
Research Article
Small Object Detection Network Based on Feature
Information Enhancement

Huilan Luo , Pei Wang, Hongkun Chen, and Vladimir Peter Kowelo

School of Information Engineering, Jiangxi University of Science and Technology, Jiangxi, China

Correspondence should be addressed to Huilan Luo; luohuilan@jxust.edu.cn

Received 9 April 2022; Revised 10 May 2022; Accepted 13 May 2022; Published 1 June 2022

Academic Editor: Dalin Zhang

Copyright © 2022 Huilan Luo et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to the small size and weak characteristics of small objects, the performance of existing object detection algorithms for small
objects is not ideal. In this paper, we propose a small object detection network based on feature information enhancement to
improve the detection e�ect of small objects. In our method, two key modules, information enhancement module and dense
atrous convolution module, are proposed to enhance the expression and discrimination ability of feature information. �e
detection accuracy of this method on PASCAL VOC, MS COCO, and UCAS-AOD data sets is 81.3%, 34.8%, and 87.0%, re-
spectively. In addition, the detection results of this paper in detecting small objects are slightly (0.2% and 0.1%) higher than the
current advanced algorithms (YOLOv4 and DETR, respectively). Moreover, when these two modules are integrated into other
algorithms, such as RFBNet, it can also bring considerable improvement.

1. Introduction

As one of the basic tasks of computer vision, object detection
has been widely used in a variety of scenes, such as object
tracking, intelligent monitoring, and automatic driving.
With the development of a deep convolution neural network
[1, 2], object detection has completed a great leap from the
traditional manual feature detection method to the deep
learning method of convolution neural network, many
object detection algorithms based on deep learning have
been proposed. However, most of the existing object de-
tection algorithms [3] can only successfully detect medium-
sized objects and large objects in natural scenes, and the
detection e�ect of small objects and dense objects is not
satisfactory. �e object detection algorithm based on a
convolution neural network can be roughly divided into a
two-stage detection algorithm [4–6] and a one-stage de-
tection algorithm [7–11]. Among them, the two-stage de-
tection algorithm ¤rst generates multiple candidate regions
through selective search, then uses a convolution neural
network to extract features from the candidate regions, and
¤nally carries out object category estimation and bounding
box regression. �e two-stage algorithm has high detection

accuracy, but the detection speed is slow due to a large
number of candidate regions. �e one-stage detection al-
gorithm regards object detection as a regression problem,
directly extracts the features of the input image, and carries
out bounding box regression, which has the advantage of
detection speed. �ese algorithms have achieved good de-
tection results on general data sets such as PASCAL VOC
[12] and MS COCO [13], but there are still great challenges
in detecting small objects and dense objects. Small objects or
dense objects contain a small number of pixels in the original
image and carry limited information. After multiple
downsampling in the depth network, the resolution is
further reduced, resulting in weakening or even loss of
feature information and increasing the di¥culty of detec-
tion. �erefore, small object detection is still a di¥cult
problem to be solved in the task of computer vision.

In recent years, with the continuous development of
deep learning, small object detection research has attracted
wide attention and has been widely used in urban intel-
ligent transportation, logistics management, agricultural
and forestry development, public safety, disaster relief
deployment, and other task scenarios. Small object de-
tection research has important research signi¤cance and
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practical application value. Existing small object detection
algorithms are mostly proposed on the basis of general
object detection methods. )ey enhance the spatial details
and semantic information of small objects through fusing
multiscale features [14–16], increasing the receptive field of
fine-grained features [17–21], and introducing contextual
information around the object [22, 23] to enrich the ex-
pression of feature information. In addition, anchor-free
algorithms [24], attention module enhancement [25, 26],
super-resolution feature representation [27], and data
augmentation [28] have also been studied to solve the
problem of small object detection.

In order to improve the detection accuracy of small
objects and meet the real-time performance of detection,
based on the one-stage classical algorithm SSD [7], a small
object detection based on feature information enhancement
network (FIEN) is proposed in this paper. We have designed
the information enhanced module (IEM) and dense atrous
convolutionmodule (DAM) in FIEN, which can enhance the
context information around small objects and learn the
characteristics of the large receptive field, to improve the
detection accuracy of small objects. )e main contributions
of this paper are as follows:

(1) Based on the fusion structure of the feature pyramid
network [14], we design an information enhance-
ment module. )is module adds global and local
information branches to enhance the context in-
formation of small objects by learning the global
information, local information, and multiscale in-
formation of input features.

(2) In order to reduce the loss of small object infor-
mation, we propose a dense atrous convolution
module, which uses the atrous convolution to obtain
the characteristics of receptive fields of different
scales and then fuses them. It is worth noting that in
this paper, the dense connection is used to obtain the
characteristics of receptive fields at different scales,
so as to establish a connection for the characteristics
of receptive fields at different scales. )e receptive
field is expanded without adding additional pa-
rameters and calculations, so as to improve the
detection effect of small objects.

(3) )e FIEN algorithm proposed in this paper has
achieved good detection accuracy on PASCAL VOC
[12], UCAS-AOD [29], andMS COCO [13] data sets.
At the same time, this paper also integrates IEM and
DAM modules into RFB [17] network to further
verify their effectiveness.

2. Related Works

2.1. Small Object Detection Algorithm. According to the
definition of SPIE (Society of Photo-Optical Instrumenta-
tion Engineers), an object with an object area less than 80
pixels in the image (256× 256) is a small object. Another
method is that according to the definition of the COCO data
set, objects with a size less than 32× 32 pixels are considered
small objects.

In recent years, small object detection has attracted
extensive attention, but small object detection is very
challenging due to its low resolution, less pixel information,
and easy to be disturbed by a complex environment. Many
scholars have done a lot of research to improve the detection
accuracy of small objects. Super-resolution technology is
applied to the field of small object detection aiming at
improving the resolution of small objects. )is technology
mainly generated super-resolution feature representation
by increasing the resolution of the high-level feature map
[27] or by GAN [30, 31], so as to improve the detection
results of small objects. Aiming at the problem that small
objects carry little pixel information, many studies used the
multiscale fusion method to construct features with edge
detail information and semantic information, which is
conducive to small object detection. At present, there are
three methods of feature fusion: element-by-element ad-
dition, element-by-element multiplication, and channel
splicing. For example, literature [10, 14, 32, 33] added the
low-level feature map of different scales extracted by the
feature extraction network with the high-level feature map,
so as to detect objects of different scales. DSSD [34] added a
deconvolution layer on the basis of the SSD [7] algorithm to
multiply the high-level features extracted by the deconvo-
lution layer with the low-level features of the same scale, so
as to highlight the object area and enhance the detection of
small objects. FSSD [16] sampled feature maps of different
scales to the same scale for fusion, so as to further enhance
the features for detection. In the face of the interference of
complex background on small object information, the in-
troduction of an attention mechanism is an effective
method. It can make the network pay more attention to the
area containing small object information, reduce the impact
of background information on detection results, and im-
prove the accuracy of small object detection. Li [35] in-
troduced the channel attention module and used the
correlation between channels to selectively enhance the
areas rich in discriminant information. YOLOv3-A [36]
optimizes the redundant channel problem of different levels
of features in the channel attention operation and uses the
spatial attention mechanism to obtain the distribution of
input features over spatial positions, so as to retain the
effective information for the detection process. Besides, the
research based on anchor-free [24], data augmentation [28],
and other methods has also been used to solve the problem
of small object detection. Different from the above methods,
FIEN uses two key components: IEM and DAM to obtain
more feature information, so as to improve the detection
performance of small objects.

2.2. Multiscale Information Enhancement. Multiscale in-
formation enhancement solves the problem of object scale
change by acquiring and fusing the feature information of
multiple different scales, so as to improve the final detection
results. For example, FPN [14] used the top-down structure
with the horizontal connection to detect objects of different
scales by using the features of different scales, which ef-
fectively solved the problem of scale change. Since then,
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many research works have improved based on FPN struc-
ture, such as adding additional pathways to further fuse deep
and shallow features [32, 37]. )e attention mechanism
[25, 38] is introduced to guide the fusion of feature infor-
mation at different levels. Moreover, feature maps with
different atrous rates are fused to learn multiscale infor-
mation [17–19]. Methods such as deconvolution and ele-
ment-by-element multiplication to fuse high- and low-level
features [34] are also widely used to enhance multiscale
information. Different from the above work, this paper
proposes IEM and DAM from the perspective of enhancing
the context information around the object and enhancing
the receptive field information. On the basis of FPN, the IEM
adds two branches: global information branch and local
information branch, which enhance the context information
of small objects by fusing the global information, local in-
formation, and multiscale information around the objects.
)e DAM uses the atrous convolution with different ex-
pansion rates to obtain the features of multiple scales of
receptive fields and then splices and fuses them to expand
the receptive fields without adding additional parameters
and computation.

3. Methods

SSD [7], as a representative of a one-stage object detection
algorithm, has good results in detection accuracy and de-
tection speed. SSD algorithm used large-scale shallow fea-
tures to detect small objects in the image and large-scale
deep features to detect medium-sized or large objects in the
image, so as to achieve the purpose of multiscale detection.
However, the shallow features of SSD lack the guidance of
global semantic information, resulting in the low accuracy of
small object detection. In order to improve the ability of SSD
to detect small objects, this paper proposes an object de-
tection method based on feature information enhancement
on the basis of the SSD algorithm.)e network can establish
and enhance the exchange and connection between infor-
mation and produce more discriminative features. )e
overall structure is shown in Figure 1. Firstly, in order to
help locate small objects, we repeatedly use shallow features,
up- and downsample both the Conv3-3 and Conv5-3 in the
VGG-16 network to the scale of Conv4-3, and then splice the
three feature layers in the channel dimension to obtain a
multiscale feature map F, which contains texture informa-
tion and semantic information. On this basis, this paper
proposes an information enhancement module (IEM) and
dense atrous convolution module (DAM), which use high-
level semantic information to guide and enhance the detailed
information of shallow small object areas. Based on the
enhanced feature map, downsampling is carried out to
obtain six feature maps with different scales: P6, P5, P4, P3,
P2. and P1, and their sizes are 38× 38, 19×19, 10×10, 5× 5,
3× 3, and 1× 1, respectively. )e six feature maps with
different scales are used for object detection. Multiple priori
boxes with different proportions are set at each grid point in
each feature map, and multiple boundary boxes are gen-
erated through classification and regression. Finally, the
boundary boxes obtained from different scale feature maps

are filtered out by nonmaximum suppression, and the final
detection results are obtained.

3.1. Information Enhancement Module. )e traditional FPN
integrates the semantic information obtained from the high
level with the low-level feature map, but the features ob-
tained from the high level only contain the semantic in-
formation of a single scale and cannot obtain more
comprehensive and richer context information. In order to
solve this problem, this paper adopts the structure of feature
pyramid attention [38] and designs the information en-
hancement module, which aims to obtain more semantic
information in feature map F, fuse feature maps of different
scales, and establish semantic communication between
information.

)e core idea of the information enhancement module
proposed in this paper is to integrate the multiscale se-
mantic information of high-level features and introduce
local information and global information at the same time,
so as to establish the communication and learning between
different information, and this paper uses semantic in-
formation to enhance the attention of spatial detail in-
formation and generates more discriminative features.
)is paper assumes that the size of the input high-level
feature map F is 2W × 2H ×C. We obtain global infor-
mation, local information, and multiscale semantic in-
formation through three parallel paths as shown in
Figure 2. )e calculation process is shown in the following
equations:

B1 � Conv 1×1(global(F)), (1)

B2 � Conv 3×3(F), (2)

B3 � FPN(F), (3)

Fo � Add B1, B2, B3 , (4)

where B1, B2, and B3 represent the feature map obtained by
the first branch, the second branch, and the third branch,
respectively; global(∙) represents the global average pooling;
FPN(∙) represents the feature pyramid network; Add(∙)
represents the addition operation of corresponding ele-
ments; and Conv(∙) represents the convolution operation.
)e first branch adopts global average pooling to obtain the
global information of each channel and then adjusts the
number of channels through a 1× 1 convolution layer to fuse
and learn the global information of channels. )e second
branch uses a 3× 3 convolution to obtain the local infor-
mation of the feature map. )e third branch designs a
feature pyramid network, which integrates three different
scale features. )e feature pyramid network uses a three-
level convolution network with a step size of 2, and the size
of the convolution kernel is 5× 5, 3× 3, and 1× 1 in turn.)e
pyramid network fuses the information of different scales in
turn, which can more accurately fuse the context infor-
mation of adjacent scales and get richer multiscale semantic
information. Finally, the output features of the three
branches are added with the corresponding elements to
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obtain the final enhanced features. )e information en-
hancement module designed in this paper can integrate
different scales of context information and establish the
relationship between multiscale information and global and
local information, so as to obtain enhanced features with
more representation ability.

3.2. Dense Atrous Convolution Module. In object detection
tasks, there are usually many small objects or objects with
large-scale changes. In order to solve this problem, the
feature map must be able to cover different scales of re-
ceptive fields. Inspired by [39, 40], this paper designs a dense
atrous convolution module by using expanded convolution
and dense connection, which is used to obtain a denser
sampling of high-level features and larger-scale receptive
fields, establish and enhance the relationship between dif-
ferent receptive field feature maps, and learn richer

information. Its structure is shown in Figure 3, in which four
branches are represented as F1, F2, F3, and F4.

F1 is the original input feature, which is directly spliced
with the output features of the other three branches, so as to
further maintain the spatial and semantic information of the
original input feature and play the effect of residual con-
nection. F2 branch aims to enhance spatial information in
the vertical direction; firstly, the 1× 1 convolution is used to
reduce the number of channels; then the 3×1 convolution is
used to perform one-dimensional convolution in the col-
umn dimension to enhance the vertical spatial relationship
between learning feature points; and finally, the 3× 3 con-
volution with the expansion rate of 3 is used to further
enhance the context information of learning larger receptive
fields. After the output features of F2 and F1 are spliced in the
channel dimension, enter the F3 branch. F3 branch aims to
enhance the spatial information in the horizontal direction;
firstly, the 1× 1 convolution is used to reduce the number of
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channels, and then the 1× 3 convolution is used to perform
one-dimensional convolution in the row dimension to en-
hance the horizontal spatial relationship between learning
feature points, and finally, the 3× 3 convolution with an
expansion rate of 3 is used to further enhance the context
information of learning larger receptive fields. F4 splices the
output features of F1, F2, and F3 as input and then convolutes
with 1× 1, 1× 3, and 3×1 convolution, and next 3× 3

convolution with an expansion rate of 5 is used to enhance
the receptive field of the two dimensions of a column vector
and row vector of the input feature. Finally, the output
features of the four branches are spliced, and then the final
output features are obtained by adjusting the number of
channels through a 1× 1 convolution. )e calculation
process is shown in the following equations:

F2 � Conv3×3,d�3 Conv3×1 Conv 1×1 f1( ( ( , (5)

F3 � Conv3×3,d�3 Conv1×3 Conv 1×1 C f1, f2 ( ( ( , (6)

F4 � Conv3×3,d�5 Conv3×1 Conv1×3 Conv 1×1 C f1, f2, f3 ( ( ( ( , (7)

Fout � Conv1×1 C f1, f2, f3, f4 ( , (8)

whereConv3×3,d�3 and Conv3×3,d�5 represent the atrous
convolution layer, Conv represents the convolution oper-
ation, C ·{ } represents the splicing operation along the
channel dimension, and Fout represents the final output
feature.

In order to make full use of the specific information
learned by each branch and enhance the flow and dissem-
ination of information, the four branches of this module
adopt the series mode, that is, the output features of the front
branch and the original input features are spliced as the
input of the back branch. Reusing the features of the pre-
vious branches also avoids the loss of information caused by
convolution operation and further enhances the
information.

4. Experiment and Analysis

)e FIEN network proposed in this paper has been tested on
PASCAL VOC 2007 [12], MS COCO 2017 [13], and UCAS-
AOD [29] data sets. PASCAL VOC 2007 data set has 9,963
images, including 20 categories, of which the number of
small objects accounts for about 57%. MS COCO 2017 data

set contains 80 categories, 118,287 training images, 5,000
verification images, and 40,670 test images. )e images in
the data set have complex backgrounds.With a large number
of instance objects on each image, the number of small
objects is increased, and the evaluation standard is stricter.
UCAS-AOD data set is a remote sensing image data set,
which only includes planes and cars. However, due to its
high-altitude top view shooting, the images have a large field
of vision, resulting in many small objects in the images and
high background complexity, which brings great challenges
to the detection.

4.1. Experimental Setup. )e experiments in this paper are
implemented on PyTorch; the hardware environment is
NVIDIA GeForce RTX 2080Ti. In the training process, this
paper follows the training strategy of the baseline detector
and uses the backbone pretrained on ImageNet, and the loss
function is the sum of the location loss function Lloc and the
classification loss function Lconf. )e expression is shown in
formula (9), where N represents the number of a priori
boxes. At the same time, the random gradient descent
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Figure 3: Dense atrous convolution module.
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algorithm is used to optimize the weight of the network. )e
momentum is set to 0.9; the learning rate is set to 0.004; and
the decay is set to 0.0005. At the beginning of training, the
weight of the model is randomly initialized; if a large
learning rate of 0.004 is adopted, the model training may be
unstable. In order to ensure the stability of model training,
this paper selects the way of warming up the learning rate, as
shown in formula (10). Use a small learning rate of 1× e−6,
and then the learning rate of each epoch increases a little.
After six epochs, the learning rate increases to the preset
0.004. At the moment, the preset learning rate is used for
training to make the convergence speed of the model faster.

Loss �
1
N

Lconf + Lloc( , (9)

Lwarm � 1 × e
− 6

+
Niter × lrate − 1 × e

− 6
 

epoch size × 5
, (10)

where Niter represents the number of steps of network
training iteration, lrate is the initial value of network learning
rate, and epoch_size indicates the number of batch sizes
contained in an epoch. Considering the limitation of GPU
memory, when training the PASCAL VOC data set, set the
batch size with the input image size of 300× 300 and
512× 512 to 16 and 14, respectively. When training the
UCAS-AOD data set, the batch size is set to 16, and when
training the MS COCO data set, the batch size is set to 8.

In this paper, the mean average precision (mAP) of
various objects is used as the object detection and evaluation
index, as shown in the following equation:

mAP �


Q
q�1 AP(q)

Q
, (11)

where Q represents the total number of all detection
object categories, q represents a certain detection object
category, andAP represents the average accuracy of a certain
detection object category.

)e average accuracy AP represents the area under the
precision-recall curve, and its calculation formula is shown
in the following formula:

AP � 
1

0
P(R)dR, (12)

where P stands for precision and R for recall. )e cal-
culation method of precision and recall is shown in the
following equations:

Precision �
TP

TP + FP
, (13)

Recall �
TP

TP + FN
, (14)

where TP represents the number of positive samples cor-
rectly identified, FP represents the number of negative
samples incorrectly identified as positive samples, and FN
represents the number of positive samples predicted as
negative samples. Positive and negative samples are

distinguished according to the selected IOU threshold.
)ose greater than the IOU threshold are positive samples;
otherwise, they are negative samples. In this paper, the IOU
threshold is set to 0.5.

4.2. Results on PASCAL VOC 2007 Data Set. In order to
verify the effectiveness of the FIEN network, this section
experiments to train the model on the joint training set of
VOC 2007 and VOC 2012 (16,551 images) and test the model
on the VOC 2007 test set (4,952 images). During training,
the input image size is set to 300× 300 and 512× 512, re-
spectively. At the same time, in order to further verify the
effectiveness and universality of IEM and DAM, this paper
also integrates the two modules into the RFB algorithm for
experimental analysis. Due to different experimental envi-
ronments, SSD [7] and RFB [17] are reproduced in this
paper.

Table 1 shows the test results of various algorithms in the
VOC 2007 test set. )e multiscale test technique is not used
in the test of this model. According to Table 1, the results are
summarized in the following list:

(1) Compared with baseline network SSD and RFB,
FIEN and FIEN_RFB have significantly improved
detection performance. When the input size is
300× 300, the overall detection accuracy is improved
by 3% and 0.4%, respectively; when the input size is
512× 512, the overall detection accuracy is improved
by 1.5% and 0.4%, respectively.

(2) Meanwhile, compared with other algorithms based
on SSD networks, such as RSSD [42] and FSSD [16],
the performance of FIEN has been shown to be
significantly better. At the scale of 300× 300, mAP
increased by 1.7% and 1.4%, respectively, at the scale
of 512× 512, mAP increased by 0.5% and 0.4%, re-
spectively. )is shows that the FIEN proposed in this

Table 1: Test results on PASCAL VOC 2007 test set.

Method Backbone Size GPU mAP (%)
YOLOv1 [8] GoogleNet 448× 448 Tian X 63.4
YOLOv2 [9] Darknet-19 352× 352 Tian X 73.7
SSD300 [7] VGG-16 300× 300 2080Ti 77.2
SSD512 [7] VGG-16 512× 512 2080Ti 79.8
RefineDet320 [41] VGG-16 320× 320 Tian X 80.0
RefineDet512 [41] VGG-16 512× 512 Tian X 81.8
RFB300 [17] VGG-16 300× 300 2080Ti 80.1
RFB512 [17] VGG-16 512× 512 2080Ti 81.2
AFP-SSD [33] VGG-16 300× 300 Tian X 79.3
RSSD300 [42] VGG-16 300× 300 Tian X 78.5
RSSD512 [42] VGG-16 512× 512 Tian X 80.8
FSSD300 [16] VGG-16 300× 300 1080Ti 78.8
FSSD512 [16] VGG-16 512× 512 1080Ti 80.9
SEFN300 [43] VGG-16 300× 300 1080Ti 79.6
SEFN512 [43] VGG-16 512× 512 1080Ti 81.2
FIEN300 VGG-16 300× 300 2080Ti 80.2
FIEN512 VGG-16 512× 512 2080Ti 81.3
FIEN_RFB300 VGG-16 300× 300 2080Ti 80.5
FIEN_RFB512 VGG-16 512× 512 2080Ti 81.6
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Table 2: Detection accuracy of each category.

Categories Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow
Small objects ratio (%) 45.8 52.5 59.0 68.9 89.7 43.2 66.1 15.5 78.7 62.9
SSD300 [7] 78.8 85.3 75.7 71.5 49.1 85.7 86.4 87.8 60.6 82.7
RFB300 [17] 83.4 88.0 77.7 74.3 60.5 88.3 87.5 88.1 63.6 86.3
FIEN300 82.3 88.0 80.4 74.4 59.4 87.5 88.1 87.7 65.2 86.6
FIEN_RFB300 84.9 87.7 78.8 76.9 60.7 88.8 87.8 89.2 65.0 86.4
Categories Table Dog Horse Mbike Person Plant Sheep Sofa Train TV
Small objects’ ratio (%) 26.8 22.9 28.7 41.2 58.6 75.8 72.6 17.8 25.7 68.0
SSD300 [7] 76.5 84.9 86.7 84.0 79.2 51.3 77.5 78.7 86.7 76.2
RFB300 [17] 74.6 84.5 88.9 88.2 82.2 55.2 80.3 80.9 88.0 79.8
FIEN300 78.1 86.0 88.3 88.4 81.7 55.5 79.7 80.2 87.6 79.6
FIEN_RFB300 78.1 85.4 89.2 88.9 80.9 55.4 80.6 81.8 88.1 81.0

Table 3: Test results on MS COCO 2017 test dev.

Method Backbone Size
mAP (%), IOU mAP (%), area AR (%), area

0.5:0.95 0.5 0.75 S M L S M L
YOLOv3 [10] Darknet-53 608× 608 33.0 57.9 34.4 18.3 35.4 41.9 — — —
YOLOv4 [11] CSPDarknet-53 608× 608 41.2 62.8 44.3 20.4 44.4 56.0 — — —
SSD512 [7] VGG-16 512× 512 28.8 48.5 30.3 10.9 31.8 43.5 16.5 46.6 60.8
RFB512 [17] VGG-16 512× 512 34.4 55.7 36.4 17.6 37.0 49.7 27.3 52.3 65.4
RefineDet512 [41] VGG-16 512× 512 33.0 54.5 35.5 16.3 36.3 44.3 — — —
DSSD513 [34] ResNet-101 513× 513 33.2 53.3 35.2 13.0 35.4 51.5 21.8 49.1 66.4
DETR [44] ResNet-101 — 42.0 62.4 44.2 20.5 45.8 61.1 — — —
SEFN512 [43] VGG-16 512× 512 33.7 54.7 35.6 19.2 38.0 47.3 29.1 52.5 63.2
FIEN512 VGG-16 512× 512 34.8 54.8 37.3 20.6 40.0 48.2 30.5 55.0 64.3

(a)

(b)

(c)

(d)

Figure 4: Qualitative test results on MS COCO2017 test dev: (a) image, (b) YOLOv3, (c) YOLOv4, and (d) FIEN512.
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paper can capture more effective information to
further improve detection accuracy.

(3) As the input scale becomes larger, the detection
accuracy of the model is improved. )is is because
the large-scale image retains more information
during network feature extraction, which is con-
ducive to object detection. However, blindly in-
creasing the size of the input image in the process of
training and testing will consume more computing
resources and time. )erefore, this experiment has
only been carried out for 300× 300 and 512× 512.

In addition, in order to further explore the detection
performance of FIEN for small objects, the detection ac-
curacy of different algorithms in each category is listed in
Table 2. )e experimental results in Table 2 show that the
detection accuracy of the algorithm in this paper is higher
than that of the SSD algorithm in all categories, especially in
the category of bottle and plant with more small objects. For
some categories with a large proportion of small objects,
such as boat, chair, and bird, the detection accuracy of
FIEN_RFB is 2.6%, 1.4%, and 1.1%, respectively, higher than

that of RFB, which shows that the two modules proposed in
this paper can extract richer context information, which is
conducive to the detection of small objects.

4.3. Results onMSCOCO2017Data Set. MS COCO 2017 is a
comprehensive data set including object detection, semantic
segmentation, and instance segmentation. For the object
detection task, the MS COCO 2017 data set contains a large
number of objects with large-scale changes, dense objects,
and small objects, including 80 categories, 118,287 training
images, 5,000 verification images, and 40,670 test images.
)e performance evaluation index uses the average accuracy
AP and the average recall AR, where IOU� 0.5:0.95 means
that 10 thresholds are set in steps of 0.05, and the average
value of 10 thresholds is obtained. S, M, and L represent
small object, medium object, and large object, respectively.

During the experiment, this paper takes SSD512 as the
baseline detector, trains FIEN512, and compares its per-
formance with other algorithms. )e experimental results
are shown in Table 3; the visual detection results are shown
in Figures 4 and 5. According to Table 3 and Figures 4 and 5,
the results are summarized in the following list:

(a)

(b)

(c)

(d)

Figure 5: Qualitative test results on MS COCO2017: (a) image, (b) YOLOv3, (c) YOLOv4, and (d) FIEN512.

Table 4: Test results on UCAS-AOD.

Method Backbone mAP (%)
SSD300 [7] VGG-16 81.2
FSSD300 [16] VGG-16 81.7
MultDet300 [45] VGG-16 85.9
FIEN300 VGG-16 87.0

Table 5: Impact of IEM and DAM on performance.

IEM DAM mAP (%)
✕ ✕ 77.2
✓ ✕ 79.3
✕ ✓ 79.6
✓ ✓ 80.2
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(1) )e detection results of FIEN512 are significantly better
than SSD512 [7], YOLOv3 [10], andDSSD513 [34], and
the detection results are equivalent to RFB512 [17].

(2) Compared with YOLOv4 [11] and DETR [44], the
detection result of FIEN512 is slightly lower, but
FIEN512 effectively improves the detection accuracy
of small objects while ensuring the detection accu-
racy of large and medium objects, which effectively
proves that FIEN network has good advantages in
detecting small objects and dense objects.

(3) Figure 4 selects images with complex environments,
variable object scale, and dense for detection. From
the detection results of the fourth and eighth lines, it
can be found that FIEN512 has achieved good
performance in detecting various types of objects,
dense objects, and small objects, which further
proves the effectiveness of the FIEN network in
detecting small objects and dense objects.

4.4. Results on UCAS-AOD Data Set. In order to verify the
detection performance of FIEN network for small objects,
the UCAS-AOD data set is selected for experiments. UCAS-

AOD only contains two types of object and background
negative samples of car and plane, with a total of 1,510
images. In this paper, 1,057 images are used as the train set,
and 453 images are used as the test set. Although the object
type and quantity of the UCAS-AOD data set are far lower
than that of the COCO data set, the correlation between
objects is strong, which is suitable to verify the effectiveness
of this method for small object detection. Although the
increase in input scale will improve the detection accuracy, it
will also slow down the speed of training and testing.
)erefore, this paper only compares FIEN300 with other
algorithms in the UCAS-AOD data set. )e experimental
results are shown in Table 4.

It can be seen from Table 4 that the mAP of the FIEN300
model in this paper on the UCAS-AOD data set is 87.0%,
which is 2.8%, 2.3%, and 1.1% higher than SSD300 [7],
FSSD300 [16], and MultDet300 [45], respectively, reflecting
the superiority of small object detection. Figure 6 shows
some test results of SSD and FIEN on the UCAS-AOD data
set. It can be seen from the detection results in Figure 5 that
the SSD algorithm has missed detection when detecting
small and dense objects. For example, several cars in the
third row and the second column are not detected, while

(a) (b) (c)

Figure 6: UCAS-AOD test results: (a) image, (b) SSD, and (c) FIEN.

Table 6: Effectiveness of branches in IEM.

Method mAP (%)
SSD_300 77.2
SSD_300 +C333 78.4
SSD_300 +C531 78.6
SSD_300 +C531 + glo 79.0
SSD_300 +C531 + glo + loc 79.3

Table 7: Effects of different expansion rates on detection
performance.

Expansion rate mAP (%)
3, 3, 3 79.0
3, 3, 5 79.6
3, 5, 5 79.5
3, 5, 7 79.3
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using the FIEN method proposed in this paper avoids the
occurrence of missed detection, improves the detection
accuracy of each object, and can more effectively improve
the detection efficiency of small objects.

4.5. Ablation Experiment. In order to verify the effectiveness
of IEM and DAM in the FIEN network, this section takes the
SSD300 algorithm as a baseline detector, integrates the two
modules into SSD300, and carries out ablation experiments
on the PASCAL VOC 2007 data set.

4.5.1. Verifying the Effectiveness of IEM and DAM. In this
experiment, four schemes are used to verify the respective
performance of IEM and DAM: (1) baseline SSD300 algo-
rithm is added without any module; (2) only IEM is added to
the high-level features of the backbone network; (3) only
DAM is added to the high-level features of the backbone
network; and (4) add IEM and DAM to the high-level
features of the backbone network. )e experimental results
are shown in Table 5. According to Table 5, the three ex-
perimental schemes can improve the detection accuracy of
the baseline model, and the detection performance of adding
two modules at the same time is the best. )is shows that the
IEM and DAM modules designed in this paper are effective
in capturing context information and establishing the re-
lationship between information. )e joint use of the two
modules can enhance the performance of the network and
improve the detection accuracy of the model.

4.5.2. Verifying the Effectiveness of Each Branch in the IEM.
)e IEM consists of global information branches, local
information branches, and multiscale semantic information
branches. In order to further study the detection perfor-
mance of each branch, this paper designs four types of
experiments: (1) only add multiscale semantic information
branches; (2) add multiscale semantic information and
global information branches; (3) add three branches; and (4)
convolution kernels of different sizes are used in multiscale
semantic information branches.)e experimental results are
shown in Table 6. )e baseline model is SSD_300 that
achieves 77.2% mAP on the VOC 2007 data set. According
to the settings in Section 2.1, we first add the multiscale
semantic information branch with a convolution kernel size
of 3× 3 to the baseline model, and its performance is im-
proved from 77.2% to 78.4%. )en we use convolution
kernels of 5× 5, 3× 3, and 1× 1 instead of convolution
kernels of 3× 3, and the detection performance is improved
from 78.4% to 78.6%, which shows that different convolu-
tion kernels are used to capture richer information. )en we
added the global information branch on this basis, and its

detection accuracy reached 79.0%. Finally, after adding local
information branches, the detection accuracy reaches 79.3%,
which effectively improves the detection performance. In
Table 6, C333 and C531, respectively, indicate that the
convolution kernel size is 3× 3 and 5× 5, 3× 3, and 1× 1; glo
represents the global information branch; and loc represents
the local information branch.

4.5.3. Verifying the Effectiveness of Different Expansion Rates
in DAM. In order to explore the influence of different
expansion rates of atrous convolution of three branches in
DAM on detection performance, this experiment analyzes
and compares four different schemes: (1) the expansion rates
are 3, 3, and 3 in turn; (2) the expansion rates are 3, 3, and 5
in turn; (3) the expansion rates are 3, 5, and 5; and (4) the
expansion rates are 3, 5, and 7. )e experimental results are
shown in Table 7. It can be found from the results in Table 7
that the best test results are obtained when the expansion
rate is set to 3, 3, and 5. )e possible reason is that the
branches of row spatial relationship and column spatial
relationship enhancement learning are suitable for using the
same and moderate expansion rate, while the branches of
overall spatial relationship enhancement learning need
larger receptive fields to obtain richer semantic and spatial
information.)erefore, in this paper, the atrous convolution
with an expansion rate of 3, 3, and 5 is used to form a DAM
in order to better detect objects.

4.5.4. Verifying the Connection Mode of IEM and DAM.
In order to explore the impact of different connection modes
of the two modules on the detection performance, this paper
adopts two connection modes for the IEM and the DAM:
cascade and parallel, as shown in Figure 7. )e final de-
tection results are shown in Table 8. It can be seen from
Table 8 that the detection effect of parallel connection for
two modules is better than that of cascade connection. )is
shows that when using cascade connection, due to the small
scale of input features, althoughmore abundant information
is captured after passing through the information en-
hancement module, some spatial features of the original
features are lost after a series of convolution operations,
which cannot provide more useful information for the
DAM, resulting in unsatisfactory detection effect. When the
parallel connection is adopted, the two modules operate on
the input features, and the obtained features do not affect
each other. )ey not only can obtain rich context infor-
mation but also can establish the relationship between the
information. Finally, they are fused to form complemen-
tarity and obtain more discriminative features.

IEM REM

Input Output

(a)

IEM

REM
+

Input Output

(b)

Figure 7: Two connection modes: (a) cascade and (b) parallel.
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5. Conclusion

In this paper, we propose a novel small object detection
based on a feature information enhancement network
(FIEN) with two simple yet effective components to alleviate
information loss. Specifically, IEM extends the function of
FPN to utilize local and global information in the input
feature. )en we introduce DAM to enhance the flow
propagation between features and reduce the loss of small
object information. Extensive evaluations of three data sets
demonstrate that the proposed approach outperforms
previous state-of-the-art methods in detecting small objects
and the proposed two modules can be well generalized to
other algorithms and achieve significant improvement. In
addition, the detection algorithm can provide technical
support for medical auxiliary diagnosis, intelligent agri-
culture, automatic driving, and other scenes. Although our
method has achieved good results in detecting small objects,
there are still some missed detection and false detection in
detecting small objects with similar features or occlusion. In
future work, we will adjust and optimize the performance of
IEM and DAM and verify the generalization of two modules
on more detectors. Meanwhile, we will also optimize the
composition of the data set and increase the training of
occluded small objects.

Data Availability

)e data used to support the findings of this study are
available at https://host.robots.ox.ac.uk/pascal/VOC/
voc2007, https://cocodataset.org/#home, and https://www.
ucassdl.cn/resource.asp.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported in part by the National Natural
Science Foundation of China under Grant number
61862031, Training Plan for Academic and Technical
Leaders of Major Disciplines in Jiangxi Province, under
Grant no. 20213BCJ22004, and Science and Technology
Project of Educational Department in Jiangxi Province,
under Grant nos. GJJ180483, GJJ200884, and GJJ200859.

References

[1] H. Lu and T. Jin, “Dual-stream encoder neural networks with
spectral constraint for clustering functional brain connectivity
data,” Neural Computing & Applications, 2022.

[2] H. Lu, C. Chen, H. Wei, Z. Ma, K. Jiang, and Y. Wang,
“Improved deep convolutional embedded clustering with Re-

selectable sample training,” Pattern Recognition, vol. 127,
2022.

[3] H. L. Luo and H. K. Chen, “Survey of object detection based
on deep learning,” Acta Electronica Sinica, vol. 48, no. 6,
pp. 1230–1239, 2020.

[4] J. Dai, Y. Li, and K. He, “Object detection via region-based
fully convolutional networks,” Proceedings of the Neural In-
formation Processing Systems, pp. 379–387, IEEE, SPAIN,
2016.

[5] K. He, G. Gkioxari, D. Piotr, and G. Ross, “Mask, R-Cnn,” in
Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988, IEEE, Cambridge, MA, USA, June
1995.

[6] S. Ren, K. He, and R. Girshick, “R. Cnn: Towards real-time
object detection with region proposal networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 6, pp. 1137–1149, 2015.

[7] W. Liu, D. Anguelov, D. Erhan et al., “SSD: single shot
MultiBox detector,” in Proceedings of the European Conference
on Computer Vision, pp. 21–37, IEEE, Netherlands, June 2016.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in Proceedings
of the Computer Vision and Pattern Recognition, pp. 779–788,
IEEE, Las Vegas, NV, USA, May 2016.

[9] J. Redmon and A. Farhadi, “YOLO9000: better, faster,
stronger,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6517–6525, IEEE, Hon-
olulu, HI, USA, May 2017.

[10] J. Redmon and A. Farhadi, “YOLOv3: an incremental im-
provement,” in Proceedings of the Computer Vision and
Pattern Recognition, pp. 3523–3541, IEEE, Salt Lake City,
Utah, USA, Octomber 2018.

[11] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4:
Optimal Speed and Accuracy of Object Detection,” 2020,
http://arXiv.org/abs/2004.10934.%202020.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “)e pascal visual object classes (VOC) chal-
lenge,” International Journal of Computer Vision, vol. 88,
no. 2, pp. 303–338, 2010.

[13] T.-Y. Lin, M. Maire, S. Belongie et al., “Microsoft COCO:
common objects in context, Computer Vision - ECCV 2014,”
in Proceedings of the European Conference on Computer Vi-
sion, pp. 740–755, IEEE, Switzerland, November 2014.

[14] T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object detection
[C],” in Proceedings of the Computer Vision and Pattern
Recognition, pp. 936–944, IEEE, Honolulu, HI, USA, July
2017.

[15] C. Deng, M. Wang, L. Liu, Y. Liu, and Y. Jiang, “Extended
feature pyramid network for small object detection,” IEEE
Transactions on Multimedia, vol. 24, pp. 1968–1979, 2022.

[16] Z. Li and F. Zhou, “FSSD: Feature Fusion Single Shot Mul-
tibox Detector,” 2017, http://arXiv.org/abs/1712.00960.%
202017.

[17] S. Liu, D. Huang, and Y. Wang, “Receptive field block net for
accurate and fast object detection,” in Proceedings of the
European Conference on Computer Vision, pp. 404–419, IEEE,
Munich, Germany, Octomber 2018.

[18] Y. Li, Y. Chen, N. Wang, and Z. Zhang, “Scale-aware trident
networks for object detection,” in Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision,
pp. 6053–6062, IEEE, Seoul, Korea (South), October 2019.

Table 8: Effects of different connection modes on performance.

Connection modes mAP (%)
Cascade 79.3
Parallel 80.2

Computational Intelligence and Neuroscience 11

https://host.robots.ox.ac.uk/pascal/VOC/voc2007
https://host.robots.ox.ac.uk/pascal/VOC/voc2007
https://cocodataset.org/#home
https://www.ucassdl.cn/resource.asp
https://www.ucassdl.cn/resource.asp
http://arXiv.org/abs/2004.10934.%202020
http://arXiv.org/abs/1712.00960.%202017
http://arXiv.org/abs/1712.00960.%202017


[19] Y. Zhang and T. Shen, “Small object detection with multiple
receptive fields,” IOP Conference Series: Earth and Environ-
mental Science, vol. 440, no. 3, Article ID 032093, 2020.

[20] H.-L. Luo, H. Wei, and L. L. Lai, “Creating efficient visual
codebook ensembles for object categorization,” IEEE Trans-
actions on Systems, Man, and Cybernetics - Part A: Systems
and Humans, vol. 41, no. 2, pp. 238–253, 2011.

[21] H.-L. Luo, H. Wei, and F.-X. Hu, “Improvements in image
categorization using codebook ensembles,” Image and Vision
Computing, vol. 29, no. 11, pp. 759–773, 2011.

[22] J. Guo, C. Yuan, Z. Zhao, P. Feng, Y. Luo, and T. Wang,
“Object detector with enriched global context information,”
Multimedia Tools and Applications, vol. 79, no. 39-40, Article
ID 29571, 2020.

[23] L. Guan,W. Yan, and J. Zhao, “SCAN: semantic context aware
network for accurate small object detection,” International
Journal of Computational Intelligence Systems, vol. 11, no. 1,
pp. 936–950, 2018.

[24] H. Law and J. Deng, “CornerNet: detecting objects as paired
keypoints,” International Journal of Computer Vision, vol. 128,
no. 3, pp. 642–656, 2018.

[25] J. Cao, Q. Chen, J. Guo, and R. Shi, “Attention-guided Context
Feature Pyramid Network for Object Detection,” 2020, http://
arXiv.org/abs/2005.11475.%202020.

[26] H. Y. Li, C. G. Li, J. B. An, and J. Ren, “Attention mechanism
improves CNN remote sensing image object detection,”
Journal of Image and Graphics, vol. 24, no. 8, pp. 1400–1408,
2019.

[27] J. Noh, W. Bae, W. Lee, J. Seo, and G. Kim, “Better to follow,
follow to Be better: towards precise supervision of feature
super-resolution for small object detection,” in Proceedings of
the 2019 IEEE/CVF International Conference on Computer
Vision, pp. 9725–9734, IEEE, Seoul, Korea (South), October
2019.

[28] M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, and K. Cho,
“Augmentation for Small Object Detection,” 2019, http://
arXiv.org/abs/1902.07296.%202019.

[29] H. Zhu, X. Chen, W. Dai, K. Fu, Q. Ye, and J. Jiao, “Ori-
entation robust object detection in aerial images using deep
convolutional neural network,” in Proceedings of the IEEE
International Conference on Image Processing, pp. 3735–3739,
IEEE, Quebec City, QC, Canada, September 2015.

[30] J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, and S. Yan, “Perceptual
generative adversarial networks for small object detection
[C],” in Proceedings of the Computer Vision and Pattern
Recognition, pp. 1951–1959, IEEE, Honolulu, HI, USA, July
2017.

[31] Y. Bai, Y. Zhang, M. Ding, and B. Ghanem, “SOD-MTGAN:
small object detection via multi-task generative adversarial
network,” in Proceedings of the European Conference on
Computer Vision, pp. 210–226, IEEE, Munich, Germany,
2018.

[32] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation
network for instance segmentation,” in Proceedings of the
Computer Vision and Pattern Recognition, pp. 8759–8768,
IEEE, Salt Lake City, UT, USA, February 2018.

[33] T. Liu and X. L. Wang, “Single-stage object detection using
filter pyramid and atrous convolution,” Journal of Image and
Graphics, vol. 25, no. 1, pp. 102–112, 2020.

[34] C. Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD
:Deconvolutional Single Shot Detector,” 2017, http://arXiv.
org/abs/1701.06659.%202017.

[35] J.-y. Li, J. Yang, J. Yang, B. Kong, C. Wang, and L. Zhang,
“Multi-scale vehicle and pedestrian detection algorithm based

on attention mechanism,” Optics and Precision Engineering,
vol. 29, no. 6, pp. 1448–1458, 2021.

[36] F. Guo, Y. X. Zhang, J. Tang et al., “YOLOv3-A: a traffic sign
detection network based on attentionmechanism,” Journal on
Communications, vol. 42, no. 1, pp. 87–99, 2021.

[37] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: scalable and
efficient object detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 10778–10787, IEEE, Seattle, WA, USA, June 2020.

[38] H. Li, P. Xiong, J. An, and L. Wang, “Pyramid attention
network for semantic segmentation,” in Proceedings of the
British Machine Vision Conference, p. 285, IEEE, Newcastle,
UK, 2018.

[39] G. Huang, Z. Liu, V. Laurens, and K. Q.Weinberger, “Densely
Connected Convolutional Networks,” 2016, http://arXiv.org/
abs/1608.06993.%202016.

[40] M. Yang, K. Yu, Z. Chi, and K. Yang, “DenseASPP for se-
mantic segmentation in street scenes,” in Proceedings of the
2018 IEEE Conference on Computer Vision and Pattern Rec-
ognition, pp. 3684–3692, IEEE, Salt Lake City, UT, USA,
January 2018.

[41] S. Zhang, L. Wen, X. Bian, and S. Z. Li, “Single-shot re-
finement neural network for object detection,” in Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4203–4212, IEEE, Salt Lake City, UT,
USA, Octomber 2018.

[42] J. P. H. Jeong and N. And Kwak, Enhancement of SSD by
Concatenating Feature Maps for Object Detection, British
Machine Vision Conference London, London, UK, 2017.

[43] C. H. Kun and L. H. Lan, “Multi-scale semantic information
fusion for object detection,” Journal of Electronics and In-
formation Technology, vol. 43, no. 7, pp. 2087–2095, 2021.

[44] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-End object detection with trans-
formers,” in Proceedings of the European Conference on
Computer Vision, pp. 213–229, IEEE, Glasgow,UK, July 2020.

[45] Q. L. Yao, X. Hu, and H. Lei, “Aricraft detection in remote
sensing imagery with multi-scale feature fusion convolutional
neural networks,” Acta Geodaetica et Cartographica Sinica,
vol. 48, no. 10, pp. 1266–1274, 2019.

12 Computational Intelligence and Neuroscience

http://arXiv.org/abs/2005.11475.%202020
http://arXiv.org/abs/2005.11475.%202020
http://arXiv.org/abs/1902.07296.%202019
http://arXiv.org/abs/1902.07296.%202019
http://arXiv.org/abs/1701.06659.%202017
http://arXiv.org/abs/1701.06659.%202017
http://arXiv.org/abs/1608.06993.%202016
http://arXiv.org/abs/1608.06993.%202016

