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Water-related tragedies are the highest common of all proven natural calamities and pose severe attacks on people and on
socioeconomic status development. Due to the obvious controversy surrounding, their volume, location and time of incidence,
geological swaths, and geophysical interrelations, �ood events are di�cult to completely control. Hence, complete �ood pre-
vention is always considered to be a viable choice.  e specialized �ood occurrences are investigated by developing a structural
measure. In this paper, nonlinear �ood event circumstance is determined by using a statistical Bayesian parametric approach for
parameter estimation. A popular tool for estimating a �ood design is model of nonlinear �ood event. Nonlinear �ood event
models are subjected to a Bayesian technique for estimating parameter.  e approach is based on the minimization function of
square for models with nonlinear calculated peak discharges in terms of parameters.  e observed and calculated peak discharges
for numerous storms in the watershed, data on the pattern of error observed, and previous information on values of parameter all
in�uence this objective function.  e subsequent matrix for covariance is a measure of the calculated parameters’ accuracy.
Rainfall and runo� data from a Harvey River sample are used in this study to show the process.

1. Introduction

Water-related disasters are the most prevalent of all natural
disasters documented, posing major threats to people and
socioeconomic growth. Between 1900 and 2006, �oods were
responsible for more than 30% of all natural disasters, killing
more than 19% of all people and harming more than 48% of
the population [1]. Floods account for 26% of all natural
catastrophe expenses, with water-related calamities ac-
counting for 72% of all costs. Change in climate, land use
changes, sea level increase, deforestation, and development
of population in �ood-prone areas are all expected to worsen
these losses in the future, pushing the global �ood disaster
population to two billion people [2].

For a number of reasons, optimal forecasting of �ood
and sustainable risk management systems for �ood have
been promoted as �ood preparation strategies. Floods are

di�cult to entirely regulate because of the uncertainties
surrounding their volume, time, and location of occurrence,
geographical expanse, and geophysical interactions. As a
result, total �ood protection is not always regarded as a
practical option [3]. Traditional �ood control, which gen-
erally consists of structural protection measures such as
dams and levees, focuses on changing the characteristics of a
�ood to minimize peak heights and geographical extents [4].
Although �ood danger is reduced by structural solutions
such as dams and embankments, it cannot be entirely
eliminated. Furthermore, these interventions are impractical
in certain region like remote mountain areas, ine�ective for
all �ood procedures like freezing lake outburst �oods, and
have negative environmental consequences [5]. Moreover,
as seen in the USA, aging �ood control infrastructure has
signi£cant costs and implications in �ood setup that does
not provide the desired level of forti£cation or is vulnerable
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to collapse. Furthermore, specific flood events are analyzed
by designing a structural measure, such as a 1% annual
exceeding [6], which is difficult to implement because it is
done manually, and increased hydrologic uncertainty has
resulted from channel alterations, land use changes, and
climate change, making floods less expectable. As a result,
structural improvements are almost always doomed to fail
[7].

*e pooling problem has been solved using sophisticated
methods. A weighted linear combination of parameter es-
timations is used in the bootstrapped estimates. *e validity
of pooling is explicitly assumed in this procedure [8]. Pa-
rameter variation is represented in a Bayesian technique by a
random parameter model, with storm event parameters
chosen from a hyper-distribution that is assumed to be
multivariate normal [9]. A variety of models, spanning from
fixed to random parameters, can be utilized depending on
the model parameterization [10].

Furthermore, there is probable cause to believe that flood
event model parameters may be storm-dependent. *e
model’s forecasting power will be harmed unless the pa-
rameters have a tight link to easily recognizable elements of
the storm (e.g., storm track or rainfall temporal pattern) [11].
*e pooling techniques are not useful, but they do presup-
pose the presence of a universal set of parameters that can be
applied to all storms. Individual discrepancies in parameter
estimations might be due to a single estimation factor [12].

In NFEMs, manual methods for parameter estimation in-
clude trial and error, parameter interaction diagrams, and
nonlinear regression modeling [13]. *ese approaches, with the
exception of the method, focus on fitting calculated and
pragmatic overflow hydrographs for a single storm. For each
storm occurrence, this generates a single set of parameter es-
timations [14]. When numerous storms are accessible for es-
timation of parameter, a pooling approach must be used to
provide parameter estimationwith a single set for thewatershed.

*e rest of the section is summarized as follows: Section
2 reveals the background of the parameter estimation model;
Section 3 details the proposed methodology of Bayesian
mechanism in nonlinear flood event detection; Section 5
explains the result and discussion, and finally Section 5
concludes the paper.

2. Background

2.1. Parameter Estimation and Interference. *e calibration
of nonlinear flood event is fitted by observed and computed
hydrograph peaks with parameter a and m discrete storm
event. *e nonlinear flood event model is defined using the
regression

rt � f it, v( 􏼁 + εt, t � 1, 2, . . . , m. (1)

*e input vector is represented as it with the observed
peak discharge rt, v is the unknown parameter with vector,
and F is the response function which is continuously dif-
ferential with vector and creates error randomly. *e re-
sponse function (2) of the nonlinear flood event is

f it, v( 􏼁 � xtl
′,

v � 􏽘
a

i�1
xtlvl,

(2)

where xtl is component of it and transpose matrix of the
vector.

*e estimation of parameter with statistical approach is
based on the literature of hydrologic with least square
method. *e function of sum of square for estimating the
least square with minimum vector is expressed as

S(v) � [r − f(v)]′[r − f(v)], (3)

S(v) � 􏽘
m

t�1
rt − f it, v( 􏼁􏼂 􏼃. (4)

*e column vector and the component of r and f(v) are
denoted by rt and f(it, v). *e response surface of the
contour is denoted by the sum of square function with the
linear parameter function for flood event, which is quadratic
to the surface and forms hyper-ellipsoid. *e unbiased es-
timation parameter is obtained with the variance, and es-
timation is based on the interference. *e three assumptions
should be satisfied for unbiased estimation.

(i) Specifying the function of model response correctly
(ii) *e input vector component is measured without

error and is nonstochastic
(iii) *e error εt obtained is distributed randomly with

arbitrary variable normally with mean and constant
unknown variance σ2t

*e unbiased vectors hold the three assumptions with
least square, distributed normally, and estimating minimum
variance. *e preceding properties only hold asymptotically
for models with nonlinear parameters. *e response surface
is nonquadratic for smaller samples, and least squares es-
timators may be severely skewed and non-normally dis-
seminated, and have variances greater than the smallest
feasible variance [15].*e asymmetry of a estimation of least
squares for a nonlinear model is the most essential aspect of
its distribution. *e degree to which this behavior changes
depends on the data set combination, and there are no rules
on how large a sample must be to approximate one-
dimensionality.

2.2. Parameter Transformation. Under parameter modifi-
cations, the response surface’s shape and the sampling
characteristics of estimating the least squares are not in-
variant. It may be feasible to discover a parameterization that
produces more quadratic surface response of contours and
estimators that approximate the asymptotic requirements.
*e problem of joint confidence is obtained by simplifying
the parameterization for the parameter model.

*e parameterization of transformation is obtained al-
ternatively represented by

w � t(v). (5)
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*e new parameter w is implied with the original pa-
rameter without input vector it. *e predicted value is
provided for the reparametrized model with the response
observed with the original model.

*e transformation of parameter has two classes gen-
erally. *e transformation with expected value and pa-
rameter with stability is proposed in this paper. *e set of
input vector is chosen for the analysis, and expected value is
used w1, w2, . . . , wr.

wi � fit∗, v, t � 1, 2, . . . , r. (6)

*e original parameter v is eliminated after transfor-
mation of equation. *e transformation with the second
class is obtained for the parameter estimation.

wi � w
i
i for c≠ 0, (7)

wi � ln ui( 􏼁 for c � 0. (8)

*e transformation parameter has the advantage with
constant random variable which enhance the contour form
of the surface of response and the possessions of sampling
with estimating the least square for the combination of
model and data set. When compared to the original model
parameterization, one drawback of predictable value alter-
ations is the numerical complication of their formulations
[16]. *e reparametrized model response function has many
converted parameters, and the difficulty of these purposes
increases as the number of parameter model increases.
Another disadvantage is that it is not always possible to solve
the equations to create terminologies for the inventive values
just in terms of the changed constraints.

2.3. Nonlinearity Measure. *e sampling properties are
assessed using the nonlinearity measure for the estimation of
least square. *e asymptotic bias is included for the cal-
culation of the bias and the intrinsic curvature measures and
effect of parameter curvature. *e model specified for the
identification of the bias measure and individual parameter
estimation is related to parameter transformation.

*e derivate matrix element is given as

V′ � zf it, 􏽢w( 􏼁dwi. (9)

*e second derivative is given in

V′′ � z
2
f it, 􏽢w( 􏼁dwidwj. (10)

*e function of J is defined as

J � V′.V″. (11)

*e element of W is given as

W � 􏽘
t

V′.V″. (12)

*e bias measure with the definition of Hougaard is
defined by

E 􏽢wi( 􏼁 − wi � −
1
2
σ2 􏽘 W.J, (13)

where E(􏽢wi) is the expected value of 􏽢wi.
*e estimation of variance is given by

σ2 �
s(􏽢w)

n − p
. (14)

*e nonlinear behavior is indicated using the percentage
bias

B% �
100 E 􏽢wi( 􏼁 − wi( 􏼁

􏽢wi

. (15)

Each individual parameter with the nonlinear behavior
measure is estimated by the asymptotic moment, which is
given by

E 􏽢wi − E 􏽢wi( 􏼁􏼂 􏼃
3

� −σ4 􏽘
qrs

Jiq.Jir.Jis. Wqrs + Wrqs + Wsqr􏼐 􏼑.

(16)

*e skewness with direct measure is given by

Sk �
E 􏽢wi − E 􏽢wi( 􏼁􏼂 􏼃

3

σ4gi􏼐 􏼑
3/2 , (17)

where gi is nonlinearity indicator.
*e shape of the locus solution is refereed using the

intrinsic curvature, which is described using

f(w) � f i1, w( 􏼁, . . . , f i1, w( 􏼁􏼂 􏼃. (18)

*e curvature measure for the element V′ and V′′ is
assumed by the standard radius of the element:

A � Q′􏼂 􏼃 L′V″L􏼂 􏼃. (19)

*e equation is called square bracket multiplication. *e
decomposition of V′ is given by(19).

V′ � qR. (20)

*e parameter effect of the array accelerated in the
curvature is denoted as APE, and intrinsic acceleration is
denoted as AIN.*emaximum curvature of parameter effect
and intrinsic culture is defined by

intrinsic curvature � max u′AINu
����

����, (21)

parameter effect curvature � max u′APEu
����

����, (22)

where u is unit vector, and norm of vector is represented
using the vertical bars.

3. Methodology

3.1.HydraulicModel. *e 1-D modeling technique for flood
propagation is still frequently utilized in engineering
practice because of its ease of implementation, low pro-
cessing time, and good real-time operational efficiency.
Because of the long channel length, limited floodplain, and
low sinuosity, as well as the fact that our flood forecasting is
primarily focused on discharge and stage at cross sections
rather than flood inundation, a 1-D modeling approach is
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used to achieve real-time flood forecasting efficiently and
adequately in this study. As a result, the hydraulic model
used here is the basic 1-D unstable open-channel flow
model, which is described using the Saint Venant formu-
lation as follows:

zA

zT
+

zD

zL
� dL, (23)

zD

zT
+

z

zL

αD
2

A
􏼠 􏼡 + gA

zS

zL
+ g

D|D|n
2

AR
4/3 � 0. (24)

T is time, L is distance of space along the channel, D is
discharge, S is stage, α is correction factor of momentum, A
is area of cross section, R is hydraulic radius, dL is lateral
discharge, and n is coefficient of Manning’s roughness.

*ese are hyperbolic partial differential equations that do
not have an analytical solution. With sufficient beginning
and boundary conditions, the equations may be numerically
solved using the four-point implicit finite-difference ap-
proach. *e four-point implicit finite-difference technique
has the advantages of being unconditionally stable, ex-
ceedingly robust, and quick to compute. *e scheme’s
fundamental flaw is that it does not operate well when the
river topography is complex, which is not the situation with
this project. Inflow discharges occur at the upstream and
lateral boundary conditions, whereas outflow phases occur
at the downstream boundary circumstances.

It is important to mention that the aforementioned
fundamental governing equations’ form implies the as-
sumption of uniform velocity distribution over the whole
cross section. When out-of-bank flow occurs in compound
channels, the difference in water depth and flow resistance
between the main channel and the floodplains causes a flow
velocity differential between these subsections. To mimic the
various flow characteristics in subsections, greater mo-
mentum correction factors, transverse changes inManning’s
roughness coefficient, and momentum transfer between
main channel and floodplains should be addressed in the
governing equations. *e cross sections are simplified as
simple channels, eliminating the impact of floodplains,
because the geometry of the cross sections in the study
channel and the floodplains are small or not formed in the
mountain valleys. As a result, the 1-D hydraulic model’s
essential governing equations maintain the traditional form,
with an overall Manning’s roughness coefficient for each
cross section. Another benefit of employing an overall
Manning’s roughness coefficient in hydraulic models is the
simplicity with which it may be updated during the as-
similation process.

*e collective resistance to open-channel flow is rep-
resented by Manning’s roughness coefficient. Its value is
influenced by flow circumstances such as the area of
submerged vegetation and flow turbulence intensity, as well
as physical parameters such as bed geology and cross-
sectional geometry. *e overall Manning’s roughness co-
efficient for a cross section is a composite number that
includes all elements’ contributions to flow resistance and
may be calibrated using hydrological measurements. *e

Manning’s roughness coefficients in the flood-forecasting
model should be permitted to change both geographically
and temporally, given the longitudinal fluctuation of a
channel’s physical properties and the unstable flooding
flow. A method for segmenting a river reach is provided,
with each segment defined by two adjacent hydrological
stations and a series of spatially unique cross sections.
Although the cross sections within a river segment have the
same roughness coefficient, each river segment has its
unique Manning’s roughness coefficient. *e Manning’s
roughness coefficient values are calibrated using a trial-
and-error technique based on historical flow data and then
updated using real-time stage measurements from hy-
drological stations to represent the unstable flood’s in-
stantaneous changes in flow resistance.

3.2. Bayesian Framework. A competent hydrologist is typ-
ically aware of the potential values, or range of values, of
model parameters before any observed data are collected.
*is knowledge might be based on personal preferences,
theoretical considerations, or other factors or an objective
assessment of indirect data, such as model parameter re-
gressions on catchment feature. To give reliable parameter
estimates, Bayesian estimation combines pre-existing
knowledge with observed data (sample information). *e
unknown parameter vector u is regarded as a random
variable and distributed using a probability density function
in this approach. *e information of posterior probability
density function is used to combine the Bayes theorem.

f(θ|O) � cL(O|θ)f(θ). (25)

O is the vector of observation, the likelihood function
L(O|θ) which contains the information sample. *e prior
information is given as f(θ), and c is the constant of
normalization which need a density function f(θ|O). By
locating the typical value of posterior distribution, various
estimations of θ are analyzed.

Because the exact form of f(θ|O) is too complex to
calculate, a strict request of Bayesian approximation is not
practicable for the types of replicas and sample sizes under
consideration.

3.3. Bayes ;eorem. A Bayesian technique to hydrological
modeling offers a persuasive mechanism for integrating
precise parameter uncertainty estimations with readily
available expert knowledge. Bayesian statistics recognizes
preceding data based on historic data or knowledge form
expert, as well as data composed via investigation and
opinion, as two types of data for knowledge about un-
identified parameters. *e unknown vector parameter θ is
modeled as a random variable with a probability density
function that represents uncertainty. *is function of
density is designated P(θ) and detains all known knowledge
about the parameters prior to gathering data. *e density is
represented by P (θ|Q) prior to gathering data Q. Prior and
posterior densities are the terms used to describe these
densities. Prior densities are less concentrated than posterior
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densities, which are analyzed using the knowledge about the
θ is acquired through the process of collecting data is re-
flector with a decrease in uncertainty. By using Bayes the-
orem, the process of updating posterior distribution from
prior distribution is given by

P(θ|Q) �
P(θ|Q)P(θ)

P(Q)
. (26)

*e proportionality constant (27) is represented by P(Q)

which is required for

􏽚 P(θ|Q)dθ � 1. (27)

*e likelihood function of the sample is given as P(θ|Q)

P(θ|Q) � 􏽙
l,j

2πσ2l exp −
[Q − x(r; θ)]

2σ2l
􏼠 􏼡. (28)

*e information available about the vector parameter θ
is contained in the posterior distribution. *e posterior
probability distribution is summarized by reducing the
interference of the statistical Bayesian.

3.4. Markov Chain Monte Carlo (MCMC) Method. It is
difficult to describe the subsequent dispersal by direct
computation for even modestly complicated issues with
realistic prior belief conditions. MCMC techniques provide
an alternate way. *is is a method for creating samples from
high-dimensional distributions, such as the posterior dis-
tribution P(OIQ). *e goal is to obtain a big enough sample
to correctly characterize any desired aspect of the posterior.

*e basic concept is to begin with a random beginning
value o and produce a sequence of reliant on parameter
values θt: t � 1, 2, . . .􏼈 􏼉 from a well-prepared Markov chain:
in other words, a random walk across the parameter state
space. To create this arbitrary walk, need to design a tran-
sition density function that describes themove θt⟶ θt+1 in
such a way that the chain’s observed values converge in
distribution to the posterior. Before the chain’s limiting
distribution is achieved, there is usually an unstable transient
phase. *e chain is considered to have congregated in
dispersal after this phase. *e iterations collected before
convergence are eliminated, leaving a reliant on sample
drawn from the subsequent. If the chain is protracted after
convergence to gather a large enough sample, the replicated
standards of the chain may be utilized to summarize the
characteristics of the posterior distribution.

*e most commonly used Markov Chain Monte Carlo
method is metropolis hasting algorithm.*e transition form
of θ′ � θ to θt+1 � θ′ is described using the probability
function. P(θ, θ′) is constructed using metropolis hasting
algorithm, which is given as follows:

(i) *e candidate value θ′ is generated from the
probability distribution Q(θ, θ′) for essentially
arbitrary

(ii) *e probability R(θ, θ′) is accepted and moved the
value to θt+1 � θ′

(iii) With the probability 1-R(θ, θ′), θ � θt+1 is set, if the
move is rejected

*e transition probability with Markov chain is given by

P θ, θ′( 􏼁 � Q θ, θ′( 􏼁.R θ, θ′( 􏼁,

P θ, θ″( 􏼁 � 􏽚
θ′′

Q θ, θ″( 􏼁 1 − R θ, θ″( 􏼁􏼂 􏼃dθ″,

P θ, θ″( 􏼁 � 1 − 􏽚
θ′′

Q θ, θ″( 􏼁 1 − R θ, θ″( 􏼁􏼂 􏼃dθ″.

(29)

Let R(θ, θ′) be defined for the convenience of
P(θ|Q) � π(θ)

R θ, θ′( 􏼁 �

min
π θ′( 􏼁Q θ′, θ( 􏼁

π(θ)Q θ, θ′( 􏼁
, 1􏼠 􏼡, if π(θ)Q θ, θ′( 􏼁> 0,

1, if π(θ)Q θ, θ′( 􏼁 � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(30)

*en,

π(θ) Q θ, θ′( 􏼁 � π θ′( 􏼁 Q θ′, θ( 􏼁. (31)

*e reversibility condition is defined by the above
equation which has the limited distribution for π(θ) with
sufficient condition for the provided chain Q(θ, θ′) irre-
ducibly chosen.

*e probability with univariant density function is given
by

Rt θ, θ∗( 􏼁 � min
π θ∗( 􏼁 Q θ∗, θ( 􏼁

π(θ) Q θ, θ∗( 􏼁
, 1􏼠 􏼡. (32)

3.5. Particle Filter. *e state variables and constraints are
characterized by likelihood distributions that provide for
their uncertainties to account for the state-space formula-
tion’s stochastic character. Because the state-space prepa-
ration is recursive, it may be used to absorb experimental
data as it becomes accessible in a sequential manner. From
time t-1 through t, the conditional probability recursive
equation may be used to represent the association among
observational data and model outputs. *e conditional
probability is given

P ut, θt/vt( 􏼁 �
P vt/ut, θt( 􏼁

P vt/vt−1( 􏼁
P ut, θt/vt( 􏼁, (33)

P(ut, θt/vt) is probability distribution of posterior model.
P(ut, θt/vt−1) is probability distribution of prior mode at
time t, which is distributed as time t− 1. P(vt/ut, θt) is the
likelihood function. P(vt/vt−1) is normalized constant.

Analytic functional formulations of the likelihood dis-
tributions of variables and constraints for complex systems
are difficult to come by. To approximate the distributions,
the PF uses an ensemble particle. When the number of
particles is high enough, particles created via Monte Carlo
simulation can reasonably resemble real probability densi-
ties. *e likelihood distribution of posterior state variable
model and constraints at time t may be estimated using the
ensemble of particles, as follows:

Computational Intelligence and Neuroscience 5



P ut,
θt

vt

􏼠 􏼡 � 􏽘
N

i�1
wtδ ut − ut

′, θt − θt
′( 􏼁. (34)

N is number of particle,wt is weight based on ith particle,
and δ(.) is Dirac delta function.

*e two phases of recursive model approaches based on
the particle filter are model forecast and filter correction:

(1) Model Forecast Phase. For each particle, from time
t− 1 until time t, each set of state variables and
parameters in the dynamic nonlinear model is
performed. Each particle represents the prior
probability distribution at time t following integra-
tion, as well as the subsequent probability distri-
bution of a set of state variable quantity and
parameter model at time t− 1 prior to combination.

(2) Filter Correction Phase. Filter correction consists of
three steps such as likelihood computation, resam-
pling, and agitation. *e goal of probability com-
putation is to inform each particle’s weight
depending on available data.*eGaussian likelihood
function for calculating the likelihood value of each
particle is given by (33).

wt �
1
����
2πσ

√ exp −
ut − vt( 􏼁

2

2σ2
􏼠 􏼡, (35)

where ut is prior state variable at time t, vt is state
variable observation at time t, and σ2 is standard
deviation.

By normalizing the likelihood value, the particle weight
is determined by summing all the likelihood value of the
particle.

Wt �
w

i
t

􏽐
N
i�1 w

i
t

, (36)

where Wt is normalized weight.
*e random noise of the perturbed particles incorpo-

rated to the parameter model is given by

∅t+1 � ∅t + ϵ, (37)

where ϵ is Gaussian distributed with random noise.
After determining the normalized weights, resampling

is done. Particle degeneracy occurs when the majority of
particles have insignificant weights and just a few elements
are efficient in the strainer. It is necessary to resample the
particles in order to remove the small weighted elements
and develop auspicious new elements based on the high
weighted elements in order to decrease the meaningless
calculations and more precisely predict the current time
step’s condition.

To keep particle variety, perturbation is used. *ough
resampling can reduce immorality, the variety of elements
may suffer as a result of sample impoverishment, in which
some particular elements with great weights are reproduced
multiple times. It is a waste of time to keep running the same

model with the same elements. *e disturbed sub-divisions
can move about in space in a stochastic way to follow their
development over time. By including random noise in the
model parameter, the particles can be disturbed.

3.6. Parameter Estimation. *e assortment of an objective
function that shows quality of fit is required for parameter
estimation by comparing calculated and experimental
hydrographs. *is function must be appropriate for the
model’s intended application. Reproduction of experimental
flood hydrograph peaks is regarded to be extremely im-
portant in many flood investigations. As a result, the sug-
gested goal function focuses on the fitting of calculated and
pragmatic hydrograph peaks.

3.7. Objective Function. Consider a rainfall runoff data issue
with a p parameter model and n discrete storm occurrences.
Assume the observed and calculated peak discharges are
correlated as follows:

O � h(θ) + u, (38)

where O is the observed vector peak discharge, h(θ) is the
computed vector of the peak discharge, θ is the vector pa-
rameter, and R is the covariance and zero mean with
Gaussian error. *e prior information is pooled with the
sample information and the parameter vector with prior
mean and covariance M:

(i) First, when just the prior mean and standard de-
viation of u are known, the supposition of a
Gaussian prior probability density function con-
tributes the least volume of unnecessary data to the
valuation issue.

(ii) Second, the Gaussian assumption is not dangerous
in repetition and its influence is smaller for large n.

(iii) *ird, the section that contains the inverse of M
works as a constraint on the components of u m.
However, when additional floods are included in the
sample data, the influence reduces.

(iv) Fourth, timing errors caused by the rainfall with
poor synchronization and runoff time series have
little effect on parameter estimations.

3.8. Algorithm of Optimization. Minimization necessitates
the employment of a nonlinear, unconstrained optimization
technique for representations in which h(u) is a function of
nonlinear u. For the sort of issue at hand, the algorithms
provided based on the Gauss technique are preferable than
flexible metric approaches and direct search methods. As a
result, the aforementioned optimization issue was solved
using the Gauss–Marquardt method. *e best aspects of the
steepest descent and Newton techniques are combined in
this method. *e basic repetition in these Gauss–Marquardt
methods is

xi−1 � xi − AGi. (39)
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*e matrix A is defined as

A � (M + μB)
− 1

. (40)

Gauss approximation representedM, and μ is the chosen
scalar with positive derivatives. *e optimization of gradient
vector is described as

Gi � −2L
− 1 θ0 − θ( 􏼁 − 2DR(x − h(θ)). (41)

3.9. Estimation of Pooling. NFEMs explain a strategy for
parameter estimate across storm occurrences. *is approach
includes the concept that pooling is justifiable, as well as the
common parameter model (CPM) with parameter vector. ts
is a vector holding storm-specific parameters, whereas t is a
vector containing parameters that are common to all storm
occurrences in the CPM. If pooling is not allowed, a more
generic data model is needed.

*e competing model is selected by specifying the beliefs
prior to the parameter, and common parameter model with
prior odds is specified for easy processing.

MC� common parameter model is true and
MG � general parameter model is true. *e odd prior is
represented as P(MC)/P(MG). *e odd posterior is rep-
resented as MC and MG as given in

P MC/Q( 􏼁

P MG/Q( 􏼁
�

P Q/MC( 􏼁

P Q/MG( 􏼁
.
P MC( 􏼁

P MG( 􏼁
. (42)

*e Bayes quantity factor for representing the common
and general parameter is given as BCG, which is used to select
the parameter among the hydrological model. *e marginal
probability of BCG is denoted as

P
Q

M
􏼒 􏼓 � 􏽚

θ
P

Q

M
, θ􏼒 􏼓P(θ)dθ. (43)

*e equation is related to Monte Carlo average and
concentrated with posterior mode distribution. *e har-
monic mean estimation is given as (42).

P
Q

M
􏼒 􏼓 � N

−1
􏽘 P

Q

θ
􏼒 􏼓

−1
􏼢 􏼣

−1

. (44)

*e large fluctuation in the likelihood value is estimated
occasionally. *e sophisticated technique is applied for
potentially generating the finer answer.

3.10.Uncertainty inFloodEstimation. *ere are two sorts of
prediction failures in flood forecasting: (a) the system may
fail to give a warning for a flood event, and (b) it may issue
a warning for an event that does not materialize due to an
error of commission. A flood in the first situation might
result in the loss of lives, infrastructure, and property [17].
People may lose faith in the forecast in the second situ-
ation and fail to respond to the following warning. To
reduce the chances of any form of failure, it is vital to
analyze and communicate forecasting mistakes and
uncertainties.

3.11. Source of Uncertainty and Error. In flood forecasting,
there are several sources of uncertainty such as input data
uncertainty, model uncertainty, and model parameter
uncertainty. *e several causes of mistakes in the flood
warning process have been recognized, and general
methodologies for analyzing uncertainty have been of-
fered. Precipitation and anticipated is a crucial meteo-
rological input in forecasting flood. Forecasted
precipitation is usually produced from numerical
weather prediction’s quantitative precipitation predic-
tions [18]. *e numerical weather prediction grid size
may be a substantial source of mistake in rainfall fore-
casting, which is exacerbated by the grids’ positional
error. Even observed precipitation is subject to consid-
erable uncertainty. Rain gauges only cover a small region,
and there might be significant gaps between them,
resulting in huge precipitation inaccuracies, especially in
mountainous places. Weather radars may cover wide
regions but cannot directly monitor rainfall, and con-
version from reflectance to rainfall might be problematic.
Flood-producing storm events often occur on small
scales, and gridded remotely sensed products may not
catch them.

Besides from precipitation, a variety of additional
mistakes and uncertainties can be significant. When the
models are applied to individual storm occurrences, for
example, inaccuracies connected with the beginning cir-
cumstances, e.g., soil moisture, are particularly critical.
Furthermore, any model update or downscaling, as well as
infrastructure activities, might introduce mistakes and
uncertainty. With the usage of rating curves, errors might
be introduced. Flood forecasts are usually presented as level
(gauge data), but hydrological models usually compute
discharge. To convert computed fluxes to water levels, a
rating curve is employed. Rating curves are often created
using a small number of discharge observations that may
not cover severe flood occurrences, leaving enough op-
portunity for error. Furthermore, the gauge observations
may have uncertainties. Furthermore, erroneous or missing
data, human processing mistakes, or unforeseen actions
can all contribute to operational uncertainty in flood
forecasting [19].

Finally, model structural errors, parameter mistakes,
and spatial discretization errors can all result in large
inaccuracy when forecasting models misrepresent hydro-
logic processes. Model structure arises from the simplifi-
cation of intricate catchment physics into models of
physical processes. More data are not going to fix these
systemic issues. *ere may be a lot of uncertainty in model
parameters, but this usually goes away when more recorded
runoff data become available and are utilized to change the
model parameters. *e size of the research region, the
diversity of its characteristics, the number of sub-divisions
of the area, and the data resolution all impact parameter
uncertainty. *e geographical representation of the
catchment, of which there are three popular techniques
such as sub-catchments, rectangular grid model, and re-
sponse units such as SWAT model, is a significant inac-
curacy related to forecasting models.
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3.12. Uncertainty Quantification. Quantifying flood-fore-
casting predictive uncertainty is critical for conveying flood
danger and minimizing uncertainties. Uncertainty analysis
is one of the most challenging components of flood fore-
casting since a thorough definition of the cascade of un-
certainties from input to warning is a time-consuming and
computer-intensive approach. *ere are several methods for
quantifying the uncertainty of specific forecasting compo-
nents. One method is to modify the expected rainfall and
model parameters to test the model’s sensitivity to a be-
lievable range of inputs. Because parameter model may be
dependent on previous standardization and knowledge,
there is a lot of uncertainty in the early stages of forecasting.
Improved model calibration raises parameter confidence
and reduces uncertainty as the event progresses and more
observable data become accessible. *e relevance of ob-
served data is underscored by the findings, which show that
additional stage data are more useful than parameterization
of flood models in lowering barrage depths and range un-
certainty [20].

*e predictive uncertainty paradigm depicts the likeli-
hood of a forthcoming value of a forecast, such as water level
and discharge, occurring. *is likelihood is based on all
available knowledge about the future value, which is often
supplied via forecast modeling. *e predictive uncertainty
technique has the benefit of quantifying uncertainty in terms
of a likelihood distribution.

*e impacts of a wide variety of forecast uncertainties
can be included into the abovementioned ensemble pre-
diction systems (EPSs), yielding a probabilistic forecast with
directly expressed uncertainty. To indicate uncertainty, in-
dividual models within the ensemble may have different
assumptions regarding beginning circumstances, boundary
conditions, model parameterization, model structure, or any
combination of these. Ensembles can be assembled in a
variety of ways. *e most common technique involves
feeding numerical weather predictions from an ensemble
prediction system into hydrological models to obtain hybrid
ensemble prediction system-based forecasts.*is technology
was used to create the European Flood Awareness System
[21].

Within the ensemble, some ensembles utilize many
models or the same model with various physical pa-
rameterization methodologies. Ensemble forecasting
strategies include using climatology and starting cir-
cumstances to build an ensemble, leveraging error dis-
tributions derived from previous hydrological forecasts to
improve current predictions, and handling spatial un-
certainty in rainfall forecasting. Rather than a single
deterministic forecast, a set of projections may be used to
quantify and explain the uncertainty surrounding the
flood event [22].

Hybrid ensemble prediction methods, while widely
used, are not without their drawbacks. In many circum-
stances, hybrid ensemble prediction systems must analyze
enormous volumes of data produced by collaborative

models that are not always available or computationally
practical. Understanding how to base flood warning de-
cisions on probabilistic projections is difficult. Emergency
response agencies, for example, may be perplexed by
probabilistic estimates and react with fear or apathy.
Furthermore, efforts must be made to describe and convey
the elements that influence the accuracy of forecasts based
on hybrid ensemble prediction systems. Probabilistic
hybrid rainfall forecasts influence the performance of
hydrological predictions. An evaluation of hydrological
performance is based on estimating the bias of deter-
ministic and collaborative hydrological estimates
impacting the catchment outlet discharge threshold. To
evaluate ensemble predictions, a peak-box technique is
used. *e extent and effectiveness of peak discharges are
the emphasis of this method [23].

Furthermore, decision-making based on probabilistic
predictions provided by hybrid ensemble prediction
systems needs visualization tools and user-focused en-
semble forecast assessment. Despite the significance of
prediction visualization and communication ap-
proaches, individuals who receive forecasts see, under-
stand, and act on them. If predictions are to be effective
for flood control, developing visualization tools and
estimating the products for expressing indecision is a
critical challenge.

4. Results and Discussion

*e study analyzes the application of nonlinear flood event
in the Harvey River catchment with the description of data
based on rainfall, model, and prior information available.
*e procedure of estimation is checked based on the several
assumptions. *e various stages of the flood event are an-
alyzed based on the parameter estimation using Bayesian
theorem. *e information about the region of study is given
in Table 1.

*e error in least square is assumed with the residual
plot, and the correlation in the serial is tested. *e error
variance with constant value is sampled using the Bayesian
parameter and pooling diagnosis, which is given in Figure 1.

*e relationship among the mean depth of the rainfall
and error variance is revealed using river catchment. *e
data set of each element in the matrix is established in
Figure 2. *e variance of the peak discharge is observed
using the regression model.

*e transformed residual plot is shown in Figure 3,
which indicated the variability of the residual transformed
and transformed dependent on the weighted least square
function.

*e plot of normal probability is shown in Figure 4,
which is observed for transmuted residuals for Harvey River
samples. *e curve denotes the Gaussian distribution and
critical value of the statistical analysis. *e altered residuals
are carefully conformed to the Gaussian distribution
function.
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*e result of maximum a posterior is obtained in Ta-
ble 2 for Harvey River sample. *e estimation of MAP is
precise which is prior to the corresponding mean. *e
utilization of MAP estimation enhances the precision
improvement.

5. Conclusion

A Bayesian technique is developed for estimation of pa-
rameter in flood event with nonlinear models in this re-
search. *e approach is fairly broad, and it may be used to
convert any perfect into a nonlinear regression framework.
*e use of a maximum a posteriori (MAP) approach for
estimation of parameter in flood event models is discussed,
with the goal of improving the dependability of design flood
hydrographs. *e suggested technique combines previous
information on the model parameters as well as information
of the mistake structures of the input data into the ap-
proximation process. *e matrix of posterior covariance is
measured using the calculated parameters’ accuracy.
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