neural Net-
work (1D-DCNN). Deep learning-based fault diagnosis
techniques have attracted widespread attention and have
been extensively studied and applied. ANN is a mathe-
matical model that simulates the activity mechanism of the
human nervous system by computing the weight of each
neuron on all neurons connected layer to layer. When
neurons are overstacked, however, the computing resources
are too enormous and the capacity to extract features is
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extremely limited. .e RNN can extract temporal infor-
mation more efficiently than ANN, but its nonparallel
computing strategy will give training an appropriate diag-
nostic model harder. As a result, CNN was chosen by the
authors for the research of deep learning in fault diagnosis.

Dilated convolutional neural networks are modified
convolutional neural networks that are used for multipattern
identification and sensitive feature extraction in complicated
tasks. .e same model volume can be captured efficiently
with a more comprehensive range of RFs. In this work, the
time-series signals are fed into a deep learning model, the
diagnostic model extracts the characteristics of the input
signals adaptively, and the final output is utilized tomake the
final conclusion.

Similar to the CNN model, the DCNN model consists of
convolutional layers, pooling layers, activations, batch nor-
malizations, and fully connected layers [29–31] as shown in
Figure 1. Convolutional layers could extract features by
producing highly focused and continuous information. .e
dilated convolution kernel (DCK) has a hyperparameter called
the dilation rate (DR) that primarily indicates the dilation scale
when compared to the normal convolution kernel.With DCK,
RF can be dilated to capture different feature components
without increasing the size of the convolution kernel. .e
ensemblemodel in this study is composed of subclassifiers 1, 2,
3, and 4, which use dilated convolution kernels with dilation
rates of 1, 2, 3, and 4, respectively. .e following equation
expresses the dilation convolution process:

C
n
j � 

i∈Mj

X
n−1
i ∙W

n
ij + b

n
j ,

(1)

where Cn
j is the j th element of the n th convolutional layer,

Mj is the convolution region of the input signal, which varies
with DR, as shown in Figure 2, Xn−1

i is the previous layer
output inside Mj, Wn

ij is the weight matrix of the corre-
sponding convolution kernel, and bn

j is the bias..e activation
follows convolutional layers, and the exponential linear unit
(ELU) activation function is chosen and denoted as follows:

ELU(x) �
x, if x> 0,

α∗ (exp(x) − 1), if x≤ 0′,
 (2)

where x is the input of neural network model. .e activation
is a nonlinear function that transforms input values and
enhances the ability of the network to express nonlinearity.
Lastly, α is a hyperparameter taken as 1 in this paper.

Pooling layers are used to accomplish sparse processing
while assuring a low number of neurons and comprehensive
feature representation. Max pooling, mean pooling, and
stochastic pooling are all standard pooling methods. In this
paper, the max pooling method is used and calculated as
follows:

M
l
m,n,k � max pooling

l
(m,n)∈Rl

i,j
x

l−1
m,n,k , (3)

where Ml
m,n,k is the computed value of location (i, j) in the k

th feature map of the l th layer after the pooling operation,
Rl

i,j is the pooling area around the location (i, j), and xl−1
m,n,k is

the node at the location (m, n) in the pooling domain.
Batch normalization is used to normalize the input data

into the network model in order to speed up the training
process while preserving as much expressiveness as possible.
.e following is a description of the batch normalization:

μ �
1
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 ,

ys � cx + β,

(4)

where Nbatch represents the number of small batches of data,
xs represents the s th input, μ and σ2 represent the mean and
variance of small batches of data, respectively, ε represents a
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Figure 1: Structure of the one-dimensional convolutional neural network.
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constant close to but greater than 0, xs represents the result
of normalizing the data, c and β define the parameters that
can be learned by the network, and ys represents the s th
output of the data after batch normalization.

.e fully connected layer performs feature categoriza-
tion after numerous layered convolutional blocks. It takes
place on the utterly connected layer and is used to forecast
category labels in the output layer. .e following is the
equation for the fully connected layer:

y
l

� w
l
x

l− 1
+ b

l
, (5)

where yl is the output of the l th fully connected layer, xl− 1 is
the one-dimensional feature vector after flattening, wl is the
weight matrix, and bl is the bias.

2.1.2. Ensemble Learning. Ensemble learning combines
several 1D-DCNN subclassifiers into a single prediction
model to reduce variance and bias and improve accuracy
[32–34]. .is study proposes an ensemble 1D-DCNNmodel
approach based on a weighted mechanism as shown in
Figure 3. Subclassifiers with different dilation rates initially
have the same weights, and the weights are continuously
updated based on the outputs of the proposed model. .e
way of the weighed procedure is shown in the following
equation:

y � argmax
n

j�1
wjpj , (6)

where wj is the weights of subclassifiers and pj is the
prediction of subclassifiers, and y is the final fault diagnosis
decision. Forward and backward propagation mechanisms
are present in ensemble model training. Forward propa-
gation is performed by calculating model parameters
(subclassifier weights and model weights) and vibration
signals to make diagnostic decisions. According to the di-
agnostic objective, backward propagation finds the most
appropriate weights for each neuron and subclassifiers as
shown in Figure 4. .e cross-entropy loss function [35] and

the Adam optimization algorithm [36] play an important
role in the backward propagation parameters. .e former is
a widely used loss function in multiclassification tasks, and
the latter effectively minimizes the loss function. With the
ensemble learning process, even if a subclassified incorrectly
misclassifies faults, associating it with extremely low model
weights yields the correct outcome in the final diagnosis of
the ensemble model.

2.1.3. Early Stopping Optimization. An optimal diagnostic
model with the best generalization performance is generally
expected in model training. However, neural network ar-
chitectures are prone to overfitting. .e model may improve
as the training and validation subset loss function simul-
taneously decrease. However, at a certain point in the
training process, the loss function of the training subset will
continue to decrease while the loss function on the vali-
dation subset starts to increase. .is is known as overfitting.

To avoid overfitting, early stopping optimization can be
used to stop the model training process depending on model
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Figure 2: Convolution region with different dilation rates. (a) DR� 1, (b) DR� 2, (c) DR� 3, and (d) DR� 4.
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updates as shown in Figure 5. A validating subset loss
function-based early stopping optimization is proposed.
During each iteration, the model is saved when the loss
function of the validation subset decreases. .e training
process is stopped when the evaluation metric of the model
no longer improves, and the number of iterations is within
the early stopping optimization. Previous experiments have
shown that the results obtained with early stopping do not
significantly differ from those obtained with a high number
of iterations. However, the computational cost may be
several times lower. Early stopping optimization is used in all
of the deep learning methods in this research, which is
denoted as follows:

Lobt(t) � min
t′ < t

Lva t′( , (7)

where t is the number of iterations, Lobt(t) is the validation
subset loss function of the obtained validation subset, and

Lva(t′) is the corresponding validation subset loss function
at the moment t′.

2.2. A Detailed Structure of the Intelligent Model. EDCNN
consists of a collection of four 1D-DCNN subclassifiers. .e
structural and parameters of the mathematical model were
determined by referring to the paper [37, 38]. Apart from the
dilation rate, the hyperparameters of each subclassifier in the
proposed model are the same as shown in Figure 6 and listed
in Table 1. Blocks 1, 2, and 3 of the subclassifiers serve as
feature extractors, while Block 4 serves as the decision
maker. Block 1, Block 2, and Block 3 are four-layer dilation
CNNs, each containing a dilation convolution layer, a
pooling layer, activation, and batch normalization. .ere are
four channels in the first dilation convolution and pooling
layer, eight channels in the second dilation convolution and
pooling layer, and 16 channels in the third dilation
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Figure 4: Mechanism of forward and backward propagation. (a) Forward propagation and (b) backward propagation.
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convolution and pooling layer. .e convolution kernel has a
valid length of 5 with a stride of 1, and the pooling kernel has
a valid length of 2 with a stride of 2. Block 4 is a three-layer
fully connected neural network with the first layer (input
layer) dimension as a flattened input dimension, the second
layer (hidden layer) dimension as 128, and the third layer
(output layer) dimension as a fault category. In addition, to
save model training time and model convergence perfor-
mance, this study sets the early stop to 5, the maximum
number of iterations to 100, the learning rate to 10−4, and the
small batch size to 100.

2.3. Proposed EDCNN-Based Intelligent Fault Diagnosis
Scheme. A new adaptive deep learning fault diagnosis
scheme is proposed based on the advantages of the
proposed EDCNN method. .e flowchart of this scheme
is shown in Figure 7, and the specific steps are as
follows:

Step 1: Signal acquisition. Acceleration sensors are used
to collect vibration acceleration signals from rotating
machinery and divide them into a training set (which
includes a training subset and a validation subset) and a
test set.
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Figure 6: Ensemble dilated convolutional neural network model.

Table 1: Parameters of the dilated convolutional neural network model.

Object Hyperparameter settings

Feature extractor

Block 1 Convolutional layer #1 Number of channels: 4, kernel width: 5, stride: 2
Pooling layer #1 Kernel width: 2, stride: 2

Block 2 Convolutional layer #2 Number of channels: 8, kernel width: 5, stride: 2
Pooling layer #2 Kernel width: 2, stride: 2

Block 3 Convolutional layer #3 Number of channels: 16, kernel width: 5, stride: 2
Pooling layer #3 Kernel width: 2, stride: 2

Decision maker Block 4
Fully connected layer #1 Network width: input dimension
Fully connected layer #2 Network width: 128
Fully connected layer #3 Network width: number of fault category

Early stopping 5
Maximum number of iterations 100
Learning rate 10−4

Small batch size 100
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Step 2: Model construction..e EDCNNmodel is built
using the training set as the input..e training subset is
utilized for initial prediction model training, and the
validation subset is used to stop model training at the
proper moment in conjunction with early stop
optimization.
Step 3: Fault diagnosis. .e testing set is input to the
prediction model for achieving end-to-end intelligent
fault diagnosis.

3. Experimental Study

In this section, to evaluate the advanced diagnostic per-
formance of the proposed fault diagnosis model, several
experiments are carried out on Case Western Reserve
University (CWRU) [39] rolling bearing and wind turbine
dataset. Data acquisition is performed through a sliding time
window, where the window size and overlapping structure
are 1024 and 128, respectively. .e dataset is composed of
800 sets of signals for each fault category. .e training and
test sets are divided by the dataset by a ratio of 0.8 : 0.2, and
the training and validation subsets are divided by the
training set by a ratio of 0.8 : 0.2. Moreover, several most
advanced methods are selected for comparative analysis.
Finally, for this experiment, the deep learning library
PyTorch (version 1.9) was utilized, the suggested model was
evaluated and implemented in Python (version 3.7), and the
experiment was repeated ten times to eliminate random
effects.

3.1. Comparative Methods. .e following diagnosis
methods are implemented for comparison to verify the
superiority of the proposed model in fault diagnosis (the
proposed EDCNN fault diagnosis method is abbreviated as
FD-6):

FD-1: FD-1 is a fault diagnosis method based on the
modified support vector machine, which employs the
multiscale permutation entropy, linear local tangent
space alignment, and least square support vector ma-
chine algorithms. According to reference [40], the
settings are configured.
FD-2: FD-2 is a fault diagnosis method based on an
artificial neural network. .e ANN simulates the
structure and function of neural networks in the brain,
using mathematical models to model the activity of
neurons. In this study, a three-layer ANN was used.
FD-3: FD-3 is a fault diagnosis method based on an
improved recurrent neural network. .e improved
method, called the gated recurrent unit, can extract
time-series features automatically. .e training effi-
ciency is significantly higher than that of long short-
term memory due to the unique individual gate
mechanism.
FD-4: FD-4 is a fault diagnosis method based on the
CNN, which can classify input data according to its
hierarchical structure in terms of shifted variables using
representational learning. .e model used is the sub-
classified 1 mentioned above.
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FD-5: FD-5 is a fault diagnosis method based on the
DCNN..e DCNN has a wider receptive field than the
normal convolutional neural network and may capture
longer dependencies. .e model utilized is subclassifier
2 from the previous section.

3.2. Evaluation Metric. To quantify the performance of the
suggested intelligent fault diagnosis scheme, evaluation
metrics were devised. .e F score [41], a composite metric
that combines precision and recall, is used as the evaluation
criterion as follows:

Precision �
TP

TP + FN
,

Recall �
TP

TP + FP
,

F score �
1 + β2 ∗Precision∗Recall

β2 ∗Precision + Recall
,

(8)

where TP denotes true positive, TN denotes true negative, FP
indicates false positive, and FN indicates false negative. .eir
respective roles are shown in Figure 8; β2 denotes the weights
of precision and recall in the evaluation metrics. Here, β2 is
taken as 1, indicating that equal importance is given to
precision and recall. .erefore, it is called the F1 score.

3.3. Case Study 1: Experimental Analysis with the CWRU
Dataset

3.3.1. Dataset Description. .e CWRU dataset is a re-
markable and representative rolling bearing fault diagnostic
dataset that has been utilized in many studies to validate
condition monitoring and fault diagnosis methods for ro-
tating motors [42, 44]. It is used as a benchmark in this work
for experimental investigations to verify the advantages of
the proposed EDCNN-based fault diagnosis method. .e
CWRU experimental platform is shown in Figure 9, which
mainly consists of an induction motor, a torque transducer,
a dynamometer, and an electronic controller. .e vibration
signals were collected from a faulty bearing mounted at the
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Figure 9: Experimental platform used to obtain the CWRU bearing data.
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end motor fan and sampled at 12 kHz. .is dataset studied
ten single fault conditions corresponding to standard and
different fault diameters for ball faults, inner race faults, and
outer race faults as shown in Table 2.

3.3.2. Experimental Validation. .e diagnostic performance
in the CWRU experimental platform test set is depicted in
Figure 10. In the first set of experiments, only the FD-6 in-
dicated correctly recognized all fault kinds, whereas the re-
mainder of the FD-1, FD-2, FD-3, FD-4, and FD-5 were
misdiagnosed, as seen in Figure 10(a). In the repeated ex-
periments, the average F1 scores of each diagnostic model are
represented in Figure 10(b)..e F1 scores of FD-1, FD-2, and
FD-3 are inferior to CNN-based approaches (FD-4, FD-5, and
FD-6)..e reason for this is that, as compared to FD-1, FD-2,
and FD-3, CNN-based fault detection methods have more
powerful feature extraction capabilities for identifying various
types of faults. Furthermore, the F1 scores of FD-6 are 2.46%
and 0.44% higher in the CNN-based fault diagnosis method
than those of FD-4 and FD-5, respectively. In comparison to
the limited pattern recognition capability of other methods,
the suggested FD-6 diagnostic model correctly identifies all
health states in the benchmark experiments.

3.3.3. Robustness Analysis. To simulate fault diagnosis
scenarios under complex operating scenarios, Gaussian
white noise of 4 dB, 2 dB, 0 dB, −2 dB, and −4 dB is added to
the original signals, respectively. .e comparison ap-
proaches and the suggested EDCNN method were tested for
robustness in the presence of additional noise.

.e robustness analysis results of six fault diagnosis
methods are shown in Figure 11. It can be concluded that in
the presence of additive noise, the classification performance
of the diagnostic model deteriorates as the signal-to-noise
ratio decreases. .e CNN-based fault diagnosis model still
outperforms the FD-1, FD-2, and FD-3 diagnostic ap-
proaches..e F1 score of FD-6 in the CNN-based diagnostic
model is 98.27%, which is better than the F1 scores of FD-4
and FD-5, which are 90.71% and 95.17%, respectively.
Furthermore, the presence of a dilated convolution mech-
anism improves the accuracy and robustness of the fault
identification effect. In both sets of CWRU experiments, the
suggested FD-6 model obtained the best diagnostic results,
ensemble multiple dilated convolutional neural networks,
and improved diagnostic performance and robustness under
multifeature map comprehensive decision, demonstrating
the improved diagnostic performance, and robustness of the
proposed model based on the addition of multifeature maps.

Table 2: Description of ten working states of the CWRU experimental platform.

Status Fault diameter Abbreviation Fault type Label Sample length Dataset (training subset/validation subset/test set)
Normal — NOR — 0 1024 512/128/160

Ball fault
0.007 B007 Single 1 1024 512/128/160
0.014 B014 Single 2 1024 512/128/160
0.021 B021 Single 3 1024 512/128/160

Inner race fault
0.007 IR007 Single 4 1024 512/128/160
0.014 IR014 Single 5 1024 512/128/160
0.021 IR021 Single 6 1024 512/128/160

Outer race fault
0.007 OR007 Single 7 1024 512/128/160
0.014 OR014 Single 8 1024 512/128/160
0.021 OR021 Single 9 1024 512/128/160
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Figure 10: Diagnostic performance of different methods for the CWRU dataset: (a) confusion matrix and (b) the mean F1 scores.
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3.4. Case Study 2: Experimental Analysis with the Wind
Turbine Dataset

3.4.1. Dataset Description. Wind energy is widely consid-
ered to be the most commercially promising and environ-
mentally friendly energy source; however, different harsh
working conditions make wind turbines more susceptible to
failure. An experimental platform of a wind turbine simu-
lator was created and wind turbine datasets were collected in
this work for the aim of wind turbine fault diagnostics. .e
wind turbine simulation experimental platform consisting of
three fan blades, an auxiliary drive, a planetary gearbox,
bearing hubs, and an alternator is shown in Figure 12. .e

vibration signals are sampled from the faulty bearing and the
faulty gear phone at one end of the gearbox at 12.8 kHz. Nine
health states were investigated using the data collected,
including normal, several single fault types, and several
compound fault types, as shown in Table 3. Compound
faults include mutual interaction between several single fault
pulses, degrading diagnostic method identification
performance.

3.4.2. Experimental Validation. Compound faults in wind
turbines occur concurrently and are coupled by multiple
types of faults, posing a significant difficulty for feature

Auxiliary drive

Blades

(a)

Acceleration sensors Parallel gearbox

Alternator Bearing hubs Planetary gearbox

(b)

Figure 12: Experimental platform used to obtain wind turbine simulator data.
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Figure 11: Comparative learning in CWRU tasks with different additional noise levels.
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extraction, and pattern recognition in fault diagnosis. .e
fault diagnosis results of the wind turbine experimental
platform test set are illustrated in Figure 13. All diagnostic
approaches were misdiagnosed in the initial set of wind
turbine experiments, as shown in Figure 13(a). .e iden-
tification results of the remaining approaches demonstrate
large-scale misclassification, with the exception of the
proposed FD-6 diagnostic method, which misidentifies two
fault types. .e comprehensive performance of each diag-
nostic method for repeated experiments on the wind turbine
dataset is shown in Figure 13(b). None of the non-CNN-
based mathematical models are adequate for diagnosing
compound faults. Due to its great feature capability capacity,
the suggested FD-6 model is able to retain good recognition
performance while dealing with compound fault diagnostic
scenarios and is 2.43% and 1.86% ahead of the relatively
decent FD-4 and FD-5 in terms of F1 scores.

3.4.3. Robustness Analysis. Likewise, the additional noise
was applied to the wind turbine dataset. For different
health conditions, 4 dB, 2 dB, 0 dB, −2 dB, and −4 dB ad-
ditive noise is applied to the vibration signal. .e recog-
nition performance of the comparative learning is shown
in Figure 14. Obviously, diagnosing compound faults in
wind turbines is more difficult than diagnosing single
faults in bearings. .e performance of the comparison
method is still inadequate. Due to CNN’s outstanding
feature extraction capacity, FD-4, FD-5, and FD-6 out-
perform FD-1, FD-2, and FD-3. .e wider RF of FD-5 and
FD-6 feature extractors, which can extract correlation
features between longer signals, results in 0.66% and 6.69%
better mean performance than FD-4. For the advantage of
ensemble learning, FD-6 may gain more effective fault
discrimination information in multi-feature maps,
resulting in superior classification performance.
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Figure 13: Diagnostic performance of the wind turbine simulation experimental platform: (a) recognition results for a given experiment
and (b) the mean F1 scores of different methods.

Table 3: Description of nine working states of the wind turbine simulator experimental platform.

Status Abbreviation Fault type Label Sample length Dataset (training subset/validation subset/test set)
Normal NOR — 0 1024 512/128/160
Inner race fault IRF Single 1 1024 512/128/160
Outer race fault ORF Single 2 1024 512/128/160
Ball fault BF Single 3 1024 512/128/160
Gear wear fault GWF Single 4 1024 512/128/160
Tooth broken fault TBF Single 5 1024 512/128/160
Inner race outer race fault IOF Compound 6 1024 512/128/160
Outer race gear wear fault OGF Compound 7 1024 512/128/160
Outer race tooth broke fault OTF Compound 8 1024 512/128/160
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4. Conclusions

In this paper, an intelligent fault diagnosis approach for
rotating machinery is proposed using ensemble dilated
convolutional neural networks (EDCNN). On the CWRU
bearing dataset and the wind turbine dataset, the proposed
approach is examined and validated. .e following con-
clusions can be drawn:

(1) In both the bearing and wind turbine datasets, the
proposed EDCNN adaptive fault diagnostic ap-
proach accurately identifies all single and compound
faults.

(2) In comparison to advanced fault diagnosis methods
(such asMSVM, ANN, GRU, CNN, and DCNN), the
suggested EDCNN method can identify all health
states correctly and reliably.

(3) .e robustness analysis results indicate that the
suggested EDCNN approach can perform fault di-
agnosis of rotating equipment in complex situations
with stronger feature learning and feature extraction
capabilities.
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