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Understanding the situation is a critical component of any self-driving system. Accurate real-time visual signal processing to
create pixelwise classed pictures, also known as semantic segmentation, is critical for scenario comprehension and subsequent
acceptance of this new technology. Due to the intricate interaction between pixels in each frame of the received camera data, such
efficiency in terms of processing time and accuracy could not be achieved prior to recent advances in deep learning algorithms.We
present an effective approach for semantic segmentation for self-driving automobiles in this study. We combine deep learning
architectures like convolutional neural networks and autoencoders, as well as cutting-edge approaches like feature pyramid
networks and bottleneck residual blocks, to develop our model. *e CamVid dataset, which has undergone considerable data
augmentation, is utilised to train and test our model. To validate the suggestedmodel, we compare the acquired findings to various
baseline models reported in the literature.

1. Introduction

Being able to move efficiently and safely in vehicles that
are driverless has been a hot research topic in recent
years, and many companies and research centres are
trying to come up with the first completely practical
driverless car model. *is is a very promising field with a
lot of possible benefits such as increase of safety, less
costs, comfortable travel, increased mobility, and reduced
environmental footprint [1]. Semantic segmentation is
the process of assigning each pixel of the received image
into one of the predefined classes. *ese classes represent
the segment labels of the image, e.g., roads, cars, signs,
traffic lights, or pedestrians [2]. *erefore, semantic
segmentation is sometimes referred to as “pixelwise
classification.” *e main benefit of semantic segmenta-
tion is situation understanding. It is therefore used in
many fields such as autonomous driving, robotics,

medical images, satellite images, precision agriculture,
and facial images as a first step to achieving visual per-
ception. Autonomous driving depends on the informa-
tion received by sensors of the surrounding environment
in order to form a complete picture of the driving situ-
ation. Because the visual signal is very rich in such in-
formation, doing semantic segmentation correctly is
crucial for scene understanding. *e more we perform
semantic segmentation with a high accuracy and a short
time, the more correctly the ego vehicle understands the
surrounding environment and accordingly make the
right decision every moment. However, semantic seg-
mentation is challenging due to the complicated rela-
tionship between pixels in each image frame and also
between successive frames. Even with the fast develop-
ment of new technologies such as deep learning which
have made the mission of semantic segmentation more
efficient, doing accurate semantic segmentation in real
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time is still a hot topic in current research as shown in
detail later.

In this paper, we benefit from deep learning methods,
especially convolutional neural networks (CNNs) and
autoencoders (AEs) in order to design an accurate, real-time
semantic segmentation model. *e main contributions of
this paper are as follows:

(i) Designing an accurate and real-time semantic seg-
mentation system for self-driving cars by taking
advantage of two main deep learning architectures:
CNNs and AEs. A hybrid model based on the
concepts of feature pyramid networks (FPNs) and
bottleneck residual blocks is built to perform the
semantic segmentation efficiently.

(ii) *e proposed model is trained and tested using
CamVid common dataset for semantic segmentation
for self-driving missions. Extensive data augmen-
tation has been done to the training set in order to
overcome the problem of the small size of semantic
segmentation datasets for autonomous driving.

2. Related Work

*anks to the rapid improvements in deep learning research
last decade, great results have been achieved in the field of
computer vision. Developing CNNs [3] had the biggest
impact on this success as tasks such as object recognition and
detection have witnessed a huge jump in accuracy and speed.
After the success of the early CNN models such as LeNet [4]
and AlexNet [5] (AlexNet was proposed in 2012 but pub-
lished in 2017), the number of proposed CNN works ex-
ploded. VGG [6], with its large number of parameters,
performed well on the ImageNet dataset [7]. It increased the
used number of hidden layers to 16 or 19 weight layers. At
the same time, Inception [8] used the principle of network-
in-network [9] to increase the depth of the CNN to 22
trainable layers. As the depth of the neural network in-
creased, serious problems such as gradient vanishing and
gradient exploding surfaced. Later proposals tried to over-
come these problems by developing new techniques such as
skip connections that were designed in the shape of addi-
tional connections like in ResNets [10] or the shape of
concatenation connections like in DenseNets [11]. However,
in addition to the gradient problems, increasing the number
of layers and trainable parameters made the use of these
models limited, and any idea of implementing them within
constrained environments or real-time systems is imprac-
tical. Xception [12], ShuffleNet [13], MobileNetV1 [14], and
MobileNetV2 provided a convenient way of designing real-
time CNNs by focusing on the use of depthwise separable
convolutions [15]. *is allowed researchers to design mobile
vision applications that are both accurate and real time.
Other solutions such as EfficientNets [16] made it possible to
compromise between the performance of the designed
model and its complexity.

Similar to other computer vision topics, semantic seg-
mentation research has experienced a huge improvement in
the era of deep learning. In addition to CNNs, AEs were used

to design semantic segmentationmodels that are muchmore
efficient than old models. Recent semantic segmentation
research focused on convolutional autoencoders (CAEs)
which are autoencoders whose encoder and decoder parts
are convolutional and deconvolutional layers, respectively.
CNN models that were developed initially for object rec-
ognition and detection have been used as the backbone
architectures of CAEs developed for semantic segmentation.
FCN [17] used fully convolutional architecture with a large
number of parameters to perform semantic segmentation. It
was one of the first attempts towards getting rid of fully
connected layers. SegNet [18] and SegNet-Basic [19] used
VGG architecture as a backbone for the encoder and the
decoder. It used the pooling indices of the encoder for the
upsampling operation in the decoder. Some other archi-
tectures such as UNet [20] used some kind of skip con-
nections between the encoder and the decoder and some
other techniques such as data augmentation to increase
segmentation accuracy.

Although accuracy of semantic segmentation models im-
proved thanks to the above-mentioned models and some other
architectures such as PSPNet [21], Dilated [22], and DeepLab
[23], real-time semantic segmentation is still a hot research area,
especially that some fields such as autonomous driving and
robotics require very accurate semantic segmentation with a
minimum amount of processing time. Because images are rich
in semantic information, a significant number of trainable
parameters are required to capture the complexity of possible
images and it is very hard to develop lite segmentation models
without sacrificing accuracy.

Some models such as FPN were designed with a smaller
number of parameters. However, despite being efficient in
the semantic segmentation missions, the encoder architec-
ture used in the original FPNmodel has a structure similar to
ResNets which can cause problems when generalized to
work in real-time conditions. Super-lighter models such as
ApesNet [24], Enet [25], ESPNet [26], and ESCNet [27] tried
to minimize the number of parameters so that the semantic
segmentation can be done in real time or embedded systems.
Despite the fact that these models provided practical solu-
tions to satisfy the real-time condition, crucial applications
such as road scene understanding in autonomous vehicles
need much more segmentation accuracy.

3. Preliminaries and Discussion

3.1.FeaturePyramidNetwork. *e term “feature pyramid” is
used in computer vision tasks to describe the process of
extracting features from images in a hierarchical manner,
i.e., high-level features are extracted along with low-level
ones. Using this approach, a model is able to recognize
objects correctly even if these objects appear in various
scales. *e main idea of the feature pyramid can be used to
develop an end-to-end approach for semantic segmentation
so that the designed algorithm produces semantically strong
levels for each image. For this reason, in an end-to-end
model such as ConvNets, a feature hierarchy is built layer by
layer. Multiscale spatial resolutions can be built this way
[28].
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A feature pyramid network is a CAE that consists of two
parts: bottom-up module (encoder) and top-down module
(decoder). In the bottom-up module, the forward propa-
gation of the used backbone architecture is performed.
Using this backbone, a feature hierarchy is obtained. *is
hierarchy comprises the feature maps of several scales. A
group of layers that produces output maps of the same size is
said to form a “stage” so that each stage represents one
pyramid level. Feature hierarchy ideas can be invested in the
field of semantic segmentation by combining the low-level
features with high-level features in a top-down module and
skip connections. *is module upsamples spatially coarser
feature maps from higher pyramid levels and then tunes
them with features from the bottom-up module [29, 30].
Each skip connection merges between two feature maps of
the same dimensions so that one comes from the bottom-up
path and the other one comes from the top-down path.
Scaling ratio of 2 is used in the original FPN architecture and
also in ours. So, in the bottom-up module, some stages are
downsampled by a factor of 2 compared to the previous one.
Also, in the top-down module, the respective stages are
upsampled by a factor of 2 compared to the previous one.
Figure 1 shows the architecture of feature pyramid network
consisting of bottom-up and top-down modules repre-
senting feature hierarchy consisting of feature maps [31]. In
addition, in some stages of the top-down path, a (1∗ 1)
convolution is used in the skip connection to change the
channel dimension of the used featuremap beforemerging it
with the coming upsampled map of the previous top-down
stage in an elementwise addition manner. *e channel di-
mension of the top-downmodule is referred to as a matrix of
dimension d.

3.2. Bottleneck Residual Network. Traditional convolutional
blocks have a high computational complexity that makes
them hard to apply in real-time applications. One approach
suggests replacing them with depthwise separable convo-
lutions [15] that approximately have the same performance
but much less complex than traditional ones. A depthwise
separable convolution block is built by splitting the normal
convolutional layer into two modules:

(i) A depthwise convolution layer that processes the
inputs by filtering them through a 3∗ 3 convolution.
*is layer applies a single filter for each input
channel. *e re-scaling of spatial dimensions may be
made in this module.

(ii) A pointwise convolution layer that combines these
filtered values to create new features through a 1∗ 1
convolution. *is layer combines the outputs of the
depthwise convolution layer. *e re-scaling of the
channel dimensionmay be made in this module [31].

In addition, when depthwise separable convolution
blocks are used to build deep neural networks, no pooling
layers are used. Strides are used alternatively for down-
sampling tasks. Depthwise separable convolutions are used
in MobileNetV1 [14]. 13 blocks of this type are used in
MobileNetV1 initial configuration.

A bottleneck residual block is a slightly modified version
of depthwise separable convolution blocks. A third module
that is called an “expansion layer” is added. *e expansion
layer increases the number of channels of the input that
come from the previous bottleneck block. *e default ex-
pansion factor is 6. In addition, instead of a pointwise
convolution layer, a bottleneck residual block has a “pro-
jection layer” that reduces the number of channels (com-
pared to pointwise convolution layer that normally increases
the number of channels). No significant change was applied
to the design of the depthwise convolution layer [32–34].

In both depthwise separable convolution and bottleneck
residual block, a batch normalization layer is used after each
convolution process. Also, ReLU6 is used as the activation
function instead of the normal ReLU. RelU6 is used as the
activation function of each layer excluding the projection
layer, where designers found that using a nonlinear function
after this layer can make the performance worse. Addi-
tionally, in a similar manner to ResNets [10], a skip con-
nection that links between the input of the first layer of some
bottleneck residual blocks and the output of the last layer of
the same block is used to overcome the problem of gradient
vanishing. *is connection is called a “residual connection.”

Bottleneck residual blocks significantly reduce the
number of computations that are needed for processing the
input because of the projection layers. Because both ex-
pansion and projection layers contain learnable parameters,
the useful information is transmitted to deeper layers with
only little loss. Also, residual connections keep the learning
process controlled and assure that useful information from
the earlier layers are received by former layers. *e main
benefit of bottleneck residual blocks is that they reduce the
amount of the data flow in the model. Because of having
expansion and projection layers, the whole computation is
done on an expanded (uncompressed) version of data, while
the data flow between bottleneck residual blocks is mini-
mized (a compressed version of data passes through the
model).

It is worth noting that instead of using pooling layers to
decrease the spatial dimensions of data as most architectures
do, MobileNetV2 uses strides for spatial reduction. A stride
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Figure 1: Architecture of feature pyramid network.
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value s� 2 is used in the depthwise convolution layer when
this type of reduction is needed. MobileNetV2 also does the
reduction of channel dimension in the same block by
making the channel dimension of the output of the pro-
jection layer less than the channel dimension of its input. In
this case, no residual connection is applied to the containing
bottleneck residual block as the spatial and channel di-
mensions of the input of the block are different from the
respective dimensions of the output of the block. In case
spatial and channel dimensions are preserved, a stride value
s� 1 is used in the depthwise convolution layer and residual
connection is still applied. *is small difference between the
two types of blocks is further explained in Figure 2. Bot-
tleneck residual blocks are the building blocks in Mobile-
NetV2 [31] which by default uses 17 consecutive layers of
this type in its architecture (in addition to the initial con-
volution layer of 32 filters).

Table 1 shows more detailed specifications where h and
w are the input spatial dimensions, k and k′ are the numbers
of input and output channels, respectively, s is the stride
value, and t is the expansion factor.

4. Proposed Model Architecture

To come up with a practical semantic segmentation model
for self-driving cars, it is crucial to consider two things. First,
it has to be able to work in real-time conditions. Second, it
has to be accurate enough so that the driverless car can
depend on its results to understand the surrounding
environment.

We design a model that uses the basic concepts of FPN
and bottleneck residual network. *e general architecture of
the model is similar to FPN where we have a CAE that
consists of a bottom-up path (encoder) and a top-down path
(decoder) in line with the modern designs that comprise two
parts: an encoder and a decoder.

However, despite being efficient in the semantic seg-
mentation missions, the encoder architecture used in the
original FPN model has a structure similar to ResNets [32]
which can cause problems when generalized to work in real-
time conditions.

To design an efficient model having similar working like
traditional FPN model that can also perform well in real-
time situations, we build the encoder part of the model so
that it is similar to MobileNetV2 that is specifically designed
for efficient real-time processing. As in MobileNetV2, the
encoder part includes many bottleneck residual blocks
(Figure 2) in a row. Here the residual connections resided in
between the bottleneck layer. *e input and output also
consist of thin bottleneck layer. It makes use of light weight
depthwise convolutional filters which help to reduce the
computation time.

A detailed illustration of the architecture of our hybrid
model is shown in Figure 3, where the bottleneck residual
blocks are present in the left. *e number of dimensions
decided as presented is inferred by convolutional operators.
We notice the two main parts of the model. *e first one is
the bottom-up part. It comprises many stages. Each stage is
formed of one or more bottleneck residual blocks (this is the

main difference from the original FPN model where ResNet
structures instead of MobileNetV2 are used inside these
stages). Similarly, the top-down path comprises many stages.
*e number of channel dimensions in each stage in the top-
down path is d� 256 before halving it to d� 128. All the
updations to the number of dimensions are performed by
using the trainable parameters using convolutional opera-
tions in deepmodel. Skip connections link some stages in the
bottom-up path with the corresponding stage in the top-
down path. Finally, the outputs of all top-down stages are
concatenated before the prediction process which depends
on a softmax layer to predict the class label of each pixel of
the input image.

4.1. Dataset. For training and testing purposes, we use
Cambridge-driving Labeled Video Database (CamVid) [20, 35]
which is a very common dataset for research about vision in
self-driving cars. CamVid was captured from the perspective of
a driving automobile. It contains video sequences of various
road scenes. For semantic segmentation research purposes, a
subset of these scenes was labeled at the pixel level so that each
pixel was assigned to some predefined class label.

*e version of the CamVid dataset we use in this research
is identical to that used in modern semantic segmentation
research [2, 18]. It was extracted from 5 video sequences taken
at 30Hz, so that ground truth was provided at 1Hz (i.e., they
labeled 1 frame out of 30 frames in each second). *e total
number of images in this version is 701: 367 images in the
training set, 101 images in the validation set, and 233 images
in the testing set. Each image frame has a dimension of
360480. *e group of semantic classes contains 11 different
classes (in addition to the void class). *ese classes represent
the main labels of semantic segments that every road scene
can normally be divided into (sky, pole, building, road, tree,
sidewalk, sign symbol, car, fence, bicyclist, and pedestrian).
Some samples of the CamVid dataset are shown in Figure 4.
For presentation purposes, different colors were assigned to
the different class labels so that each semantic segment can be
visually distinguished from other segments.

Because of the nature of the captured video sequences
representing realistic road scenes, there is a significant amount
of imbalance in class frequencies which makes training of deep
neural architectures on CamVid road scenes a big challenge for
researchers. For example, classes such as sky, road, and building
are 40–50 times more frequent than other classes such as bi-
cycles and sign symbols. However, using realistic datasets such
as CamVid to train and test proposed models is inevitable if we
want to make our models able to be integrated into real-world
self-driving systems. Because of that, we choose CamVid in our
research and try to overcome the problem of class imbalance by
using a common practice in the training phase of deep neural
networks which is class weighting. *e details of the dataset are
illustrated in Table 2.

4.2. Modeling. *e proposed model is implemented using
Python frameworks that were designed for machine learning
and computer vision tasks. *e main frameworks we use are
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TensorFlow, Keras, and Albumentations. *e code was run
on NVIDIA Tesla P100-PCIE-16GB.

*e bottom-up path of the model is similar to Mobi-
leNetV2. We use the technique of transfer learning to ini-
tialize the parameters of the bottom-up path of our model
with the weight values of the original MobileNetV2 model
that was trained on the ImageNet dataset [7]. *e used
version of the dataset is that used in ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) which contains
1000 classes of different objects. By the use of transfer
learning, the model is faster to learn with a high learning
quality, especially when we have a relatively small dataset.

*e parameters of the top-down path, on the other hand,
are initialized using the normal initialization [36]. To design the
deep model, the choice and selection of the optimization and
hyperparameters are given as follows: (i) training by using 150
epochs with a batch size of 10, (b) learning rate to be used is 5e-
4, (c) loss function is a weighted combination betweenDice loss
and Focal loss, and (d) optimizer to be used is RMSProp.

*e first row represents the street images. *e second row
contains the corresponding ground truth labels of the images in
the first row. *e ground truth labels are nothing but the
predefined class labels of the captured image as per their pixel
values. *e classes represent the segment labels of the image.

4.3. Training and Testing Methods. In order to get the
maximum performance of our model, we have to carefully
choose training and testing conditions so that the

parameters of the model are trained perfectly. *e model is
trained on random crops from a synthetic CamVid training
dataset. Each image crop has dimensions of 320 × 320. After
that, the model is tested on image frames of full size from the
CamVid testing dataset. *ree training issues we focus on in
our research are as follows: data augmentation, parameter
initialization methods, and choosing the optimization
methods and training hyperparameters.

4.3.1. Data Augmentation. Data augmentation is used to
artificially expand the size of the available dataset by creating
modified versions of the dataset items. If these items are
image frames, like in our case, data augmentation techniques
include many computer vision practices such as cropping,
flipping, and so on.*emain benefit of data augmentation is
that it increases the diversity of the used dataset when
obtaining new data is expensive in some way. Using data
augmentation, the mathematical model can capture the data
invariance during the training phase, and thus the resulting
model has a higher ability to generalize so that it can cor-
rectly process new data. If data augmentation is used cor-
rectly, serious problems related to model training such as
underfitting and overfitting can be eliminated.

As we mentioned earlier, CamVid dataset is better to be
augmented so that our model can be trained better and can
correctly do the semantic segmentation process on new
images. To obtain high road scene diversity, the approach of
data augmentation we use performs more excessive data
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Figure 2: Types of bottleneck residual blocks (BRBs). (a) BRB does not perform spatially nor channel dimension reduction. (b) BRB
performs both, and thus no residual connection is allowed.

Table 1: Details of bottleneck residual block.

Input Operator Output
h × w × k 1× 1 conv2d, ReLU6 h × w × (tk)

h × w × tk 3× 3 dwise, s� s, ReLU6 (h/s) × (w/s) × (tk)

(h/s) × (w/s) × tk linear1× 1 conv2d (h/s) × (w/s) × k′
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Figure 3: Proposed architecture of the bottleneck residual block.

Figure 4: Some samples of the CamVid dataset [20].
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augmentation than that used in the training process of the
original UNet.*e main data augmentation practices we use
during the training phase include

(i) Horizontal flipping.
(ii) Shift, scale, and rotate transformations.
(iii) Random grid and optical distortions, random

Gaussian noise, and random four-point perspective
transform.

(iv) Histogram equalization.
(v) Random brightness and contrast, random gamma

transformation, random image sharpening, and
random blur (normal, motion, median, and
Gaussian blur). Hue saturation need to be deleted.
Random image crop with dimension 320 x 320 is
used for model training.

4.3.2. Initialization. *e bottom-up path of the model is
similar to MobileNetV2. We use the technique of transfer
learning to initialize the parameters of the bottom-up path of
our model with the weight values of the original MobileNetV2
model that was trained on the ImageNet dataset [26].*e used
version of the dataset is that used in ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) which contains 1000
classes of different objects. By the use of transfer learning, the
model is faster to learn with a high learning quality, especially
when we have a relatively small dataset.

*e parameters of the top-down path, on the other hand,
are initialized using He Normal initialization (https://keras.
rstudio.com/reference/initializer_he_normal.html). In this
method, the weights are initialized keeping in mind the size
of the previous layer which helps in attaining a global
minimum of the cost function faster and more efficiently.
*e algorithm of initialization using this method can be
summarized as follows:

(i) First, initialize weights with values taken from a
standard normal distribution.

(ii) Second,multiply eachweight value by
�
2

√
/

�
n

√
where n

is the number of incoming connections to the layer in
which the parameter under initialization is located.

(iii) Note that bias parameters are initialized to zero.

4.3.3. Optimization and Hyperparameters. *e basic design
choices regarding optimization process and hyper-
parameters are as follows:

(i) We designed the training process to pass 150 epochs
with a batch size of 10 frames (an epoch is one pass
over the training dataset).

(ii) *e initial learning rate is α � 5 e − 4.
(iii) *e used loss function is a weighted combination

between 2 loss functions: Dice loss and focal loss.

*e used optimizer is RMSProp optimizer.

5. Experimental Details

*e proposed model is implemented using Python frame-
works that were designed for machine learning and com-
puter vision tasks. *e main libraries used are TensorFlow
and Keras deep learning libraries including this Albu-
mentationsis also being used in the work (https://
albumentations.ai/). *is is an efficient and user-friendly
image augmentation Python library aimed at helping re-
searchers to create fast augmentations based on a highly-
optimized OpenCV library. *e code was run on NVIDIA
Tesla P100-PCIE-16GB. *e hardware specifications are
presented in Figure 5. *e training was done using CamVid
dataset, where random image crops of 320× 320 are used.

*e model has been trained using the CamVid dataset
followed by data augmentation. Random image crops of
320× 320 were used to train the model. *e model is trained
for 150 epochs with an initial learning rate of α� 5e− 4 and a
batch size of 10, and the RMSProp optimizer was used. *e
described model is tested on the CamVid test dataset and
evaluated depending on a number of evaluation metrics.
When choosing metrics for evaluation, we have to take into
consideration the issue of class imbalance. In other words,
although using the technique of class weighting during the
training process can reduce the impact of class imbalance,
the resulting model usually tends to perform better on
classes of higher frequency. *erefore, we choose metrics so
that they do some kind of averaging between results coming
from the evaluation of each class separately. In addition,
another metric that is related to measuring the model
complexity is used.

*e following metrics are used for the present work.

(i) Mean class accuracy (mCA): in semantic segmen-
tation, the prediction accuracy can be defined as the
number of correctly classified pixels over the total
number of pixels. To ensure that class imbalance
does not lead to misleading accuracy values, we
follow the common practice of taking the average
accuracy between all calculated accuracies of the
defined classes. *e resulting value is called mCA.

(ii) Mean intersection over union (mIoU): this metric is
common for computer vision classification tasks. In
semantic segmentation tasks, intersection over
union is defined as the number of pixel labels that
are found in both the prediction frame and the

Table 2: Details of the dataset utilised for validating the proposed architecture.

Dataset Videos with object class semantic labels (it presents ground truth labels of 32 semantic classes like building, tree, sky, side walk,
column-pole, fence, pedestrian, and so on)

Name CamVid
Size 604MB

Computational Intelligence and Neuroscience 7
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Figure 5: Details of hardware specifications used in the work.

Figure 6: Samples of semantic segmentation results of the images tested on the CamVid dataset. *e left column represents the original
image, the column in the middle represents the ground truth labeled image, and the right column represents the predicted labels.
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ground truth frame over the pixel labels that are
found in either the prediction frame or the ground
truth frame. IoU is calculated for each segment class
separately, and then the average between all classes
is taken to be the mIoU.

(iii) Number of parameters (#params): the complexity of
deep learning models is very important if these
models are intended to be used in real-time ap-
plications. *e more complex a model is, the more
the time needed for the model to calculate the
output is. *erefore, the number of parameters used
within a model is crucial to decide whether it is
convenient to be implemented in a real-time ap-
plication or not.

6. Results and Discussion

After training, the model uses the CamVid testing dataset as
input and evaluates it using evaluation metrics. A mean class
accuracy of 78.03% and mean intersection over union of
58.275% were obtained which makes our model a highly ac-
curate semantic segmentation model especially with a relatively
small number of parameters (5.2M).*e number of parameters
used makes our model easy to be implemented as a part of a
real-time autonomous system. Some samples of the semantic
segmentation results of images tested on the CamVid dataset
are shown in Figure 6. It represents some samples of semantic
segmentation results of the images tested on the CamVid
dataset used in the work.*e left column represents the original
image, the column in the middle represents the ground truth
labeled image, and the right column represents the predicted
labels.

We compare our designed model with other baseline
models in terms of performance and complexity. *e
comparison results are shown in Table 3. As we notice, our
proposed model provides a high performance with a rela-
tively low number of parameters. *e trade-off between the
number of parameters and both mIoU and mCA is inevi-
table, and thus some models like DeepLab-LFOV and Di-
lated-8 would achieve a higher mIoU or mCA but are less
applicable in real time due to the higher number of pa-
rameters. ENet and ESPNet have a lower number of pa-
rameters than ours but perform worse in terms of mIoU as
models with a very small number of parameters may fail to
capture the required complexity.

7. Conclusions

Semantic segmentation is a very important process for the
perception of autonomous vehicles. It plays a major role in
road scene understanding of the ego car. As deep learning
methods have been improved during the last decade, more
and more research is focusing on benefitting from deep
learning so that better results can be obtained in all aspects of
autonomous processes including perception and decision
making. In this research work, we proposed a hybrid model
that is built and trained upon the design principles of two
deep learning models and used data augmentation tech-
niques to increase the training quality. We aimed at making
the designed architecture as accurate as real-time consid-
erations could allow. *e model was trained and tested on
the CamVid dataset for which a high accuracy was obtained
with a relatively small number of parameters. A comparison
was done which proved the efficiency of our model com-
pared with state-of-the-art models.

(i) In the future, more research can be conducted to
increase the performance of the proposed hybrid
design and overcome the current drawbacks. *e
main research directions that can be tested are as
follows. *e number of parameters of our model,
despite being practical in real-time applications due
to today’s computing capabilities, can be made
smaller by reducing the model complexity by taking
into consideration the design principles of some
other state-of-the-art models with a lower number
of parameters.

(ii) Better performance on the mIoU metric can be a
topic of future research by considering some
modern design approaches of CNNs and also the
design choices of models that give a high mIoU.

(iii) Other models different from MobileNetV2 can be
made a backbone for the designed models. Some
state-of-the-art architectures such as EfficientNet
[16] represent a good candidate.

Data Availability

*e data used to support the findings of this study are
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