
Research Article
HA-CCP: A Hybrid Algorithm for Solving Capacitated
Clustering Problem

Yaoyao Liu,1 Ping Guo ,1,2 and Yi Zeng1,2

1College of Computer Science, Chongqing University, Chongqing 400044, China
2Chongqing Key Laboratory of Software "eory and Technology, Chongqing 400044, China

Correspondence should be addressed to Ping Guo; guoping@cqu.edu.cn

Received 22 September 2021; Revised 25 December 2021; Accepted 29 December 2021; Published 21 January 2022

Academic Editor: Maciej Lawrynczuk

Copyright © 2022 Yaoyao Liu et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

.e capacitated clustering problem (CCP) divides the vertices of the undirected graph into several disjoint clusters so that the sum
of the node weights in each cluster meets the capacity limit while maximizing the sum of the weight of the edges between nodes in
the same cluster. CCP is a typical NP-hard problem with a wide range of engineering applications. In recent years, heuristic
algorithms represented by greedy random adaptive search program (GRASP) and variable neighborhood search (VNS) have
achieved excellent results in solving CCP. To improve the efficiency and quality of the CCP solution, this study proposes a new
hybrid algorithm HA-CCP. In HA-CCP, a feasible solution construction method is designed to adapt to the CCP with stricter
upper and lower bound constraints and an adaptive local solution destruction and reconstruction method is designed to increase
population diversity and improve convergence speed. Experiments on 90 instances of 4 types show that the best average solution
obtained by HA-CCP on 58 instances is better than all comparison algorithms, indicating that HA-CCP has better solution
stability. HA-CCP is also superior to all comparison algorithms in average solving efficiency.

1. Introduction

.e capacitated clustering problem (CCP) divides the ver-
tices of the undirected graph into several disjoint clusters so
that the sum of the node weights in each cluster meets the
capacity limit while maximizing the sum of the weight of the
edges between nodes in the same cluster.

CCP is closely related to the graph partition problem
(GPP) [1–5], where the goal is to find a partition of the vertex
set in k classes while minimizing the number of cut edges
and respecting a balance constraint between the classes.
Moreover, the maximum diversity grouping problem
(MDGP) [6–13] is used to partition the vertices of an edge-
weighted and undirected complete graph intom groups such
that the total weight of the groups is maximized subject to
some group size constraints. Consequently, the objective of
the handover minimization problem (HMP) in the mobile
network [14] is to minimize the sum of weights of the edges
with endpoints in different clusters. In addition, CCP also
has essential applications in vehicle routing [15] and mail
delivery [16].

Optimization problems in real life are becoming more
complex, with large-scale, nonlinear, multi-constrain
characteristics. In recent years, many intelligent optimiza-
tion algorithms [17–22] have been proposed to solve some
complex practical problems effectively. Since Mulvey and
Beck [23] proposed the CCP model in 1984, much literature
has been on CCP and related issues. .e greedy random
adaptive search program (GRASP) is an effective method to
solve CCP. Deng and Bard [24] combined a GRASP with
path relinking (PR) and proposed GRASP-PR with a
postprocessing stage. Morán-Mirabal et al. [14] proposed
three random heuristic methods to solve the handover
minimization problem in mobile networks: a GRASP with
path relinking for the generalized quadratic assignment
problem (denoted by GQAP), a GRASP with evolutionary
path relinking (denoted by GevPR-HMP), and a biased
random-key genetic algorithm (BRKGA). Mart́ınez-Gavara
et al. [25] proposed the greedy random adaptive search
program (GRASP), Tabu search method (TS), a hybrid
method combining GRASP and TS (GRASP+TS), and Tabu
search with strategic oscillation (TS_SO). Mart́ınez-Gavara

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6400318, 24 pages
https://doi.org/10.1155/2022/6400318

mailto:guoping@cqu.edu.cn
https://orcid.org/0000-0002-5239-8896
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6400318

et al. [26] proposed three random heuristic algorithms:
greedy random adaptive search process (GRASP2-1), iter-
ative greedy (IG), and their hybrid IG-GRASP.

Algorithms based on variable neighborhood search
(VNS) [27, 28] are another method of solving CCP. Lai
and Hao [29] proposed an iterative variable neighbor-
hood search (IVNS) algorithm. Brimberg et al. [30]
proposed the general VNS (GVNS) and the skewed
general VNS (SGVNS). Lai X et al. [31] proposed the
neighborhood decomposition-driven variable neighbor-
hood search (NDVNS) for capacitated clustering. In
addition, a Tabu search designed specifically for CCP
includes the TS (denoted as FITS) and the memetic al-
gorithm (MA) proposed in the literature [32].

CCP is an NP problem. By imposing upper and lower
limits on the size of clusters, CCP becomes a typical
constrained clustering problem..e complexity of CCP is
related to the scale of the problem and the upper and
lower limits of its capacity. Large-scale CCPs require
more calculation time to obtain a good solution than
those of small and medium CCPs. In particular, it is
challenging to find feasible solutions for CCPs with strict
upper or lower limits. Literature [26] introduced a hybrid
method called IG-GRASP to solve CCP. On the one hand,
IG-GRASP initializes a new solution and restarts the
search when it falls into the local optimum and fails to
break out the local optimum after a preset number of
searches. .is process discards the results of the previous
stage search. As mentioned in [26], it is more efficient to
construct a link solution of the current solution than to
construct a new solution. On the other hand, as described
in Section 3.3, the destruction strength of the current
solution by the IG-GRASP destructive method depends
on the number of clusters and nodes of the instance.
When applying IG-GRASP to solve large-scale instances,
the destructive method may excessively destroy the
current solution, which is not conducive to the final
convergence of the algorithm to a better solution. In
addition, the construction method of IG-GRASP is dif-
ficult to successfully construct feasible initial solutions
for some instances with strict upper and lower limits of
capacity. Recently, algorithms based on VNS have been
proposed to solve CCP, including IVNS, GVNS, and
SGVNS. .e experimental results in the literature [32]
show that SGVNS has the best performance. We believe
this is mainly due to the extension of the search to other
promising areas of the solution space by adding skewed
acceptance criteria. .e algorithms based on VNS all use a
random shaking process to introduce diversity to search.
To improve the efficiency and quality of CCP solutions,
this study proposes a new hybrid algorithm HA-CCP,
which intelligently combines IG-GRASP and SGVNS
algorithms. HA-CCP follows the framework of SGVNS
and uses partial destruction and reconstruction strategies
to introduce diversity to search. In addition, we also
designed a new initial solution constructive method and
partial destructive method to avoid the above limitations
in IG-GRASP. .e main contributions of this study in-
clude the following:

(1) A solution construction method CM2 is designed.
Even if the upper and lower boundaries of the cluster
are very tight, CM2 can successfully build a feasible
solution. It can construct feasible solutions in a wider
range of CCP solutions to make the algorithm run
correctly and perform better than the random
construction method [29, 31, 32].

(2) A destructive method DM3 is designed to destruct
partial solutions. It adaptively destructs the solution
according to the number of clusters and nodes of the
instance while limiting the maximum number of
deleted nodes in large-scale instances. In large-scale
instances, the performance of DM3 is significantly
better than DM2 [26].

(3) A hybrid algorithm HA-CCP is proposed to solve
CCP. .e HA-CCP follows the framework of
SGVNS, uses the partial destruction and recon-
struction strategy to shake the current solution, uses
the proposed solution constructor to construct the
initial solution, reconstructs the partial solution, and
uses the proposed destruction method to destroy the
partial solution. Compared with the existing VNS-
based CCP algorithm [29–31], HA-CCP uses a non-
fully randommethod to shake the current solution to
improve the efficiency of the algorithm and the
quality of the solution.

.e experimental results on 90 benchmark test instances
show that HA-CCP is superior to all comparison algorithms
except NDVNS (because NDVNS [31] does not provide
calculation time) in terms of average solving efficiency. In
terms of solution quality, HA-CCP obtained 57 best average
results and 30 best results, indicating that HA-CCP out-
performed all comparison algorithms in average results.
However, the solution quality of HA-CCP on MDG-a in-
stances is inferior to NDVNS.

.e rest of the study is organized as follows. In Section 2,
the definition of the CCP and the latest heuristics for CCP
are introduced..en, the overall framework of HA-CCP and
the proposed construction method CM2 and destruction
method DM3 are introduced in Section 3. Section 4 gives the
experimental results and time-to-target analysis on bench-
mark instances. Section 5 analyzes the contribution of the
critical algorithmic component to the performance of the
proposed algorithms. Finally, conclusions and future work
are provided in Section 6.

2. Background and Literature Review

.is section introduces the concept of the CCP and the state-
of-the-art CCP algorithms in the literature. Some of these
algorithms are also used for analysis and comparison in
Section 4.

2.1. Basic Concepts. For undirected weighted graphs, G �

(V, E), where V � v1, v2, . . . , vn􏼈 􏼉 is a set of n nodes and E

is the set of edges. wi ≥ 0 is the weight of the node vi ∈ V.
cij is the weight of the edge. V is divided into p clusters

2 Computational Intelligence and Neuroscience

Vk ⊂ V, and Vi ∩Vj � ∅(i, j ∈ 1, 2, . . . , p􏼈 􏼉 and i≠ j). If vi

∈ Vg, let the binary variable Xig � 1; otherwise, Xig � 0, i

� 1, 2, ..., n; g � 1, 2, ..., p. .e CCP based on G can be
expressed as an optimization problem [29, 32]:

maximize 􏽘

p

g�1
􏽘

n−1

i�1
􏽘

n

j�i+1
cijXigXjg, (1)

subject to 􏽘

p

g�1
Xig � 1, ∀vi ∈ V, (2)

Lg ≤ 􏽘
n

i�1
wiXig ≤Ug , ∀g ∈ 1, . . . , p􏼈 􏼉 , (3)

Xig ∈ 0, 1{ }, ∀vi ∈ V, g ∈ 1,p􏼈 􏼉 , (4)

Here, equation (2) requires that each node be allocated
and only allocated to one cluster, and equation (3) requires
that the sum of the node weight of each cluster is not less
than the lower limit of capacity Lg and does not exceed the
upper limit of capacity Ug. .e subset of the solution x is
called the partial solution of x.

2.2. IG-GRASP for CCP. IG-GRASP [26] is the latest algo-
rithm for solving CCP based on GRASP, as shown in Al-
gorithm 1. It first constructs an initial solution with the
construction method CM (line 6) and then improves the
initial solution with the local search method IM2-1 (line 7).
Subsequently, the algorithm repeatedly applies the de-
structive method DM2 to destruct the solution (line 9), the
CM to reconstruct the solution (line 10), and the IM2-1 for
local search (line 11). If several attempts cannot improve the
solution (lines 8–18), the algorithm constructs a new so-
lution (line 6) and starts again.

In Algorithm 1, CM (line 6) is used to construct a feasible
solution. It starts by seeding the p clusters V1, V2, . . . , Vp

with p randomly selected nodes. .en, the clusters are
explored in lexicographical order assigning nodes until all of
them satisfy the lower bound constraint. To do so, the
candidate list VCL is formed with all the unassigned nodes
and the value I(vi, k) � 􏽐j∈Vk

cij is calculated for all pairs
(i, k) of nodes and clusters. RVCLk, the restricted candidate
list of nodes for cluster k, can be formed as follows:

RVCLk � vi ∈ VCLk: I vi, k(􏼁≥ αImax vi, k(􏼁􏼈 􏼉 , (5)

where Imax(k) � max I(vi, k), α ∈ [0, 1] is a parameter
used to balance randomness and greed. Finally, CM ran-
domly selects a node in RVCLk and assigns to cluster k. .e
nodes are allocated in this way until cluster k satisfies the
lower bound of capacity. .en, all clusters are processed in
this way until all clusters meet the lower limit of capacity. In
the next step, CM assigns all unallocated nodes to these
clusters so that each cluster meets the capacity limit con-
straint. In particular, CM constructs the candidate list CL by
equation (6), builds RCL by equation (7), selects one pair
(i, k) at random, and assigns node i to cluster k. CM stops
when all the nodes have been assigned in this way.

CL � (i, k): 1≤ k≤p, Wk + wi ≤Uk􏼈 􏼉

· whereWk � 􏽘
j∈k

wj
, (6)

RCL � (i, k) ∈ CL: I vi, k(􏼁≥ αImax(v, k)􏼈 􏼉. (7)

DM2 (Algorithm 1, line 9) is used to destruct part of the
solution. It aims to remove some nodes from the cluster so
that those nodes can be assigned to a different cluster to
increase the value of the objective function. DM2 first
constructs a deleted candidate list DCLk for the cluster
k (k � 1, 2, ..., p) as follows:

DCLk � vi ∈ Vk: CR vi, Vk(􏼁≤ ck􏼈 􏼉 , (8)

where CR(vi, Vk) � C(vi, Vk)/C(vi) is the relative contribu-
tion of node vi to cluster k, C(vi, Vk) � 􏽐vj∈Vk

cij is the
contribution of node vi to the objective function value in cluster
k, and C(vi) � 􏽐vj∈Vcij is the potential contribution of the
node vi to the objective function value, ck � δminvi∈Vk

CR

(vi, Vk) + (1 − δ)maxvi∈Vk
CR(vi, Vk) is a threshold, and

δ ∈ [0, 1] is a parameter to control the size of the deleted
candidate list. .e DM2 method deletes the percentage β el-
ements from DCLk of each cluster k. So, the actual number of
nodes removed from cluster k is max (1, 􏼄β|DCLk|􏼅􏼁, where
|DCLk| is the length of the list DCLk.

2.3. VNS Algorithms for CCP. .e VNS algorithm is a
classic local search algorithm for combinatorial and global
optimization problems (see [33–36]). It first constructs a
feasible initial solution and then iteratively applies a
shaking and local search to find the global optimal solution.
Lai and Hao [29] followed the general VNS framework and
proposed iterative variable neighborhood search (IVNS)
for CCP. IVNS constructs the initial solution with a ran-
dom construction procedure, shakes the current solution
with a random shaking procedure, and finds the local
optimal solution with the extended variable neighborhood
descent (EVND).

Brimberg et al. [30] proposed two heuristic algorithms
based on VNS to solve CCP. .e first is to combine variable
neighborhood descent (VND) with general VNS to obtain
the general variable neighborhood search (GVNS). .e
second is to combine VND with skewed VNS to obtain
skewed general variable neighborhood search (SGVNS).
SGVNS expands the search range to other promising areas of
the solution space by a skew operation. .e acceptance
criteria for skewed moves in SGVNS are described as
follows:

f x″(􏼁

f x
b

􏼐 􏼑
+ ε d x″, x

b
􏼐 􏼑> 1 and

f x″(􏼁

f(x)
+ ε d x″, x(􏼁> 1, (9)

where xb is the best solution, x is the current solution, and
x″ is the new solution obtained after one application of
shaking and local search. ε is a parameter, and function d

denotes a measure of distance between two solutions,
according to [30], and d(x″, xb) can be calculated as follows:

Computational Intelligence and Neuroscience 3

d x″, x
b

􏼐 􏼑 �

(i, j): gx″ ,i � gx″,j
􏼒 􏼓∧ gxb,i ≠gxb,j􏼐 􏼑􏼒 􏼓∨ gxb,i � gxb,j􏼐 􏼑∧ gx″ ,i ≠gx″ ,j􏼐 􏼑􏼐 􏼑􏼚 􏼛

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(i, j): gx″ ,i � gx″ ,j􏼐 􏼑∧ gxb,i � gxb,j􏼐 􏼑􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (10)

where 1≤ i< j≤ n and gx″,i is the label of the cluster where
the node i is located in the solution x″.

2.4. Tabu Search. FITS [32] is a Tabu search approach to
solve CCP. It starts from generating feasible solutions and
then enters the searching stage until the running deadline is
reached. .e searching stage alternates between a feasible
local search phase (FLS for short) and an infeasible local
search phase (InfLS for short). If FLS is trapped in a deep
local optimum, FITS will switch to InfLS to guide the search
towards new search regions. It alternately explores the
feasible and infeasible solution space to avoid falling into the
local optimum easily.

3. A Hybrid Algorithm for CCP: HA-CCP

In this section, we propose a hybrid algorithm HA-CCP to
solve CCP. HA-CCP uses a process based on the combi-
nation of greediness and randomization to construct the
initial solution, uses the VND method to perform a local
search to find the local optimal solution, and uses the
destruction and reconstruction partial solution to shake the
current solution. In addition, an acceptance criterion for
skewed moves was added to enable HA-CCP to extend the
search range to other promising areas of the solution space,
thereby reducing repeated searches for some areas of the
solution space and increasing the diversity of the search.
For ease of description, in the rest of this study, xb

represents the best solution obtained so far, x represents
the current solution, and x″ represents the new solution
obtained after one application of destruction, recon-
struction, and local search of x.

3.1. HA-CCP Framework. .e overall framework of HA-
CCP is shown in Algorithm 2. It constructs an initial so-
lution x with CM2 (Algorithm 2 line 2; see Section 3.2), and
if x is not a feasible solution (Algorithm 2 line 3), an empty
solution is returned (Algorithm 2 line 4); otherwise, x is
improved with VND [30] (Algorithm 2 line 5) and the
improved solution is copied as the current best solution xb
(Algorithm 2 line 6). .en, it enters the iterative process to
optimize the solution until the loop condition is no longer
satisfied. Each iteration consists of four stages: (1) the
current solution is partially destructed (Algorithm 2 line 8;
see Section 3.3); (2) the destroyed solution is reconstructed
(Algorithm 2 line 9); if x″is not a feasible solution (Algo-
rithm 2 line 10), x″ is updated with x (Algorithm 2 line 11);
(3) VND is used to perform a local search on the recon-
structed solution to obtain a new solution x″ (Algorithm 2
line 13); and (4) if the new solution x″ is better than the best
solution xb, the current solution x and the best solution xb
are updated with the new solution x″; otherwise, whether to
accept the new solution x″ as the current solution x
according to acceptance criteria is determined. If the ac-
ceptance criteria were satisfied, the new solution x″ is ac-
cepted as the current solution x. Otherwise, the current

Input: graph G � (V, E);
Output: best solution xb;

(1) x⟵EmptySolution();
(2) T⟵ n ;/∗ T is the maximum time allowed, and n is the number of nodes in graph G∗/
(3) NI⟵ c∗ n;/∗ NI is the maximum of iteration without improving allowed∗/
(4) xb⟵x;/∗ xb is the best solution generated∗/
(5) while T is not reached do
(6) yc⟵ CM (xb, G) ;/∗CM is the construction method∗/
(7) x⟵ IM 2−1 (yc) ;/∗IM2-1 is the local search method∗/
(8) while l<NI do
(9) y⟵DM2 (x) ;/∗ Partially destruct the solution x ∗/
(10) yc⟵CM (y, G) ;/∗ Reconstruct solution ∗/
(11) x⟵ IM2-1 (yc) ;/∗ Local search ∗/
(12) if f(x)>f(xb) then
(13) xb⟵x;
(14) l⟵ 0;
(15) else
(16) l⟵ l + 1;
(17) end if;
(18) end while;
(19) end while;
(20) return xb;

ALGORITHM 1: IG-GRASP.

4 Computational Intelligence and Neuroscience

solution x is not updated (Algorithm 2 lines 14–21). Because
the three processes of partial destruction, reconstruction,
and local search have a certain degree of randomness, each
iteration will produce a different new solution.

Compared with Algorithm 1 (IG-GRASP), Algorithm 2
(HA-CCP) has the following differences:

(1) Local Search. In Algorithm 1, IM2-1 has to be used
(Algorithm 1, line 7) to improve the solution, which
searches in neighborhood N4(x) [25], but Algo-
rithm 2 applies the VND [30] based on 3 neigh-
borhoods (Algorithm 2, line 5)

(2) Partial Destruction Solution. Algorithm 1 partially
destructs the solution with DM2 (Algorithm 1,
line 9), but Algorithm 2 adopts DM3 (Algo-
rithm 2, line 8)

(3) Acceptance Criteria. Algorithm 1 adopts the “always
replace” acceptance criterion (Algorithm 1, lines
12–17), but Algorithm 2 adopts the “conditional
acceptance” criterion (Algorithm 2, lines 18–20)

(4) Jump out of the Local Optimum. Algorithm 1 jumps
out of the local optimization after the preset number
of iterations without any improvement (Algorithm 1,
Line 8), but Algorithm 2 appropriately accepts the
suboptimal solution as the current solution to
moving the search to other areas of the solution
space (Algorithm 2, line 19)

(5) Algorithm 1 has one possible starting point for a new
round of search: the current solution x (Algorithm 1,
lines 12–17), but Algorithm 2 has two: the current

solution x and the new solution x″(Algorithm 2,
lines 14–21). .erefore, Algorithm 2 has a larger
optimization search space than Algorithm 1

Compared with the SGNVS algorithm, Algorithm 2
(HA-CCP) has the following differences:

(1) In terms of the construction of the initial solution,
HA-CCP uses a combination of randomization and
greediness to construct the initial solution, and
SGNVS uses a completely random construction
method to construct the initial solution.

(2) In terms of introducing diversity for search, HA-
CCP adopts the strategy of destructing and recon-
structing the current solution, and the VNS-based
SGVNS adopts a completely random shake process.

(3) In terms of perturbation strength, HA-CCP controls
the number of the deleted nodes of the destructive
method according to the number of nodes, clusters,
and the parameter d max of the current instance,
while SGNVS adjusts the perturbation strength
according to the solution obtained in the search
process.

3.2. Construction Method: CM2. To construct a feasible
solution, we propose CM2 in Algorithm 3. CM2 includes
two steps. .e first step (Algorithm 3, lines 4–16) is as
follows: assigning nodes to each cluster until all clusters meet
the lower limit of capacity. For cluster p(1≤ k≤p), CM2
first constructs a candidate list VCLk with all the unallocated

Input: graph G � (V, E), the cutoff time T;
Output: the best solution xb;
(1) x is an empty solution;
(2) x⟵CM2 (x, G);/∗ Construct an initial solution, Algorithm 3 ∗/
(3) if x is not a feasible solution then
(4) return an empty solution;
(5) x⟵VND (x);/∗ Improve solution x, refers to [30]∗/
(6) xb⟵x;
(7) while elapsed time<T do
(8) x″⟵DM3 (x);/∗ Destruct part of the solution, Algorithm 6 ∗/
(9) x″⟵CM2 (x″,G),;/∗ Reconstruct a solution, Algorithm 3 ∗/
(10) if x″is not a feasible solution then
(11) x″⟵x ;
(12) end if;
(13) x’’⟵VND (x″);/∗ Improve solution x, refers to [30] ∗/
(14) if f(x″)>f(xb) then
(15) xb⟵x″ ;/∗ Update the best solution xb with x″ ∗/
(16) x⟵x″ ;/∗ Update the current solution x with x″ ∗/
(17) else
(18) if f(x″)/f(xb) + ε d(x″, xb)> 1 andf(x″)/f(x) + ε d(x″, x)> 1 then/∗ Acceptance criteria, equation. (9)∗/
(19) x⟵x″;/∗ Accept the new solution x″ as the current solution x ∗/
(20) end if;
(21) end if;
(22) end while;
(23) return xb;

ALGORITHM 2: HA-CCP.

Computational Intelligence and Neuroscience 5

nodes (Algorithm 3, line 6). If the VCLk is not empty
(Algorithm 3, lines 7–10), the increment VCLk of the ob-
jective function value is calculated and the restricted can-
didate list RVCLk isconstructed by equation (5). .en, a
node in RVCLk is randomly selected and assigned to cluster
k. If VCL is empty (Algorithm 3, lines 11–14), it indicates
that all nodes have been allocated, but the cluster in solution
x does not meet the lower limit of capacity. In this case, we
apply Algorithm 4 to fix x into a feasible solution.

.e second step (Algorithm 3, lines 18–29) is as follows:
assigning the remaining unallocated nodes to suitable clusters. It
first constructs the candidate list CL by equation (6). If CL is not
empty (Algorithm 3, lines 20–23), the restricted candidate list
RCL isconstructed by equation (7). .en, a pair of elements
(v, k) in RCL is randomly selected and v is assigned to cluster k.
All unallocated nodes are allocated in this way. If the CL is
empty (Algorithm 3, lines 24–27), it indicates that there is an
unallocated node v, and allocating it to any cluster will cause the
cluster capacity to exceed the upper limit. For this case, we apply
the LWA (Algorithm 5) for processing. CM2 performs the

solution construction process up to 10 times (Algorithm 3, lines
1–3). If the feasible solution is successfully constructed, it will
jump out of the loop and return to the feasible solution (Al-
gorithm 3, lines 30–34).

Algorithm 4 describes the repair method. For the cluster g

that does notmeet the lower limit of capacity, we first construct
a feasiblemove-in node candidate list MCLg (Algorithm 4, line
3) by equation (11). If MCLg is empty (Algorithm 4, line 4), the
infeasible solution x (Algorithm 4, line 5) is returned; other-
wise, the restricted candidate list RMCLk is constructed in a
similar way to the restricted candidate list RVCLk (Algo-
rithm 4, line 6). .en, a node in RMCLk is randomly selected
and it is moved to the cluster g(Algorithm 4, lines 7–8). .e
node is moved in this way until all clusters meet the lower
capacity constraint, and the repair ends.

MCLg � vi: 1≤ i≤ n, vi ∈ Vs, 1≤ s≤p, s≠g, Ws􏼈

− wi ≥Ls, Wg + wi ≤Ug􏽯.

(11)

Input: graph G � (V, E), a solution x;
Output: x;/∗ A solution ∗/
(1) NI⟵ 10;
(2) while NI> 0 do
(3) NI⟵NI − 1;
(4) for k⟵ 1 to p do
(5) while Wk <Lk do
(6) VCLk⟵AN;/∗AN is the set of unallocated nodes∗/
(7) if VCLk is not empty then
(8) RVCLk⟵ ConstructRCLV(VCLk);
(9) v⟵ RandomSelect (RVCLk⟵);
(10) x⟵ AddvIntoVk (x, v) ;
(11) else
(12) x⟵ repair (x);/∗ Algorithm 4 ∗/
(13) goto label;
(14) end if;
(15) end while;
(16) end for;
(17) (x′,AN′)⟵ (x,AN) ;//backup x, AN

(18) while AN≠∅ do
(19) CL⟵ ConstructCL (AN);
(20) if CL is not empty then
(21) RCL⟵ ConstructRCL (CL);
(22) (v, k) ⟵ RandomSelect (RCL);
(23) x⟵ AddvIntoVk(x, v);
(24) else
(25) (x,AN)⟵ (x′, AN′); //restore x, AN

(26) x⟵ LWA (x,AN); /∗ Algorithm 5 ∗/
(27) break;
(28) end if;
(29) end while;
(30) label:
(31) if x is a feasible solution then
(32) break;
(33) end if;
(34) end while;
(35) return x;

ALGORITHM 3: CM2 /∗Construction method∗/.

6 Computational Intelligence and Neuroscience

LWA is shown in Algorithm 5. It first selects a node v

with the largest weight among the unallocated nodes (Al-
gorithm 5, line 2). .en, as in equation (6), a feasible al-
location candidate list CCL is formed just for node v

(Algorithm 5, line 3). Second, if CCL is empty (Algorithm 5,
line 4), the infeasible solution x (Algorithm 5, line 5) is
returned. Otherwise, the restricted candidate list RCCL is
constructed by equation (7) (Algorithm 5, line 6). Finally, a
pair (v, g) is selected randomly from RCCL, and the node v is
assigned to cluster g (Algorithm 5, lines 7–9)..e remaining
unallocated nodes are allocated according to the above way.

3.3. Destruction Method: DM3. To destruct partial solution,
[26] proposed DM2. MD2 deletes at least one node for each
cluster. For large instances, as the number of nodes and
clusters increases, the number of deleted nodes increases for
each cluster. On the one hand, it increases the time cost, and
on the other hand, it is difficult to converge to a high-quality
solution due to too many deleted nodes. To limit the number
of deleted nodes, we propose a new destruction method
DM3, in Algorithm 6.

Algorithm 6 sets the upper limit of the number of deleted
nodes to dmax (Algorithm 6, lines 8–9). DM3 first selects
nodes to be deleted from each cluster to construct the

deletion candidate list by equation (8) (Algorithm 6, lines
3–6) and then puts all these nodes in the list GDCL (Al-
gorithm 6, line 7). If the number of nodes in GDCL exceeds
dmax, dmax nodes are randomly selected for deletion from the
solution (Algorithm 6, line 11).

4. Computational Experiments

.is section describes the computational experiments
that we conducted to evaluate the effectiveness and ef-
ficiency of the HA-CCP. We first conducted some pre-
liminary experiments to find suitable parameters for HA-
CCP. .en, we compare the result of HA-CCP with the
state-of-the-art CCP algorithms: IVNS [29], GVNS [30],
SGVNS [30], FITS [32], and DNVNS [31]. Section 4.1
introduces benchmark instances and experimental setup,
and Section 4.2 describes the comparative experiments on
benchmark instances. Section 4.3 illustrates a compara-
tive experiment based on time-to-target (TTT) analysis
method.

4.1. Benchmark Instances and Experimental Setup. We
conducted experiments to evaluate HA-CCP on 90
benchmark instances (available at http://www.optsi-
com.es/ccp and [30]), which is commonly used to

Input: solution x;/∗ A infeasible solution ∗/
Output: x;/∗ A solution ∗/
(1) for g⟵ 1 to p do
(2) while Wg <Lg do
(3) MCLg⟵ConstructMCL();
(4) if MCLg is empty then
(5) return x;
(6) RMCLg⟵ConstructRMCL (MCLg);
(7) v⟵RandomSelect (RMCLg);
(8) x⟵MovevIntog (x, v);
(9) end while;
(10) end for;
(11) return x;

ALGORITHM 4: Repair.

Input: solution x, AN;/∗Partial solution, unallocated node set ∗/
Output: x;/∗ A solution ∗/

(1) while AN≠∅ do
(2) v⟵GetLargestNode (AN);/∗ v is a unallocated node with the largest weight∗/
(3) CCL⟵ConstructCCL();
(4) if CCL is empty then
(5) return x;
(6) RCCL⟵ConstructRCCL (CCL);
(7) g⟵RandomSelect (RCCL);
(8) x⟵AddvIntog (x, v, g);
(9) AN⟵AN/ v{ };
(10) end while;
(11) return x;

ALGORITHM 5: LWA.

Computational Intelligence and Neuroscience 7

evaluate algorithms for CCP (see, for instance, [29–32]).
It contains four sets: RanReal240, RanReal480, Ran-
Real960, and MDG-a instances. Table 1 lists the exper-
imental datasets. In the second column, n represents the
number of nodes of the instance and p represents the
number of clusters.

We use the following indicators to measure the ad-
vantages of each algorithm:

#Best/Avg counted the number of instances where a
specific algorithm outperforms the other algorithms in terms
of the best and the average objective value.

AverageDevbest/Devavg indicates the average percent
deviation of a specific algorithm’s best/average result from
the best solution obtained in all algorithms participating in
the comparison, where Devbest � ((f∗ − fbest)/f∗) × 100
and Devavg � ((f∗ − favg)/f∗) × 100, and fbest is the best
result of each algorithm, favg is the average result of each
algorithm, and f∗ is the best solution obtained by partici-
pating in the comparison of all algorithms.

Avg Time recorded the average calculation time (in
seconds) required for a particular algorithm to reach its final
objective function value.

p valuebest/p valueavg represents the p value of the best/
average result obtained through the pairwise Wilcoxon
statistical test.

Note that, in Section 4.2, we use the result of IVNS,
GVNS, SGVNS, FITS, and NDVNS present in [31]. .e
experiments of IVNS, GVNS, SGVNS, and FITS were ex-
ecuted on an Intel E5-2670 Processor (2.8GHz) with 2G
Byte RAM running under Linux. HA-CCP is implemented
in C++, compiled with the g++ compiler using the option
“-O3,” and carried out on a server under Ubuntu Linux
(version 16.04) with 1 Core of an Intel Xeon (Cascade Lake)
Platinum 8269CY 2.5GHz CPU and 2G Byte RAM. .ese
results are obtained by running each instance independently
20 times with the running time set to n seconds, where n is
the number of nodes in a given instance.

.e HA-CCP has five parameters: the parameter α used to
balance randomness and greed in CM2, the parameter δ that
controls the size of the deleted candidate list in DM3, the
percentage β of deleted nodes in the candidate list of each

cluster, and the upper limit of the number of deleted nodes dmax
in DM3 and parameter ε (for skewed moves) in HA-CCP. For
α, δ, and β, we conducted the test experiment on 13 instances
with different characteristics in RanReal240, RanReal480,
RanReal960, and MDG-a. For α, we keep the other parameters
unchanged and change the value of α from 0.2 to 0.8 in steps of
0.2..e best value is obtained when α� 0.6. For δ and β, we use
a similar method to obtain δ � 0.7 and β � 0.1. .e value
settings of parameters (α, δ, β) are consistent with the literature
[26], so we did not report the results of this experiment.

For dmax, we test it in the range of {20, 24, 30, 40, 60}. We
conducted this experiment on 9 instances with different
characteristics in RanReal960 and MDG-a. .e statistical
results of the experiment are shown in Table 2. In terms of
the best objective function value and average objective
function value (#Best/Avg), HA-CCP obtains the best value
at dmax � 24, including obtaining 4 best objective function
values and 6 best average values. According to the average
percentage deviation (AvgDevbest/Devavg), HA-CCP has the
smallest deviation of the best solution obtained when
dmax � 24 (0.02%/0.15%), and there is not much difference
between the parameter values in terms of average time.
.erefore, we set dmax � 24.

For parameter ε, according to [30], ε � 0.01. On this
basis, we test ε � 0.01 and ε � 0.005 on 4 instances from
RanReal with p≤ 12 and 13 instances from RanReal240,
RanReal480, RanReal960, and MDG-a with p> 12. .e test
results are shown in Tables 3 and 4. On the instances with
p≤ 2, the effect of ε � 0.01 is better than ε � 0.005. In the
other instance, ε � 0.005 presents a better effect. .erefore,
in instances where the number of clusters is greater than 12,
we set ε � 0.005, and in other instances, we set ε � 0.01.

4.2. Algorithm Comparison Experiment. To evaluate the
performance of HA-CCP, we compared the solution of HA-
CCP, IVNS [29], GVNS [30], SGVNS [30], FITS [32], and
NDVNS [31]. .e instances in the experiment are divided
into small and medium instances and large-scale instances.

.e experimental statistical results on the datasets of
small and medium instances (RanReal240 and

Input: solution x;/∗current solution ∗/
Output: x′;/

∗ .e destructed solution∗/
(1) G DC L⟵∅;/∗ Global delete candidate list ∗/
(2) total_del_count⟵ 0;/∗Total number of deleted nodes∗/
(3) for k⟵ 1 to p do
(4) DCLk⟵ConstructDCL (x, k);/∗Construct by equation (8)∗/
(5) total_del_count⟶ total_del_count + max(1, nβ∗ |DCLk|n) ;
(6) end for;
(7) GDCL⟵DCL1⋃DCL2⋃ . . .⋃DCLp;
(8) if total_del_count>dmax then
(9) total_del_count⟵ dmax;
(10) end if;
(11) x′⟵RandomDelect(GDCL, total_del_count, x);
(12) return x′;

ALGORITHM 6: DM3 /∗Destruction method∗/.

8 Computational Intelligence and Neuroscience

RanReal480) are shown in Table 5. Tables 6 and 7 give
detailed results. In Table 5, HA-CCP is better than other
algorithms on 19 instances in terms of the best objective
function value and has better performance on 36 instances
from the average result. According to the average per-
centage deviation, HA-CCP has the smallest deviation
from the best solution obtained in the experiment
(0.02%/0.13%). .e statistical test shows a significant
performance difference between HA-CCP and other
comparison algorithms (p − value ≤ 0.05), except for the
best results of NDVNS.

.e experimental statistical results on the dataset of
large-scale instances (RanReal960) are shown in Table 8.
.e detailed results are given in Tables 9 and 10.
According to Table 8, HA-CCP has obvious advantages in
average results. It obtained 20 best average results out of
30 instances and 11 best results. HA-CCP surpasses other
comparison algorithms in terms of the average percent
deviation of average result from best-found solutions
(AvgeDevavg � 0.19). .e p valuebest/p valueavg row shows
a statistically significant difference in performance be-
tween HA-CCP and all the reference algorithms except
NDVNS.

.e experimental statistical results on the dataset of
large-scale instances (MDG-a) are presented in Table 11.
Tables 12 and 13 give detailed results. It can be seen from

Table 7 that NDVNS has obvious advantages in solution
quality, but HA-CCP is better than other algorithms
(such as IVNS, GVNS, SGVNS, and FITS), which is also
proved by the results of statistical testing.

From the above experimental results, it can be seen
that (1) the average solving efficiency of HA-CCP on all
instances is better than all comparison algorithms except
NDVNS (because NDVNS does not give the solution
time). (2) In terms of solution quality, HA-CCP obtained
58 best average solutions and 30 best solutions on 90
instances, which is better than all comparison algorithms
in average results. .is shows that HA-CCP has better
solution stability. (3) .e solution quality of HA-CCP on
MDG-a instances is inferior to NDVNS. .erefore, the
improvement of HA-CCP combined with NDVNS de-
serves further study.

4.3. Time-to-Target Analysis. To further evaluate the effi-
ciency of the HA-CCP algorithm, we apply the time-to-
target (TTT) analysis [37], which identifies the empirical
probability distribution of the time required to reach a
given objective function value. In this experiment, we
choose algorithms with known good performance to
compare with HA-CCP: VNS, GVNS, and SGVNS. We
used the source code of IVNS (http://www.info.univ-
angers.fr/pub/hao/ccp.html), GVNS, and SGVNS (http://
www.mi.sanu.ac.rs/∼nenad/ccp/), which can be found
online. .e instance we chose in the experiment is the same
as the test instance in [32], and the objective function value
recommended in [32] is used. We carried out TTT ex-
periments under the calculation conditions described in
Section 4.2 by executing 100 times on each instance for
each algorithm. For each instance/target pair, the running
time is sorted in ascending order, and the probability associated
with the ith sorted running time ti is pi � (i − 0.5)/100, and
the points (ti, pi) are drawn. Figure 1 shows the experimental
results. .e abscissa of the figure represents the time-to-target
value in seconds (s). .e maximum coordinate value of the
abscissa is set to a different value to make the comparisons
clearer. It can be seen from Figure 1 that in Figures 1(a)–1(f),
HA-CCP and SGVNS have similar performance. HA-CCP has
the shortest calculation time in the remaining instances.

Table 1: Experimental dataset.

Dataset name Feature Number of instances
RanReal240 n � 240 andp � 12 20
RanReal480 n � 480 andp � 20 20
RanReal960 n � 960 and 30≤p≤ 60 30
MDG-a n � 2000 andp � 50 20

Table 2: Best dmax parameter values identified for HA-CCP.

dmax 20 24 30 40 60
#Best/Avg 3/3 4/6 0/0 0/0 0/0
p valuebest/p valueavg 1.00/0.004 0.18/0.004 0.004/0.004 0.004/0.004
Avg Devbest/Devavg (%) 0.04/0.18 0.02/0.15 0.04/0.19 0.11/0.24 0.17/0.29
AvgTime (s) 1074.01 1062.57 1051.71 1037.85 1012.09

Table 3: Best ε parameter values identified for HA-CCP on the
instances with p≤ 12.

ε 0.01 0.005
#Best/Avg 4/4 1/0
p valuebest/p valueavg 0.25/0.125
Avg Devbest/Devavg (%) 0.00/0.05 0.03/0.18
AvgTime (s) 118.23 108.86

Table 4: Best ε parameter values identified for HA-CCP on the
instances with p> 12.

ε 0.01 0.005
#Best/Avg 2/0 11/13
p valuebest/p valueavg 0.022/2.4E− -4
Avg Devbest/Devavg (%) 0.10/0.24 0.007/0.16
AvgTime (s) 807.47 837.90

Computational Intelligence and Neuroscience 9

http://www.info.univ-angers.fr/pub/hao/ccp.html
http://www.info.univ-angers.fr/pub/hao/ccp.html
http://www.mi.sanu.ac.rs/~nenad/ccp/
http://www.mi.sanu.ac.rs/~nenad/ccp/

Table 5: Experimental statistical results on RanReal240 and RanReal480.

IVNS GVNS SGVNS FITS NDVNS HA-CPP
#Best/Avg 3/0 0/0 2/1 8/0 19/3 19/36

p valuebest/p valueavg
3.46E− 07/
2.54E− 10

2.54E− 10/
2.54E− 10

2.47E− 05/
1.25E− 8

2.46E− 04/
1.25E− 08

0.87/
7.62E− 08

Avg Devbest/Devavg
(%) 0.17/0.35 0.35/0.63 0.08/0.19 0.09/0.27 0.03/0.25 0.02/

0.13
AvgTime (s) 280.01 296.66 226.89 249.39 — 217.25
Note. In Table 5, the symbol “—” denotes the cases when the result is not reported in the literature.

Table 6: Comparative results of different algorithms on RanReal240 and RanReal480.

Instance name IVNS GVNS SGVNS FITS NDVNS HA-CCP

RanReal240_01 224831.56/
224571.29

224580.56/
224207.09 224968.01/224769.72 224941.48/224802.06 224949.51/224689.70 225003.70/224897.01

RanReal240_02 204624.36/
204275.49

204205.41/
203682.12 204624.36/204444.31 204624.36/204359.38 204563.81/204214.81 204624.36/204515.06

RanReal240_03 198861.68/
198606.95

198472.78/
197806.87 199059.56/198849.22 198954.91/198799.84 198976.88/198681.37 199079.37/198915.84

RanReal240_04 225390.88/
225069.14

225144.59/
224463.81 225627.16/225389.88 225627.16/225364.97 225618.17/225185.91 225683.17/225346.54

RanReal240_05 195540.41/
195184.84

194911.72/
194361.91 195516.57/195306.51 195564.48/195320.28 195539.89/195401.63 195540.41/195469.00

RanReal240_06 216713.91/
216355.53

216383.13/
215849.06 216733.31/216584.23 216747.32/216487.02 216747.32/216173.65 216730.26/216613.93

RanReal240_07 209216.90/
208992.44

209118.64/
208329.21 209223.34/209080.57 209305.70/209029.23 209273.70/209063.40 209282.88/209150.41

RanReal240_08 205246.82/
204842.79

204754.36/
204137.78 205154.20/204951.2 205246.82/204961.05 205246.82/205099.31 205246.82/205110.51

RanReal240_09 209142.07/
208720.16

208702.16/
208276.52 209007.44/208904.78 209159.16/208952.48 209186.90/208987.58 209057.64/208897.23

RanReal240_10 192885.48/
192598.79

192343.75/
191874.34 193062.60/192842.05 192986.21/192811.13 192948.92/192523.02 193044.16/192954.72

RanReal240_11 204647.20/
204377.08

204399.04/
203900.12 204615.71/204480.92 204722.75/204559.39 204722.75/204398.23 204722.75/204638.07

RanReal240_12 201028.32/
200763.75

200822.69/
200150.52 201076.30/200938.30 201117.11/200797.67 200978.99/200737.16 201117.11/201006.45

RanReal240_13 202331.20/
202027.28

201977.87/
201356.20 202321.58/202198.63 202335.99/202139.57 202345.12/202276.80 202345.48/202285.83

RanReal240_14 228870.89/
228520.04

228661.60/
228054.32 228775.14/228569.78 228870.89/228554.78 228870.89/228396.82 228971.03/228740.72

RanReal240_15 191152.17/
190827.68

190575.48/
189965.59 191238.53/191058.62 191255.87/190923.28 191263.28/190945.28 191243.76/191117.60

RanReal240_16 204074.95/
203668.49

203816.48/
203270.11 203991.53/203649.04 204054.99/203710.39 204074.95/203918.76 204072.57/203961.38

RanReal240_17 195206.73/
194950.57

194840.79/
194404.70 195423.83/195241.19 195561.36/195243.32 195509.13/195236.75 195393.97/195278.93

RanReal240_18 194916.37/
194704.23

194915.62/
194114.09 195120.98/194967.73 195100.39/194872.13 195167.14/194886.16 195167.14/195069.80

RanReal240_19 199200.03/
198905.05

198828.82/
198119.14 199307.33/199093.86 199225.98/199040.43 199216.46/198895.83 199307.33/199204.90

RanReal240_20 212264.10/
211871.74

211984.80/
211458.51 212268.46/212037.43 212268.52/212049.85 212323.22/212130.13 212229.46/212111.19

RanReal480_01 554337.23/
553795.85

553224.53/
552326.59 555430.60/554994.68 555489.92/554376.54 556639.68/555566.55 556126.86/555338.06

RanReal480_02 510066.41/
509058.46

508711.62/
507540.62 510718.79/510304.78 511280.50/509757.15 511666.95/510495.78 511566.55/510924.27

RanReal480_03 496334.51/
495409.98

495140.23/
493706.92 497725.86/496785.80 497295.19/496059.50 497846.57/495871.46 498028.54/497109.59

RanReal480_04 521669.00/
520051.55

520653.34/
519051.60 522572.81/521952.28 522305.16/521062.13 522748.49/520295.34 522790.22/521999.31

RanReal480_05 483670.19/
482390.51

481803.95/
480508.80 483819.77/482603.84 484084.66/482867.74 484742.51/482831.18 485138.44/484092.59

10 Computational Intelligence and Neuroscience

Table 6: Continued.

Instance name IVNS GVNS SGVNS FITS NDVNS HA-CCP

RanReal480_06 533589.61/
532462.25

532702.72/
531627.12 534515.67/533916.00 533991.27/533036.36 535503.61/533138.78 534961.79/534114.47

RanReal480_07 545343.81/
544060.83

544445.60/
542318.56 545812.49/545302.82 545470.73/544651.12 546951.97/545548.47 546503.90/545582.87

RanReal480_08 531974.48/
531023.25

531287.92/
529525.39 532736.12/532109.62 532417.42/531667.91 533098.56/531631.32 532891.23/532161.08

RanReal480_09 555604.38/
554820.43

555163.27/
553394.39 556865.18/556081.91 556868.85/555634.40 557283.90/555998.60 557120.25/556265.26

RanReal480_10 519066.57/
518412.32

517431.34/
516228.20 520014.70/518024.16 520257.54/518071.71 520481.15/518812.29 520492.06/519891.18

RanReal480_11 523463.33/
522201.99

522626.50/
521218.97 524124.60/523508.02 523991.29/522816.94 524059.91/522416.53 524669.99/523760.48

RanReal480_12 501462.57/
500055.30

499914.17/
498596.97 502570.10/501632.20 501915.56/500776.79 502656.68/501171.81 503359.96/502069.60

RanReal480_13 534294.24/
533478.80

533672.27/
532322.68 535411.94/534651.24 535025.51/533823.79 535633.80/533605.55 535251.73/534707.51

RanReal480_14 513186.65/
512501.71

512764.33/
511212.78 514537.52/513935.11 514107.62/513053.25 514696.90/512600.42 515476.42/514801.49

RanReal480_15 516657.20/
515416.17

515607.47/
514465.20 518029.18/517189.00 517205.02/516018.38 518605.32/516455.65 518370.90/517283.29

RanReal480_16 549230.25/
548274.66

549033.57/
547075.83 549840.64/549253.54 549552.63/548462.13 550482.48/549108.44 550317.71/549881.85

RanReal480_17 537223.44/
536149.06

536402.45/
534770.20 537993.79/537568.15 537924.55/536745.39 538331.26/536829.04 538745.70/537826.26

RanReal480_18 525490.09/
524515.11

524631.54/
522908.72 526349.49/525453.50 525822.76/524712.42 526466.23/523932.37 526314.82/525702.47

RanReal480_19 522280.40/
521442.89

521672.59/
519720.44 522757.15/522218.13 522316.22/521267.22 523219.84/522114.62 522958.23/522365.10

RanReal480_20 518436.63/
516935.15

516488.64/
515450.41 518847.01/518202.52 518349.10/517430.77 519492.21/518475.86 519277.92/518518.27

#Best 3/0 0/0 2/1 8/0 19/3 19/36

p Value 3.46E− 07/
2.54E – 10

2.54E− 10/
2.54E− 10 2.47E− 05/1.25E− 08 2.46E− 04/1.25E− 08 0.87/7.62E− 08

Note. In Table 6, data A/B denote the best objective value and the average objective value of the instance found by the algorithm.

Table 7: Devbest, Devavg, and average time of different algorithms on RanReal240 and RanReal480.

Instance name IVNS GVNS SGVNS FITS DNVNS HA-CCP
RanReal240_01 0.08/0.19/155.57 0.19/0.35/155.92 0.02/0.10/127.16 0.03/0.09/149.09 0.02/0.14/- 0.00/0.05/127.88
RanReal240_02 0.00/0.17/184.44 0.2/0.46/159.56 0.00/0.09/158.20 0.00/0.13/150.75 0.03/0.20/- 0.00/0.05/111.58
RanReal240_03 0.11/0.24/186.06 0.3/0.64/164.11 0.01/0.12/139.26 0.06/0.14/169.95 0.05/0.20/- 0.00/0.08/135.66
RanReal240_04 0.13/0.27/159.70 0.24/0.54/175.00 0.02/0.13/137.87 0.02/0.14/118.58 0.03/0.22/- 0.00/0.15/124.67
RanReal240_05 0.01/0.19/155.02 0.33/0.61/179.73 0.02/0.13/136.48 0.00/0.12/132.33 0.01/0.08/- 0.01/0.05/135.27
RanReal240_06 0.02/0.18/174.51 0.17/0.41/187.59 0.01/0.08/126.61 0.00/0.12/155.99 0.00/0.26/- 0.01/0.06/129.28
RanReal240_07 0.04/0.15/160.67 0.09/0.47/195.33 0.04/0.11/144.35 0.00/0.13/144.96 0.02/0.12/- 0.01/0.07/127.25
RanReal240_08 0.00/0.20/145.94 0.24/0.54/193.88 0.05/0.14/122.79 0.00/0.14/124.22 0.00/0.07/- 0.00/0.07/112.98
RanReal240_09 0.02/0.22/194.36 0.23/0.44/171.09 0.09/0.13/136.24 0.01/0.11/141.69 0.00/0.10/- 0.06/0.14/98.89
RanReal240_10 0.09/0.24/183.49 0.37/0.62/145.39 0.00/0.11/162.77 0.04/0.13/134.20 0.06/0.28/- 0.01/0.06/111.58
RanReal240_11 0.04/0.17/157.98 0.16/0.40/155.12 0.05/0.12/136.25 0.00/0.08/129.91 0.00/0.16/- 0.00/0.04/125.15
RanReal240_12 0.04/0.18/186.71 0.15/0.48/157.43 0.02/0.09/123.13 0.00/0.16/132.03 0.07/0.19/- 0.00/0.06/108.32
RanReal240_13 0.01/0.16/173.46 0.18/0.49/171.44 0.01/0.07/127.25 0.00/0.10/131.34 0.00/0.03/- 0.00/0.03/139.97
RanReal240_14 0.04/0.20/147.56 0.14/0.40/164.87 0.09/0.18/112.27 0.04/0.18/135.87 0.04/0.25/- 0.00/0.10/122.04
RanReal240_15 0.06/0.23/167.88 0.36/0.68/188.75 0.01/0.11/154.19 0.00/0.18/131.83 0.00/0.17/- 0.01/0.08/101.57
RanReal240_16 0.00/0.20/165.22 0.13/0.39/181.82 0.04/0.21/130.93 0.01/0.18/89.11 0.00/0.08/- 0.00/0.06/102.24
RanReal240_17 0.18/0.31/171.75 0.37/0.59/179.25 0.07/0.16/149.06 0.00/0.16/171.03 0.03/0.17/- 0.09/0.14/132.10
RanReal240_18 0.13/0.24/154.60 0.13/0.54/169.52 0.02/0.10/167.15 0.03/0.15/152.83 0.00/0.14/- 0.00/0.05/110.87
RanReal240_19 0.05/0.20/173.65 0.24/0.60/179.99 0.00/0.11/140.21 0.04/0.13/98.09 0.05/0.21/- 0.00/0.05/121.71
RanReal240_20 0.03/0.21/188.64 0.16/0.41/175.52 0.03/0.13/112.33 0.03/0.13/115.38 0.00/0.09/- 0.04/0.10/99.55
RanReal480_01 0.41/0.51/391.12 0.61/0.77/419.98 0.22/0.30/301.25 0.21/0.41/340.60 0.00/0.19/- 0.09/0.23/349.71

Computational Intelligence and Neuroscience 11

Table 7: Continued.

Instance name IVNS GVNS SGVNS FITS DNVNS HA-CCP
RanReal480_02 0.31/0.51/403.38 0.58/0.81/414.24 0.19/0.27/293.36 0.08/0.37/355.59 0.00/0.23/- 0.02/0.15/330.24
RanReal480_03 0.34/0.53/420.24 0.58/0.87/427.12 0.06/0.25/331.81 0.15/0.40/352.06 0.04/0.43/- 0.00/0.18/332.28
RanReal480_04 0.21/0.52/383.19 0.41/0.72/428.09 0.04/0.16/332.13 0.09/0.33/399.51 0.01/0.48/- 0.00/0.15/329.59
RanReal480_05 0.30/0.57/417.55 0.69/0.95/448.15 0.27/0.52/325.05 0.22/0.47/335.84 0.08/0.48/- 0.00/0.22/301.91
RanReal480_06 0.36/0.57/393.37 0.52/0.72/428.17 0.18/0.30/300.77 0.28/0.46/390.06 0.00/0.44/- 0.10/0.26/280.00
RanReal480_07 0.29/0.53/395.01 0.46/0.85/423.31 0.21/0.30/342.07 0.27/0.42/390.23 0.00/0.26/- 0.08/0.25/285.02
RanReal480_08 0.21/0.39/388.45 0.34/0.67/398.32 0.07/0.19/356.39 0.13/0.27/380.64 0.00/0.28/- 0.04/0.18/283.23
RanReal480_09 0.30/0.44/376.21 0.38/0.70/421.61 0.08/0.22/350.35 0.07/0.30/383.67 0.00/0.23/- 0.03/0.18/255.35
RanReal480_10 0.27/0.40/383.71 0.59/0.82/428.06 0.09/0.47/300.43 0.05/0.47/328.85 0.00/0.32/- 0.00/0.12/307.38
RanReal480_11 0.23/0.47/383.91 0.39/0.66/421.15 0.10/0.22/320.08 0.13/0.35/383.65 0.12/0.43/- 0.00/0.17/299.74
RanReal480_12 0.38/0.66/397.43 0.68/0.95/409.11 0.16/0.34/270.86 0.29/0.51/347.32 0.14/0.43/- 0.00/0.26/349.86
RanReal480_13 0.25/0.40/404.23 0.37/0.62/390.76 0.04/0.18/327.70 0.11/0.34/330.84 0.00/0.38/- 0.07/0.17/333.59
RanReal480_14 0.44/0.58/405.04 0.53/0.83/419.87 0.18/0.30/319.14 0.27/0.47/352.07 0.15/0.56/- 0.00/0.13/340.90
RanReal480_15 0.38/0.61/384.96 0.58/0.80/418.77 0.11/0.27/313.91 0.27/0.50/387.02 0.00/0.41/- 0.05/0.25/282.23
RanReal480_16 0.23/0.40/345.11 0.26/0.62/419.82 0.12/0.22/301.16 0.17/0.37/392.78 0.00/0.25/- 0.03/0.11/294.16
RanReal480_17 0.28/0.48/386.16 0.43/0.74/411.52 0.14/0.22/320.59 0.15/0.37/360.93 0.08/0.36/- 0.00/0.17/336.43
RanReal480_18 0.19/0.37/368.20 0.35/0.68/431.30 0.02/0.19/278.26 0.12/0.33/320.60 0.00/0.48/- 0.03/0.15/330.79
RanReal480_19 0.18/0.34/400.78 0.30/0.67/435.58 0.09/0.19/306.80 0.17/0.37/380.69 0.00/0.21/- 0.05/0.16/343.32
RanReal480_20 0.20/0.49/385.30 0.58/0.78/420.08 0.12/0.25/339.09 0.22/0.40/353.52 0.00/0.20/- 0.04/0.19/345.87
Average 0.17/0.35/280.01 0.35/0.63/296.66 0.08/0.19/226.89 0.09/0.27/249.39 0.03/0.25/- 0.02/0.13/217.25
Note. In Table 7, data A/B/C denote the value of Devbest, the value of Devavg, and the algorithm’s average time to find a final solution. .e symbol “-” denotes
the cases when the result is not reported in the literature.

Table 8: Experimental statistical results on RanReal960.

IVNS GVNS SGVNS FITS NDVNS HA-CPP
#Best/Avg 0/0 0/0 0/0 1/2 18/10 11/18

p valuebest/p valueavg
4.32E− 08/
4.32E− 08

4.32E− 08/
4.32E− 08

4.32E− 08/
4.32E− 08

1.18E− 05/
1.18E− 05 0.14/0.07

Avg Devbest/Devavg (%) 0.81/1.02 0.81/1.12 0.19/0.39 0.52/0.62 0.04/0.24 0.04/0.19
AvgTime (s) 843.9 862.2 840.91 893.11 — 723.82
Note. In Table 8, the symbol “—” denotes the cases when the result is not reported in the literature.

Table 9: Comparative results of different algorithms on RanReal960.

Instance name IVNS GVNS SGVNS FITS NDVNS HA-CCP

RanReal960_01.30 1331323.28/
1329095.10

1331996.73/
1328415.40

1337853.23/
1335679.54

1333878.00/
1332712.78

1340369.47/
1338452.93 1339904.73/1337999.56

RanReal960_02.30 1426870.24/
1423903.72

1427037.60/
1422960.00

1433071.63/
1430808.90

1434529.49/
1433886.30

1435819.84/
1433258.34 1435087.46/1433503.63

RanReal960_03.30 1390084.19/
1387508.88

1390367.98/
1386753.98

1395846.80/
1394012.26

1392101.18/
1390924.21

1398554.78/
1397154.11 1397520.91/1396135.59

RanReal960_04.30 1407607.65/
1405972.04

1406916.02/
1403198.73

1413478.82/
1410438.07

1414344.67/
1412460.01

1414919.86/
1412464.18 1413878.60/1411928.57

RanReal960_05.30 1363405.33/
1360883.59

1362240.30/
1359314.24

1370560.76/
1367959.84

1365975.96/
1365612.74

1372686.88/
1370958.72 1371391.13/1369452.03

RanReal960_06.30 1413074.62/
1409803.6

1410969.99/
1408670.37

1417338.38/
1415708.82

1413476.58/
1412750.08

1420632.38/
1419467.40 1420942.81/1418222.26

RanReal960_07.30 1332205.25/
1329503.04

1332748.04/
1329170.21

1339735.87/
1337029.01

1334504.35/
1334263.93

1341829.68/
1340275.06 1341640.99/1340054.65

RanReal960_08.30 1462280.35/
1458524.76

1460407.11/
1457531.52

1466738.95/
1464441.53

1463737.39/
1462602.72

1469545.99/
1466830.82 1467330.75/1465505.59

RanReal960_09.30 1378445.37/
1376305.91

1380206.02/
1374713.94

1385287.77/
1382960.30

1381577.32/
1379280.98

1387514.11/
1385397.31 1385795.46/1384258.20

RanReal960_10.30 1377646.33/
1374311.23

1377009.66/
1373790.24

1384154.95/
1381870.76

1379905.83/
1378772.67

1386801.94/
1384724.79 1384935.52/1383811.91

RanReal960_01.40 1034548.05/
1031462.28

1032872.42/
1030512.99

1041148.42/
1038487.54

1035642.67/
1034626.82

1042735.72/
1040717.99 1042362.60/1041082.27

12 Computational Intelligence and Neuroscience

Table 9: Continued.

Instance name IVNS GVNS SGVNS FITS NDVNS HA-CCP

RanReal960_02.40 1108588.66/
1106671.47

1109086.02/
1106469.64

1115789.54/
1113937.77

1110547.59/
1110074.36

1117471.02/
1115602.03 1117552.44/1115723.68

RanReal960_03.40 1081509.08/
1079553.82

1080281.13/
1077244.61

1086488.77/
1085060.19

1083240.15/
1082948.77

1089012.05/
1087325.53 1088964.98/1087568.20

RanReal960_04.40 1096347.39/
1092785.74

1096438.26/
1091633.05

1100866.71/
1098759.10

1103897.12/
1101073.37

1102222.98/
1100256.11 1101734.58/1100608.60

RanReal960_05.40 1056103.80/
1054445.69

1057478.73/
1054478.20

1063682.56/
1062213.71

1059158.09/
1058478.46

1066415.88/
1064390.34 1066157.77/1065037.50

RanReal960_06.40 1096895.36/
1095721.54

1099861.44/
1093932.85

1104590.22/
1102651.28

1100368.74/
1100064.66

1107955.38/
1105069.06 1107485.89/1105353.87

RanReal960_07.40 1034299.55/
1032667.93

1035241.97/
1031362.33

1041064.58/
1038879.34

1043376.95/
1039933.23

1043921.14/
1041464.08 1043176.75/1042209.24

RanReal960_08.40 1137464.75/
1136002.24

1136567.63/
1133556.70

1142282.86/
1141171.70

1139865.05/
1138054.46

1144615.34/
1141877.82 1143818.84/1142790.55

RanReal960_09.40 1068288.24/
1066496.30

1068892.92/
1066427.06

1076229.18/
1073798.91

1072116.14/
1071426.07

1076786.59/
1075606.23 1076536.88/1074554.12

RanReal960_10.40 1069556.59/
1067889.46

1069985.94/
1067548.97

1077400.98/
1074400.36

1072919.65/
1071480.21

1079212.31/
1077123.00 1078818.14/1077728.42

RanReal960_01.60 726465.37/
724244.42

725912.84/
723156.84

732096.63/
730601.10

727690.58/
727222.73

733900.43/
731787.78 733960.17/732785.75

RanReal960_02.60 770060.9/
768413.74

770477.46/
768062.71

776289.95/
775060.74

773921.97/
772572.49

776085.50/
774619.17 777733.23/776084.26

RanReal960_03.60 753090.65/
751419.9

753094.36/
750898.37

760248.25/
758432.10

756677.95/
755442.64

760728.09/
758924.49 761312.30/760046.12

RanReal960_04.60 762952.42/
761387.83

763837.98/
760835.94

769112.25/
767780.08

765253.27/
764696.30

770170.61/
768057.59 769559.96/768476.28

RanReal960_05.60 741248.79/
739443.77

741932.85/
738830.28

748581.43/
746014.20

743715.56/
743165.17

748244.40/
747006.91 749316.68/747647.96

RanReal960_06.60 761947.94/
760369.56

762260.95/
759048.94

767679.61/
765628.88

763029.06/
761957.51

768180.66/
765223.34 769233.87/767971.96

RanReal960_07.60 723439.86/
721167.69

723786.02/
720360.15

728827.33/
727427.19

725993.23/
725733.17

731064.84/
728984.94 732249.82/730484.07

RanReal960_08.60 789552.19/
786344.58

787775.07/
785553.15

794363.93/
792538.90

791334.42/
790285.98

794354.56/
791262.07 795313.86/793390.82

RanReal960_09.60 747509.96/
745313.38

746710.78/
744341.99

753943.93/
751871.94

750858.18/
749209.83

754578.20/
753033.20 754811.24/753473.44

RanReal960_10.60 748812.21/
746701.78

747565.74/
745004.51

754666.01/
752583.88

749883.45/
748985.05

755076.90/
753154.35 756020.38/754733.58

#Best 0/0 0/0 0/0 1/2 18/10 11/18

p value 4.32E− 08/
4.32E− 08

4.32E− 08/
4.32E− 08

4.32E− 08/
4.32E− 08

1.18E− 05/
1.18E− 05 0.14/0.07

Note. In Table 9, data A/B denote the best objective value and the average objective value of the instance found by the algorithm.

Table 10: Devbest, Devavg, and average time of different algorithms on RanReal960.

Instance name IVNS GVNS SGVNS FITS NDVNS HA-CCP
RanReal960_01.30 0.67/0.84/918.26 0.62/0.89/811.54 0.19/0.35/856.21 0.48/0.57/915.53 0/0.14/- 0.03/0.18/720.64
RanReal960_02.30 0.62/0.83/797.61 0.61/0.90/842.95 0.19/0.35/835.98 0.09/0.13/904.23 0/0.18/- 0.05/0.16/731.68
RanReal960_03.30 0.61/0.79/883.41 0.59/0.84/860.63 0.19/0.32/829.85 0.46/0.55/836.81 0/0.1/- 0.07/0.17/673.02
RanReal960_04.30 0.52/0.63/919.96 0.57/0.83/832.99 0.10/0.32/822.40 0.04/0.17/929.49 0/0.17/- 0.07/0.21/780.14
RanReal960_05.30 0.68/0.86/804.13 0.76/0.97/883.85 0.15/0.34/840.42 0.49/0.52/957.25 0/0.13/- 0.09/0.24/686.23
RanReal960_06.30 0.55/0.78/857.85 0.70/0.86/801.30 0.25/0.37/834.76 0.53/0.58/935.81 0.02/0.1/- 0.00/0.19/777.19
RanReal960_07.30 0.72/0.92/875.58 0.68/0.94/850.22 0.16/0.36/816.60 0.55/0.56/894.98 0/0.12/- 0.01/0.13/769.18
RanReal960_08.30 0.49/0.75/804.15 0.62/0.82/822.22 0.19/0.35/831.19 0.40/0.47/948.47 0/0.18/- 0.15/0.27/686.39
RanReal960_09.30 0.65/0.81/815.06 0.53/0.92/863.40 0.16/0.33/812.81 0.43/0.59/884.89 0/0.15/- 0.12/0.23/641.61
RanReal960_10.30 0.66/0.9/878.66 0.71/0.94/850.02 0.19/0.36/792.14 0.50/0.58/897.68 0/0.15/- 0.13/0.22/775.20
RanReal960_01.40 0.79/1.08/877.73 0.95/1.17/847.87 0.15/0.41/832.62 0.68/0.78/913.51 0/0.19/- 0.04/0.16/724.70
RanReal960_02.40 0.8/0.97/824.06 0.76/0.99/876.23 0.16/0.32/830.26 0.63/0.67/938.57 0.01/0.17/- 0.00/0.16/689.19
RanReal960_03.40 0.69/0.87/905.64 0.80/1.08/850.33 0.23/0.36/816.43 0.53/0.56/829.18 0/0.15/- 0.00/0.13/726.02
RanReal960_04.40 0.68/1.01/800.47 0.68/1.11/904.06 0.27/0.47/761.94 0.00/0.26/931.93 0.15/0.33/- 0.20/0.30/737.53
RanReal960_05.40 0.97/1.12/826.35 0.84/1.12/857.74 0.26/0.39/803.47 0.68/0.74/882.95 0/0.19/- 0.02/0.13/737.69
RanReal960_06.40 1.00/1.10/876.40 0.73/1.27/835.26 0.30/0.48/840.43 0.68/0.71/795.61 0/0.26/- 0.04/0.23/764.48

Computational Intelligence and Neuroscience 13

Table 10: Continued.

Instance name IVNS GVNS SGVNS FITS NDVNS HA-CCP
RanReal960_07.40 0.92/1.08/882.22 0.83/1.20/884.53 0.27/0.48/871.15 0.05/0.38/891.65 0/0.24/- 0.07/0.16/796.50
RanReal960_08.40 0.62/0.75/807.24 0.70/0.97/851.96 0.20/0.30/827.89 0.42/0.57/884.17 0/0.24/- 0.07/0.16/711.17
RanReal960_09.40 0.79/0.96/818.16 0.73/0.96/878.54 0.05/0.28/847.56 0.43/0.50/873.44 0/0.11/- 0.02/0.21/716.20
RanReal960_10.40 0.89/1.05/872.90 0.85/1.08/863.94 0.17/0.45/860.78 0.58/0.72/943.53 0/0.19/- 0.04/0.14/689.14
RanReal960_01.60 1.02/1.32/789.02 1.10/1.47/901.12 0.25/0.46/907.89 0.85/0.92/901.04 0.01/0.3/- 0.00/0.16/751.24
RanReal960_02.60 0.99/1.20/826.25 0.93/1.24/874.07 0.19/0.34/873.06 0.49/0.66/887.61 0.21/0.4/- 0.00/0.21/687.37
RanReal960_03.60 1.08/1.30/808.81 1.08/1.37/852.82 0.14/0.38/873.26 0.61/0.77/923.81 0.08/0.31/- 0.00/0.17/658.15
RanReal960_04.60 0.94/1.14/853.85 0.82/1.21/830.99 0.14/0.31/839.14 0.64/0.71/819.9 0/0.27/- 0.08/0.22/723.40
RanReal960_05.60 1.08/1.32/831.31 0.99/1.40/895.34 0.10/0.44/868.22 0.75/0.82/889.58 0.14/0.31/- 0.00/0.22/691.55
RanReal960_06.60 0.95/1.15/766.03 0.91/1.32/872.94 0.20/0.47/836.76 0.81/0.95/864.12 0.14/0.52/- 0.00/0.16/727.95
RanReal960_07.60 1.20/1.51/918.06 1.16/1.62/909.03 0.47/0.66/878.59 0.85/0.89/875.95 0.16/0.45/- 0.00/0.24/680.08
RanReal960_08.60 0.72/1.13/851.60 0.95/1.23/911.42 0.12/0.35/859.76 0.50/0.63/870.01 0.12/0.51/- 0.00/0.24/761.94
RanReal960_09.60 0.97/1.26/770.73 1.07/1.39/849.73 0.11/0.39/868.30 0.52/0.74/900.64 0.03/0.24/- 0.00/0.18/740.51
RanReal960_10.60 0.95/1.23/855.35 1.12/1.46/898.95 0.18/0.45/857.38 0.81/0.93/870.89 0.12/0.38/- 0.00/0.17/758.65
Average 0.81/1.02/843.9 0.81/1.12/862.2 0.19/0.39/840.91 0.52/0.62/893.11 0.04/0.24/- 0.04/0.19/723.82
Note. In Table 10, data A/B/C denote the value of Devbest, the value of Devavg, and the algorithm’s average time to find a final solution..e symbol “-” denotes
the cases when the result is not reported in the literature.

Table 11: Experimental statistical results on the MDG-a.

IVNS GVNS SGVNS FITS NDVNS HA-CPP
#Best/Avg 0/0 0/0 0/0 0/0 20/16 0/4
p valuebest/p
valueavg

7.74E− 06/7.74E− 06 7.74E− 06/7.74E− 06 7.74E− 06/7.74E− 06 7.74E− 06/7.74E− 06 7.74E− 06/0.01

Avg Devbest/
Devavg (%) 2.63/3.4 0.99/1.01 0.43/0.57 2.12/2.43 0.00/0.16 0.1/0.21

AvgTime (s) 1862.55 1712.93 1839.95 1867.01 - 1757.32
Note. In Table 11, the symbol “-” denotes the cases when the result is not reported in the literature.

Table 12: Comparative results of different algorithms on the MDG-a.

Instance
name IVNS GVNS SGVNS FITS NDVNS HA-CCP

MDG-a_21 379241.00/
376249.80

388647.00/
387189.20

389269.00/
389208.15 383164.00/382387.05 391259.00/390647.15 390987.00/390660.00

MDG-a_22 380665.00/
377418.75

384487.00/
384018.35

386354.00/
386007.50 380817.00/380489.60 388476.00/387718.60 387838.00/387393.10

MDG-a_23 375697.00/
374941.20

386154.00/
385489.20

387267.00/
387019.40 380630.00/379334.85 389363.00/388908.60 389071.00/388611.10

MDG-a_24 378258.00/
376540.75

387095.00/
386473.15

388423.00/
388008.45 381783.00/380560.55 390269.00/389655.40 390051.00/389525.40

MDG-a_25 389242.00/
384685.70

387121.00/
395749.55

398108.00/
397471.50 390623.00/386346.05 399478.00/399002.40 399215.00/398869.20

MDG-a_26 392407.00/
389113.50

396756.00/
400015.60

402135.00/
401471.95 393222.00/392916.10 403457.00/402740.95 403425.00/402759.75

MDG-a_27 375566.00/
373113.95

380243.00/
379248.65

381896.00/
381208.70 377617.00/376721.60 383780.00/382951.05 383246.00/382731.55

MDG-a_28 378486.00/
375546.50

386018.00/
385207.20

387594.00/
387004.55 380748.00/379732.95 389025.00/388516.50 388553.00/388208.60

MDG-a_29 377175.00/
372663.75

382108.00/
381301.50

383937.00/
383008.55 378239.00/377540.40 385316.00/384816.05 384933.00/384588.45

MDG-a_30 389615.00/
386318.15

394817.00/
394281.50

396678.00/
396041.70 389452.00/389254.10 398211.00/397776.80 398004.00/397503.15

MDG-a_31 376920.00/
374627.70

384718.00/
384018.25

386587.00/
385749.40 379407.00/378922.70 388375.00/387562.05 387609.00/387276.55

MDG-a_32 382405.00/
379790.40

391693.00/
391004.60

393098.00/
392578.60 383333.00/382737.35 394611.00/394031.35 394290.00/393941.40

MDG-a_33 377689.00/
373096.60

382576.00/
381876.80

384291.00/
383273.45 379047.00/376641.80 385806.00/385212.70 385583.00/385036.20

MDG-a_34 384412.00/
381472.65

393135.00/
392409.55

394676.00/
394176.80 386544.00/385459.25 396725.00/395823.10 396214.00/395706.85

14 Computational Intelligence and Neuroscience

5. Analysis of theMain Components of HA-CCP

In this section, we have studied the contribution of the main
components of HA-CCP to performance. We give experi-
mental results from four aspects: “construct solution,”
“destruct partial solution,” “destruct and reconstruct partial
solution,” and “acceptance criterion for skew” to show that
the method used in HA-CCP is better. All experiments in
this section were performed under the experimental con-
ditions described in Section 4.1.

5.1. Benefit of CM2. In HA-CCP, CM2 is first used to
construct the initial feasible solution (Algorithm 2, line 2)

and then reconstruct the solution in the iterative process
(Algorithm 2, line 9). Different from CM [26] and random
construction method (RCM, used in [29, 31, 32]), CM2 can
increase the probability of constructing a feasible solution
when the upper and lower bounds are tighter and improve
the performance of HA-CCP. .erefore, we conducted
comparative experiments in the following two aspects.

First, we compared the success rate of constructing the
initial feasible solution between RCM and CM2 under
different upper and lower bound constraints on 10 Ran-
Real960 instances with p � 60. In the experiment, the upper
and lower bounds Ug and Lg of the instance are adjusted to
Ug
′ � s2 × Ug and Lg

′ � s1 × Lg, respectively. Obviously,

Table 12: Continued.

Instance
name IVNS GVNS SGVNS FITS NDVNS HA-CCP

MDG-a_35 385251.00/
383302.15

393384.00/
392174.20

394687.00/
394059.40 386347.00/385302.60 396054.00/395455.20 395848.00/395472.25

MDG-a_36 394867.00/
389332.30

400271.00/
400019.40

402087.00/
401287.65 396368.00/394103.05 403604.00/403111.10 402998.00/402698.45

MDG-a_37 384811.00/
380906.40

387006.00/
386276.45

388411.00/
387875.60 386195.00/385797.30 390289.00/389612.25 389769.00/389349.00

MDG-a_38 387472.00/
384752.55

394264.00/
393879.15

395865.00/
395287.90 388712.00/387807.15 397407.00/396710.05 397249.00/396775.25

MDG-a_39 381738.00/
378840.90

390008.00/
389147.50

391415.00/
391074.95 385975.00/383036.10 393415.00/392799.15 392913.00/392506.70

MDG-a_40 392751.00/
391517.70

403662.00/
403108.90

405184.00/
405008.90 396321.00/395505.80 407084.00/406615.75 406672.00/406245.60

#Best 0/0 0/0 0/0 0/0 20/16 0/4

p Value 7.74E− 06/
7.74E− 06

7.74E− 06/
7.74E− 06

7.74E− 06/
7.74E− 06 7.74E− 06/7.74e-06 7.74E-06/0.01

Note. In Table 12, data A/B denote the best objective value and the average objective value of the instance found by the algorithm.

Table 13: Devbest, Devavg, and average time of different algorithms on the MDG-a.

Instance name IVNS GVNS SGVNS FITS NDVNS HA-CCP
MDG-a_21 3.07/3.84/1938.05 0.67/1.04/1518.3 0.51/0.52/1867.83 2.07/2.27/1872.28 0.00/0.16/- 0.07/0.15/1765.62
MDG-a_22 2.01/2.85/1840.87 1.03/1.15/1806.64 0.55/0.64/1801.35 1.97/2.06/1931.75 0.00/0.19/- 0.16/0.28/1719.05
MDG-a_23 3.51/3.7/1868.53 0.82/0.99/1741.74 0.54/0.60/1839.26 2.24/2.58/1937.18 0.00/0.12/- 0.07/0.19/1773.65
MDG-a_24 3.08/3.52/1892.93 0.81/0.97/1697.71 0.47/0.58/1830.54 2.17/2.49/1903.31 0.00/0.16/- 0.06/0.19/1807.82
MDG-a_25 2.56/3.7/1829.42 3.09/0.93/1663.95 0.34/0.50/1870.12 2.22/3.29/1824.79 0.00/0.12/- 0.07/0.15/1731.29
MDG-a_26 2.74/3.56/1923.60 1.66/0.85/1665.89 0.33/0.49/1790.9 2.54/2.61/1926.98 0.00/0.18/- 0.01/0.17/1701.12
MDG-a_27 2.14/2.78/1790.23 0.92/1.18/1635.81 0.49/0.67/1890.33 1.61/1.84/1837.59 0.00/0.22/- 0.14/0.27/1630.26
MDG-a_28 2.71/3.46/1920.76 0.77/0.98/1681.61 0.37/0.52/1879.05 2.13/2.39/1733.96 0.00/0.13/- 0.12/0.21/1849.73
MDG-a_29 2.11/3.28/1903.37 0.83/1.04/1835.42 0.36/0.60/1859.38 1.84/2.02/1913.92 0.00/0.13/- 0.10/0.19/1780.88
MDG-a_30 2.16/2.99/1820.66 0.85/0.99/1692.74 0.38/0.54/1793.7 2.20/2.25/1867.39 0.00/0.11/- 0.05/0.18/1801.66
MDG-a_31 2.95/3.54/1912.22 0.94/1.12/1691.17 0.46/0.68/1789.28 2.31/2.43/1703.24 0.00/0.21/- 0.20/0.28/1637.96
MDG-a_32 3.09/3.76/1888.87 0.74/0.91/1663.5 0.38/0.52/1853.43 2.86/3.01/1913.13 0.00/0.15/- 0.08/0.17/1739.88
MDG-a_33 2.10/3.29/1908.54 0.84/1.02/1816.25 0.39/0.66/1908.27 1.75/2.38/1960.62 0.00/0.15/- 0.06/0.2/1788.08
MDG-a_34 3.10/3.84/1812.31 0.90/1.09/1759.61 0.52/0.64/1840.43 2.57/2.84/1820.16 0.00/0.23/- 0.13/0.26/1721.00
MDG-a_35 2.73/3.22/1810.68 0.67/0.98/1661.62 0.35/0.50/1797.99 2.45/2.71/1895.51 0.00/0.15/- 0.05/0.15/1827.95
MDG-a_36 2.16/3.54/1838.15 0.83/0.89/1700.47 0.38/0.57/1842.45 1.79/2.35/1715.11 0.00/0.12/- 0.15/0.22/1731.4
MDG-a_37 1.40/2.40/1851.54 0.84/1.03/1752.65 0.48/0.62/1833.76 1.05/1.15/1935.18 0.00/0.17/- 0.13/0.24/1746.95
MDG-a_38 2.50/3.18/1863.12 0.79/0.89/1769.98 0.39/0.53/1804.21 2.19/2.42/1909.01 0.00/0.18/- 0.04/0.16/1806.92
MDG-a_39 2.97/3.7/1901.77 0.87/1.08/1732.95 0.51/0.59/1887.26 1.89/2.64/1874.83 0.00/0.16/- 0.13/0.23/1763.7
MDG-a_40 3.52/3.82/1735.43 0.84/0.98/1770.49 0.47/0.51/1819.48 2.64/2.84/1864.35 0.00/0.12/- 0.10/0.21/1821.44
Average 2.63/3.4/1862.55 0.99/1.01/1712.93 0.43/0.57/1839.95 2.12/2.43/1867.01 0.00/0.16/- 0.1/0.21/1757.32
Note. In Table 13, data A/B/C denote the value of Devbest, the value of Devavg, and the algorithm’s average time to find a final solution..e symbol “-” denotes
the cases when the result is not reported in the literature.

Computational Intelligence and Neuroscience 15

s2 < 1 and s1 > 1 will tighten the constraints of CCP. For each
instance, RCM and CM2 are run 100 times under the new
upper and lower bound constraints, respectively, and the
success rate of obtaining the initial solution is shown in

Table 14. .e “average” row indicates the average value of
the construction success rate of all the test instances.

We can see from Table 14 that if the upper and lower
bounds of the cluster capacity become stricter, the success

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(a)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(b)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(c)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(d)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(e)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6 7 8 9 10

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(f)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 10 12 14 16 18 20

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(g)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 10 12 14 16 18 20

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(h)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 10 12 14 16 18 20

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(i)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 10 12 14 16 18 20

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(j)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 50 100 150 200 250 300 350 400

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(k)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 10 20 30 40 50 60 70 80 90 100

Pr
ob

ab
ili

ty

Time to target value

IVNS
GVNS

SGVNS
HA-CCP

(l)

Figure 1: Probability distribution of the time required to reach the value of the objective function. (a) Instance: RanReal240_05 and target:
193000. (b) Instance: RanReal240_09 and target: 207700. (c) Instance: RanReal240_16 and target: 202000. (d) Instance: RanReal480_05 and
target: 473000. (e) Instance: RanReal480_14 and target: 500. (f) Instance: RanReal480_18 and target: 515000. (g) Instance: Ran-
Real960_02.30 and target: 1380000. (h) Instance: RanReal960_06.30 and target: 1370000. (i) Instance: RanReal960_07.40 and target:
1000000. (j) Instance: RanReal960_05.60 and target: 710000. (k) Instance: MDG-a_23 and target: 360000. (l) Instance: MDG-a_35 and
target: 330000.

16 Computational Intelligence and Neuroscience

rate of RCM and CM2 in constructing the initial solution
decreases, but the success rate of CM2 is higher than that of
RCM. From the average point of view, the success rate of
CM2 in the experiment is higher than that of RCM, even as
high as 2 times (the last column of Table 14)..erefore, CM2
has better usability than RCM, and it can construct feasible
solutions in tighter constrained CCPs.

Secondly, we use RCM to replace CM2 in HA-CCP
(denoted as HA-CCP-RCM) for comparison experiments
with HA-CCP. .e experiment was conducted on the
same 10 instances as Section 4.3, and each instance was
run 20 times. Table 15 summarizes the comparison re-
sults, and Tables 16 and 17 give detailed results. It can be
seen from Table 15 that when the average calculation time
is almost the same, HA-CCP with CM2 can obtain more
best solution and best average solution. .erefore, CM2
can effectively improve the CCP solution quality.

5.2. Benefit of DM3. DM2 [26] is the destruction method
used in IG-GRASP [26] to partial destruction solution. To
verify the superiority of DM3 used in HA-CCP, we
replaced the DM3 in HA-CCP with DM2 and compared
the results of HA-CCP using different destruction
methods (DM2 and DM3) on the results of the Ran-
Real960 dataset. Table 18 summarizes the statistical
comparison results, and Tables 19 and 20 give detailed
results.

As shown in Table 18, DM3 has obtained 29 best
solutions and 30 best average objective function value
and has a smaller value of AverageDevbest/Devavg . .e
Wilcoxon statistical test shows that the best performance
and average performance of DM2 and DM3 on Ran-
Real960 are statistically significantly different. .erefore,
we can conclude that DM3 is superior to DM2 on
RanReal960.

5.3. Benefit of the Destruct and Reconstruct Partial
Solution. Algorithms IVNS, GVNS, SGVNS, and FITS for
CCP used a completely random shaking procedure to shake the
current solution, but HA-CCP uses the method of destroying
and reconstructing partial solutions. To verify the advantage of
the destruct and reconstruct partial solution, we combinedHA-
CCP with the random shaking procedure used in SGVNS [30],
called HA-CCP-RS. We compared the result of HA-CCP with
HA-CCP-RS on the MDG-a dataset. Table 21 describes the
statistical comparison results, and Tables 22 and 23 give de-
tailed results. According to Table 21, HA-CCP has a better
performance than HA-CCP-RS in all indicators.

5.4. Benefit of AcceptanceCriterion for Skew. HA-CCP added
an acceptance criterion for skewing the search to other
promising areas of the solution space. To verify the per-
formance of acceptance criterion for skew to the perfor-
mance, we compared the result of HA-CCP with the HA-
CCP without acceptance criterion for skew (HA-CCP-NAC
for short) on RanReal240 and RanReal480 datasets. Table 24
shows the statistical comparison results, and detailed results
are given in Tables 25 and 26. As shown in Table 24, HA-
CCP has a better performance than HA-CCP-NAC in best
results and average results.

In summary, from the experimental results of the four
aspects of “the construction of solution,” “the destruction of
the partial solution,” “the destruction and reconstruction of
the partial solution,” “the acceptance criteria,” no matter
which component is replaced, the overall performance of the
algorithm decreases significantly. .erefore, we believe that
the combination of these components has obtained good
experimental results. .e effective combination of these
components helps the algorithm jump out of the local
optimum and obtains a better balance between intensifi-
cation and diversification levels.

Table 14: Success rate of RCM and CM2 in constructing initial feasible solution on RanReal960 instances with p � 60.

Instance name (1.30, 1) (1.28, 1) (1.27, 1) (1, 1) (1, 0.94) (1, 0.93) (1, 0.92)
RanReal960_01.60 100%/100% 100%/100% 100%/100% 100%/100% 85%/100% 0%/100% 0%/100%
RanReal960_02.60 97%/100% 100%/100% 100%/100% 100%/100% 100%/100% 100%/100% 90%/100%
RanReal960_03.60 100%/100% 100%/100% 100%/100% 100%/100% 100%/100% 100%/100% 20%/100%
RanReal960_04.60 1%/14% 100%/100% 100%/100% 100%/100% 100%/100% 100%/100% 100%/100%
RanReal960_05.60 100%/100% 100%/100% 100%/100% 100%/100% 100%/100% 64%/100% 0%/100%
RanReal960_06.60 100%/100% 100%/100% 100%/100% 100%/100% 34%/100% 0%/100% 0%/0%
RanReal960_07.60 100%/100% 100%/100% 100%/100% 100%/100% 0%/100% 0%/0% 0%/0%
RanReal960_08.60 0%/0% 71%/95% 79%/98% 100%/100% 100%/100% 100%/100% 100%/100%
RanReal960_09.60 100%/100% 100%/100% 100%/100% 100%/100% 100%/100% 100%/100% 89%/100%
RanReal960_10.60 100%/100% 100%/100% 100%/100% 100%/100% 64%/100% 0%/100% 0%/100%
Average 79.8%/81.4% 97.1%/99.5% 97.9%/99.8% 100%/100% 78.3%/100% 56.4%/90% 39.9%/80%
Note. In Table 14, s1 and s2 in (s1, s2), respectively, denote the scaling ratios of the lower and upper bounds of the cluster capacity.A and B inA/B, respectively,
represent the initial solution construction success rate obtained using RCM and CM2.

Computational Intelligence and Neuroscience 17

Table 15: Statistical comparison results of HA-CCP-RCM and HA-CCP.

HA-CCP-RCM HA-CCP
#Best/Avg 4/4 8/8
p valuebest/p valueavg 0.39/0.39
Avg Devbest/Devavg (%) 0.04/0.14 0.01/0.13
AvgTime (s) 650.18 659.04

Table 16: Comparative results of HA-CCP-RCM and HA-CCP.

Instance name HA-CCP-RCM HA-CCP
RanReal240_05 195558.15/195472.31 195540.41/195469.00
RanReal240_09 209186.90/208970.18 209057.64/208897.23
RanReal240_16 204063.69/203943.95 204072.57/203961.38
RanReal480_05 484845.80/484337.08 485138.44/484092.59
RanReal480_14 515313.22/514565.40 515476.42/514801.49
RanReal480_18 526331.30/525686.10 526314.82/525702.47
RanReal960_02.30 1434083.69/1432684.79 1435087.46/1433503.63
RanReal960_05.60 748689.45/747833.47 749316.68/747647.96
RanReal960_06.30 1419623.57/1418217.77 1420942.81/1418222.26
RanReal960_07.40 1043459.88/1041763.79 1043176.75/1042209.24
MDG-a_23 388753.00/388437.80 389071.00/388611.10
MDG-a_35 395692.00/395378.35 395848.00/395472.25
#Best 4/4 8/8
p Value 0.39/0.39
Note. In Table 16, data A/B denote the best objective value and the average objective value of the instance found by the algorithm.

Table 17: Devbest, Devavg, and average time of HA-CCP-RCM and HA-CCP.

Instance name HA-CCP-RCM HA-CCP
RanReal240_05 0.00/0.04/119.45 0.01/0.05/135.27
RanReal240_09 0.00/0.10/93.85 0.06/0.14/98.89
RanReal240_16 0.00/0.06/120.73 0.00/0.05/102.24
RanReal480_05 0.06/0.17/305.23 0.00/0.22/301.91
RanReal480_14 0.03/0.18/342.13 0.00/0.13/340.90
RanReal480_18 0.00/0.12/319.68 0.00/0.12/330.79
RanReal960_02.30 0.07/0.17/773.08 0.00/0.11/731.68
RanReal960_05.60 0.08/0.20/754.65 0.00/0.22/691.55
RanReal960_06.30 0.09/0.19/733.07 0.00/0.19/777.19
RanReal960_07.40 0.00/0.16/736.56 0.03/0.12/796.50
MDG-a_23 0.08/0.16/1766.01 0.00/0.12/1773.65
MDG-a_35 0.04/0.12/1737.76 0.00/0.09/1827.95
Average 0.04/0.14/650.18 0.01/0.13/659.04
Note. In Table 17, data A/B/C denote the value of Devbest, the value of Devavg, and the algorithm’s average time to find a final solution.

Table 18: Statistical comparison results of DM2 and DM3 on RanReal960.

DM2 DM3
#Best/Avg 1/0 29/30
p valuebest/p valueavg 5.77E− 08/1.86E− 09
Avg Devbest/Devavg (%) 0.19/0.33 0.02/0.17
AvgTime (s) 697.94 705.36

Table 19: Comparative results of DM2 and DM3 on RanReal960.

Instance name DM2 DM3
RanReal960_01.30 1339422.76/1337439.23 1339783.24/1338150.82
RanReal960_02.30 1433976.41/1432620.51 1434814.15/1433364.47
RanReal960_03.30 1397391.88/1395414.88 1397392.10/1395893.73
RanReal960_04.30 1413805.22/1411624.30 1414298.90/1412090.36
RanReal960_05.30 1369728.30/1368811.02 1370975.25/1369468.75

18 Computational Intelligence and Neuroscience

Table 19: Continued.

Instance name DM2 DM3
RanReal960_06.30 1419316.66/1417731.23 1418984.70/1417747.24
RanReal960_07.30 1340663.25/1339585.27 1340800.86/1339709.55
RanReal960_08.30 1466312.51/1465036.05 1467896.40/1465355.37
RanReal960_09.30 1385370.30/1383667.64 1386030.28/1384583.74
RanReal960_10.30 1384748.37/1383091.10 1385179.70/1383692.23
RanReal960_01.40 1041414.82/1040042.65 1042465.91/1041298.30
RanReal960_02.40 1115375.82/1113835.01 1117118.83/1115382.72
RanReal960_03.40 1087242.79/1086124.89 1089455.26/1087348.95
RanReal960_04.40 1100870.73/1099218.54 1101967.82/1100620.80
RanReal960_05.40 1065983.91/1064140.38 1066146.84/1064752.74
RanReal960_06.40 1104907.29/1103838.17 1106596.78/1105105.35
RanReal960_07.40 1041902.02/1040549.03 1043198.47/1041876.18
RanReal960_08.40 1143170.88/1141692.09 1144718.73/1142826.31
RanReal960_09.40 1075078.06/1073881.61 1076824.82/1075395.86
RanReal960_10.40 1077549.54/1076250.33 1078910.90/1077636.68
RanReal960_01.60 731791.05/730574.72 734308.41/732725.73
RanReal960_02.60 775695.34/773599.78 778535.60/776393.83
RanReal960_03.60 758983.07/757547.47 761525.30/760142.69
RanReal960_04.60 766615.64/765530.39 770670.09/768853.66
RanReal960_05.60 746350.92/745399.89 749120.37/747789.87
RanReal960_06.60 766117.84/765444.75 768842.79/767568.44
RanReal960_07.60 728688.71/727719.25 732517.17/730460.65
RanReal960_08.60 793341.85/790820.80 795271.66/793741.94
RanReal960_09.60 752529.87/751033.08 754767.54/753712.19
RanReal960_10.60 753818.27/752479.66 755877.96/754823.36
#Best 1/0 29/30
p value 5.77E− 08/1.86E− 09
Note. In Table 19, data A/B denote the best objective value and the average objective value of the instance found by the algorithm.

Table 20: Devbest, Devavg, and average time of DM2 and DM3 on RanReal960.

Instance name DM2 DM3
RanReal960_01.30 0.04/0.18/657.10 0.01/0.13/701.09
RanReal960_02.30 0.08/0.17/764.82 0.02/0.12/797.04
RanReal960_03.30 0.01/0.15/710.61 0.01/0.12/720.84
RanReal960_04.30 0.03/0.19/763.00 0.00/0.16/667.80
RanReal960_05.30 0.12/0.19/798.16 0.03/0.14/676.75
RanReal960_06.30 0.11/0.23/714.99 0.14/0.22/647.17
RanReal960_07.30 0.07/0.15/745.90 0.06/0.14/749.34
RanReal960_08.30 0.11/0.19/754.81 0.00/0.17/676.06
RanReal960_09.30 0.05/0.17/725.25 0.00/0.10/721.36
RanReal960_10.30 0.03/0.15/645.77 0.00/0.11/725.62
RanReal960_01.40 0.10/0.23/636.56 0.00/0.11/669.23
RanReal960_02.40 0.19/0.33/662.33 0.04/0.19/678.43
RanReal960_03.40 0.20/0.31/730.12 0.00/0.19/748.76
RanReal960_04.40 0.10/0.25/658.97 0.00/0.12/732.29
RanReal960_05.40 0.02/0.19/707.52 0.00/0.13/701.30
RanReal960_06.40 0.23/0.33/703.43 0.08/0.21/654.20
RanReal960_07.40 0.12/0.25/667.78 0.00/0.13/684.48
RanReal960_08.40 0.14/0.26/702.86 0.00/0.17/689.27
RanReal960_09.40 0.16/0.27/719.46 0.00/0.13/719.93
RanReal960_10.40 0.13/0.25/717.19 0.00/0.12/706.70
RanReal960_01.60 0.34/0.51/693.50 0.00/0.22/732.69
RanReal960_02.60 0.36/0.63/734.58 0.00/0.28/718.58
RanReal960_03.60 0.33/0.52/710.39 0.00/0.18/761.03
RanReal960_04.60 0.53/0.67/707.52 0.00/0.24/707.68
RanReal960_05.60 0.40/0.52/632.37 0.03/0.20/666.28
RanReal960_06.60 0.41/0.49/607.12 0.05/0.22/667.62
RanReal960_07.60 0.52/0.65/701.64 0.00/0.28/642.39
RanReal960_08.60 0.25/0.56/604.62 0.01/0.20/707.20

Computational Intelligence and Neuroscience 19

Table 20: Continued.

Instance name DM2 DM3
RanReal960_09.60 0.30/0.50/621.11 0.01/0.15/747.19
RanReal960_10.60 0.29/0.47/738.65 0.02/0.16/742.39
Average 0.19/0.33/697.94 0.02/0.17/705.36
Note. In Table 20, data A/B/C denote the value of Devbest, the value of Devavg, and the algorithm’s average time to find a final solution.

Table 21: Statistical comparison results of HA-CCP-RS and HA-CCP on the MDG-a.

HA-CCP-RS HA-CCP
#Best/Avg 0/0 20/20
p valuebest/p valueavg 1.91E− 06/1.91E− 06
Avg Devbest/Devavg (%) 0.12/0.24 0.00/0.11
AvgTime (s) 1843.11 1757.32

Table 22: Comparative results of HA-CCP-RS and HA-CCP on the MDG-a.

Instance name HA-CCP-RS HA-CCP
MDG-a_21 390621.00/390145.80 390987.00/390660.00
MDG-a_22 387550.00/387010.65 387838.00/387393.10
MDG-a_23 388466.00/387984.40 389071.00/388611.10
MDG-a_24 389555.00/389016.65 390051.00/389525.40
MDG-a_25 398779.00/398257.00 399215.00/398869.20
MDG-a_26 402852.00/402381.40 403425.00/402759.75
MDG-a_27 382574.00/382245.40 383246.00/382731.55
MDG-a_28 388264.00/387758.55 388553.00/388208.60
MDG-a_29 384292.00/383914.05 384933.00/384588.45
MDG-a_30 397474.00/397111.05 398004.00/397503.15
MDG-a_31 387298.00/386716.30 387609.00/387276.55
MDG-a_32 393730.00/393350.75 394290.00/393941.40
MDG-a_33 385030.00/384564.15 385583.00/385036.20
MDG-a_34 395459.00/394970.90 396214.00/395706.85
MDG-a_35 395459.00/394970.90 395848.00/395472.25
MDG-a_36 402659.00/402316.25 402998.00/402698.45
MDG-a_37 389236.00/388922.00 389769.00/389349.00
MDG-a_38 396689.00/396276.55 397249.00/396775.25
MDG-a_39 392441.00/392042.25 392913.00/392506.70
MDG-a_40 406367.00/405899.70 406672.00/406245.60
#Best 0/0 20/20
p value 1.91E− 06/1.91E− 06
Note. In Table 22, data A/B denote the best objective value and the average objective value of the instance found by the algorithm.

Table 23: Devbest, Devavg, and average time of HA-CCP-RS and HA-CCP on the MDG-a.

Instance name HA-CCP-RS HA-CCP
MDG-a_21 0.09/0.22/1827.80 0.00/0.08/1765.62
MDG-a_22 0.07/0.21/1854.63 0.00/0.11/1719.05
MDG-a_23 0.16/0.28/1760.08 0.00/0.12/1773.65
MDG-a_24 0.13/0.27/1876.73 0.00/0.13/1807.82
MDG-a_25 0.11/0.24/1854.49 0.00/0.09/1731.29
MDG-a_26 0.14/0.26/1854.90 0.00/0.16/1701.12
MDG-a_27 0.18/0.26/1770.48 0.00/0.13/1630.26
MDG-a_28 0.07/0.20/1842.33 0.00/0.09/1849.73
MDG-a_29 0.17/0.26/1856.95 0.00/0.09/1780.88
MDG-a_30 0.13/0.22/1888.56 0.00/0.13/1801.66
MDG-a_31 0.08/0.23/1833.46 0.00/0.09/1637.96
MDG-a_32 0.14/0.24/1811.64 0.00/0.09/1739.88
MDG-a_33 0.14/0.26/1827.21 0.00/0.14/1788.08
MDG-a_34 0.19/0.31/1822.35 0.00/0.13/1721.00
MDG-a_35 0.10/0.22/1822.35 0.00/0.09/1827.95

20 Computational Intelligence and Neuroscience

Table 23: Continued.

Instance name HA-CCP-RS HA-CCP
MDG-a_36 0.08/0.17/1839.01 0.00/0.07/1731.40
MDG-a_37 0.14/0.22/1849.99 0.00/0.11/1746.95
MDG-a_38 0.14/0.24/1904.83 0.00/0.12/1806.92
MDG-a_39 0.12/0.22/1894.74 0.00/0.10/1763.70
MDG-a_40 0.07/0.19/1869.64 0.00/0.10/1821.44
Average 0.12/0.24/1843.11 0.00/0.11/1757.32
Note. In Table 23, data A/B/C denote the value of Devbest, the value of Devavg, and the algorithm’s average time to find a final solution.

Table 24: Statistical comparison results of HA-CCP-NAC and HA-CCP on RanReal240 and RanReal480.

HA-CCP-NAC HA-CCP
#Best/Avg 0/0 40/40
p valuebest/p valueavg 1.82E− 12/1.82E− 12
Avg Devbest/Devavg (%) 0.17/0.26 0.00/0.11
AvgTime (s) 190.29 217.25

Table 25: Comparative results of HA-CCP-NAC and HA-CCP on RanReal240 and RanReal480.

Instance name HA-CCP-NAC HA-CCP
RanReal240_01 224727.06/224616.93 225003.70/224897.01
RanReal240_02 204435.05/204256.39 204624.36/204515.06
RanReal240_03 198819.54/198592.41 199079.37/198915.84
RanReal240_04 225102.36/224814.97 225683.17/225346.54
RanReal240_05 195307.90/195203.22 195540.41/195469.00
RanReal240_06 216477.84/216312.91 216730.26/216613.93
RanReal240_07 208949.52/208789.41 209282.88/209150.41
RanReal240_08 205040.86/204835.75 205246.82/205110.51
RanReal240_09 208588.26/208475.27 209057.64/208897.23
RanReal240_10 192868.91/192706.85 193044.16/192954.72
RanReal240_11 204549.74/204455.01 204722.75/204638.07
RanReal240_12 200951.37/200791.23 201117.11/201006.45
RanReal240_13 202170.78/201988.4 202345.48/202285.83
RanReal240_14 228594.33/228434.38 228971.03/228740.72
RanReal240_15 191160.90/190978.45 191243.76/191117.60
RanReal240_16 203796.06/203691.26 204072.57/203961.38
RanReal240_17 194915.27/194730.53 195393.97/195278.93
RanReal240_18 195012.27/194868.93 195167.14/195069.80
RanReal240_19 199135.59/198980.50 199307.33/199204.90
RanReal240_20 211956.00/211831.11 212229.46/212111.19
RanReal480_01 555335.92/554734.67 556126.86/555338.06
RanReal480_02 510361.31/509822.51 511566.55/510924.27
RanReal480_03 496848.36/496025.80 498028.54/497109.59
RanReal480_04 521736.02/521332.69 522790.22/521999.31
RanReal480_05 483933.52/483612.70 485138.44/484092.59
RanReal480_06 533914.73/533474.70 534961.79/534114.47
RanReal480_07 545679.18/545247.24 546503.90/545582.87
RanReal480_08 531790.95/531213.90 532891.23/532161.08
RanReal480_09 555943.11/555557.53 557120.25/556265.26
RanReal480_10 519486.75/519083.16 520492.06/519891.18
RanReal480_11 523048.09/522469.89 524669.99/523760.48
RanReal480_12 501724.17/500933.49 503359.96/502069.60
RanReal480_13 534164.65/533751.60 535251.73/534707.51
RanReal480_14 513914.91/513549.56 515476.42/514801.49
RanReal480_15 517055.94/516347.68 518370.90/517283.29
RanReal480_16 549618.65/549232.56 550317.71/549881.85
RanReal480_17 537155.63/536696.66 538745.70/537826.26
RanReal480_18 525517.30/524655.46 526314.82/525702.47
RanReal480_19 522191.15/521731.11 522958.23/522365.10
RanReal480_20 518068.63/517724.40 519277.92/518518.27

Computational Intelligence and Neuroscience 21

6. Conclusion

.e capacitated clustering problem (CCP) has a wide range
of applications. In this study, we propose a hybrid heuristic
algorithm HA-CCP for CCP. After constructing the initial
solution, HA-CCP partially destructs and reconstructs the
current solution through a combination of greediness and
randomness to obtain a new solution. On this basis, an
acceptance criterion is added, which allows the current

solution to be skewed to move to inferior solutions so that
more promising solutions can be explored in the solution
space.

.e competitive experiments on the benchmark in-
stances show that HA-CCP is superior to all comparison
algorithms except NVSD in terms of average solving effi-
ciency for all instances (because the solution time is not
given). .e result of the time-to-target analysis also verifies
the efficiency of HA-CCP. Moreover, HA-CCP is better than

Table 25: Continued.

Instance name HA-CCP-NAC HA-CCP
#Best 0/0 40/40
p value 1.82E− 12/1.82E− 12
Note. In Table 25, data A/B denote the best objective value and the average objective value of the instance found by the algorithm.

Table 26: Devbest, Devavg, and average time of HA-CCP-NAC and HA-CCP on RanReal240 and RanReal480.

Instance name HA-CCP-NAC HA-CCP
RanReal240_01 0.12/0.17/93.82 0.00/0.05/127.88
RanReal240_02 0.09/0.18/127.36 0.00/0.05/111.58
RanReal240_03 0.13/0.24/130.94 0.00/0.08/135.66
RanReal240_04 0.26/0.38/122.88 0.00/0.15/124.67
RanReal240_05 0.12/0.17/110.23 0.00/0.04/135.27
RanReal240_06 0.12/0.19/109.10 0.00/0.05/129.28
RanReal240_07 0.16/0.24/123.43 0.00/0.06/127.25
RanReal240_08 0.10/0.20/100.10 0.00/0.07/112.98
RanReal240_09 0.22/0.28/114.32 0.00/0.08/98.89
RanReal240_10 0.09/0.17/116.08 0.00/0.05/111.58
RanReal240_11 0.08/0.13/122.57 0.00/0.04/125.15
RanReal240_12 0.08/0.16/131.99 0.00/0.06/108.32
RanReal240_13 0.09/0.18/135.13 0.00/0.03/139.97
RanReal240_14 0.16/0.23/129.75 0.00/0.1/122.04
RanReal240_15 0.04/0.14/118.75 0.00/0.07/101.57
RanReal240_16 0.14/0.19/145.53 0.00/0.05/102.24
RanReal240_17 0.24/0.34/132.89 0.00/0.06/132.10
RanReal240_18 0.08/0.15/122.70 0.00/0.05/110.87
RanReal240_19 0.09/0.16/80.49 0.00/0.05/121.71
RanReal240_20 0.13/0.19/103.68 0.00/0.06/99.55
RanReal480_01 0.14/0.25/197.77 0.00/0.14/349.71
RanReal480_02 0.24/0.34/284.81 0.00/0.13/330.24
RanReal480_03 0.24/0.40/295.48 0.00/0.18/332.28
RanReal480_04 0.20/0.28/267.30 0.00/0.15/329.59
RanReal480_05 0.25/0.31/258.95 0.00/0.22/301.91
RanReal480_06 0.20/0.28/251.78 0.00/0.16/280.00
RanReal480_07 0.15/0.23/303.63 0.00/0.17/285.02
RanReal480_08 0.21/0.31/275.77 0.00/0.14/283.23
RanReal480_09 0.21/0.28/208.49 0.00/0.15/255.35
RanReal480_10 0.19/0.27/257.74 0.00/0.12/307.38
RanReal480_11 0.31/0.42/214.08 0.00/0.17/299.74
RanReal480_12 0.32/0.48/277.58 0.00/0.26/349.86
RanReal480_13 0.20/0.28/271.16 0.00/0.10/333.59
RanReal480_14 0.30/0.37/293.64 0.00/0.13/340.90
RanReal480_15 0.25/0.39/279.55 0.00/0.21/282.23
RanReal480_16 0.13/0.20/243.76 0.00/0.08/294.16
RanReal480_17 0.30/0.38/251.44 0.00/0.17/336.43
RanReal480_18 0.15/0.32/297.75 0.00/0.12/330.79
RanReal480_19 0.15/0.23/268.87 0.00/0.11/343.32
RanReal480_20 0.23/0.30/240.17 0.00/0.15/345.87
Average 0.17/0.26/190.29 0.00/0.11/217.25
Note. In Table 26, data A/B/C denote the value of Devbest, the value of Devavg, and the algorithm’s average time to find a final solution.

22 Computational Intelligence and Neuroscience

all comparison algorithms because the best average solution
of 58 instances is obtained on all 90 instances, which shows
that HA-CCP has better solution stability. However, the
solution quality of HA-CCP on MDG-a instances is obvi-
ously inferior to NDVNS.

As future work, we believe that the following research is
worthwhile. First, the automatic parameter adjustment tool
irace is used [38] to adjust the HA-CCP parameters to find a
better parameter configuration. Second, the improved so-
lution construction strategy enables the algorithm to solve
the more restrictive CCP. .ird, NDVNS is combined to
improve HA-CCP, so that it has better solution quality on
CCP including MDG-a.

Data Availability

.e data are available at CCPLIB (https://grafo.etsii.urjc.es/
optsicom/ccp/ccplib.zip).

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

References

[1] D. Bader, H. Meyerhenke, P. Sanders, and D.Wagner, “Graph
partitioning and graph clustering,” Contemporary Mathe-
matics, vol. 588240 pages, 2013.

[2] U. Benlic and J. K. Hao, “A multilevel memetic approach for
improving graph k-partitions,” IEEE Transactions on Evolu-
tionary Computation, vol. 15, no. 5, pp. 624–642, 2011.

[3] U. Benlic and J. K. Hao, “Hybrid metaheuristics for the graph
partitioning problem,” in Hybrid Metaheuristics. Studies in
Computational Intelligence 434, E. G. Talbi, Ed., Springer,
Berlin, Heidelberg, Germany, 2013.

[4] P. Galinier, Z. Boujbel, and C. M. Fernandes, “An efficient
memetic algorithm for the graph partitioning problem,”
Annals of Operations Research, vol. 191, no. 1, pp. 1–22, 2011.

[5] P. Kadluczka and K. Wala, “Tabu search and genetic algo-
rithms for the generalized graph partitioning problem,”
Control and Cybernetics, vol. 24, no. 4, 1995.

[6] K. Singh and S. Sundar, “A new hybrid genetic algorithm for
the maximally diverse grouping problem,” International
Journal of Machine Learning and Cybernetics, vol. 10, no. 10,
pp. 2921–2940, 2019.

[7] J. Brimberg, N. Mladenović, and D. Urošević, “Solving the
maximally diverse grouping problem by skewed general
variable neighborhood search,” Information Sciences, vol. 295,
pp. 650–675, 2015.

[8] M. Gallego, M. Laguna, R. Mart́ı, and A. Duarte, “Tabu search
with strategic oscillation for the maximally diverse grouping
problem,” Journal of the Operational Research Society, vol. 64,
no. 5, pp. 724–734, 2013.

[9] J. Johnes, “Operational research in education,” European
Journal of Operational Research, vol. 243, no. 3, pp. 683–696,
2015.

[10] G. Palubeckis, A. Ostreika, and D. Rubliauskas, “Maximally
diverse grouping: an iterated tabu search approach,” Journal
of the Operational Research Society, vol. 66, no. 4, pp. 579–592,
2015.

[11] F. J. Rodriguez, M. Lozano, C. G. Mart́ınez, and
J. D. G. Barrera, “An artificial bee colony algorithm for the

maximally diverse grouping problem,” Information Sciences,
vol. 230, pp. 183–196, 2013.

[12] R. R. Weitz and S. Lakshminarayanan, “An empirical com-
parison of heuristic methods for creating maximally diverse
groups,” Journal of the Operational Research Society, vol. 49,
no. 6, pp. 635–646, 1998.

[13] X. Lai, J. K. Hao, Z. H. Fu, and D. Yue, “Neighborhood
decomposition based variable neighborhood search and tabu
search for maximally diverse grouping,” European Journal of
Operational Research, vol. 289, no. 3, pp. 1067–1086, 2020.

[14] L. F M. Mirabal, J. L. G Velarde, M. G. C. Resende, and
R. M. A. Silva, “Randomized heuristics for handover mini-
mization in mobility networks,” Journal of Heuristics, vol. 19,
no. 6, pp. 845–880, 2013.

[15] Y. A. Koskosidis andW. B. Powell, “Clustering algorithms for
consolidation of customer orders into vehicle shipments,”
Transportation Research Part B: Methodological, vol. 26, no. 5,
pp. 365–379, 1992.

[16] J. F. Bard and A. I. Jarrah, “Large-scale constrained clustering
for rationalizing pickup and delivery operations,” Trans-
portation Research Part B: Methodological, vol. 43, no. 5,
pp. 542–561, 2009.

[17] B. H. A. Alguni and F. Alkhateeb, “Intelligent hybrid cuckoo
search and β-hill climbing algorithm,” Journal of King Saud
University - Computer and Information Sciences, vol. 32, no. 2,
pp. 159–173, 2020.

[18] B. H. Abed-alguni, N. A. Alawad, M. Barhoush, and
R. Hammad, “Exploratory cuckoo search for solving single-
objective optimization problems,” Soft Computing, vol. 25,
no. 15, pp. 10167–10180, 2021.

[19] W. Deng, S. Shang, X. Cai et al., “Quantum differential
evolution with cooperative coevolution framework and hy-
brid mutation strategy for large scale optimization,” Knowl-
edge-Based Systems, vol. 224, 2021.

[20] W. Deng, J. Xu, X. Z. Gao, and H. Zhao, “An enhanced
MSIQDE algorithm with novel multiple strategies for global
optimization problems,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, pp. 1–10, 2020.

[21] S. Zhou, L. Xing, X. Zheng, N. Du, L. Wang, and Q. Zhang, “A
self-adaptive differential evolution algorithm for scheduling a
single batch-processing machine with arbitrary job sizes and
release times,” IEEE Transactions on Cybernetics, vol. 51, no. 3,
pp. 1430–1442, 2021.

[22] F. Zhao, X. He, and L. Wang, “A two-stage cooperative
evolutionary algorithm with problem-specific knowledge for
energy-efficient scheduling of No-wait flow-shop problem,”
IEEE Transactions on Cybernetics, vol. 51, no. 11, pp. 5291–
5303, 2021.

[23] J. M. Mulvey and M. P. Beck, “Solving capacitated clustering
problems,” European Journal of Operational Research, vol. 18,
no. 3, pp. 339–348, 1984.

[24] Y. Deng and J. F. Bard, “A reactive grasp with path relinking
for capacitated clustering,” Journal of Heuristics, vol. 17, no. 2,
pp. 119–152, 2011.

[25] A. M. Gavara, V. Campos, M. Gallego, and M. Laguna, “Tabu
search and GRASP for the capacitated clustering problem,”
Computational Optimization and Applications, vol. 62, no. 2,
pp. 589–607, 2015.

[26] M. G. Anna, L. S. Dario, C. Vicente, and M. Rafael, “Ran-
domized heuristics for the capacitated clustering problem,”
Information Sciences, vol. 417, pp. 154–168, 2017.

[27] N. Mladenović and P. Hansen, “Variable neighborhood
search,” Computers & Operations Research, vol. 24, no. 11,
pp. 1097–1100, 1997.

Computational Intelligence and Neuroscience 23

https://grafo.etsii.urjc.es/optsicom/ccp/ccplib.zip
https://grafo.etsii.urjc.es/optsicom/ccp/ccplib.zip

[28] P. Hansen, N. Mladenović, and J. A. Moreno Pérez, “Variable
neighbourhood search: methods and applications,” Annals of
Operations Research, vol. 175, no. 1, pp. 367–407, 2010.

[29] X. Lai and J.-K. Hao, “Iterated variable neighborhood search
for the capacitated clustering problem,” Engineering Appli-
cations of Artificial Intelligence, vol. 56, pp. 102–120, 2016.

[30] J. Brimberg, N. Mladenovi, R. Todosijevi, and D. Uroevi,
“Solving the capacitated clustering problem with variable
neighborhood search,” Annals of Operations Research,
vol. 272, no. 2, pp. 289–321, 2019.

[31] X. Lai, J. K. Hao, Z. H. Fu, and D. Yue, “Neighborhood
decomposition-driven variable neighborhood search for
capacitated clustering,” Computers & Operations Research,
vol. 134, 2021.

[32] Q. Zhou, U. Benlic, Q. Wu, and J. K. Hao, “Heuristic search to
the capacitated clustering problem,” European Journal of
Operational Research, vol. 273, pp. 464–487, 2018.

[33] J. G. Villegas, C. Prins, C. Prodhon, A. L. Medaglia, and
N. Velasco, “GRASP/VND and multi-start evolutionary local
search for the single truck and trailer routing problem with
satellite depots,” Engineering Applications of Artificial Intel-
ligence, vol. 23, no. 5, pp. 780–794, 2010.

[34] N. Mladenović, R. Todosijević, and D. UrošEvić, “Less is
more: basic variable neighborhood search for minimum
differential dispersion problem,” Information Sciences,
vol. 362, pp. 160–171, 2016.

[35] D. Urosevic, “Variable neighborhood search for maximum
diverse grouping problem,” Yugoslav Journal of Operations
Research, vol. 24, no. 1, pp. 21–33, 2014.

[36] J. de Armas, B. M. Batista, J. A. M. Pérez, and J. Brito, “GVNS
for a real-world rich vehicle routing problem with time
windows,” Engineering Applications of Artificial Intelligence,
vol. 42, pp. 45–56, 2015.

[37] R. M. Aiex, M. G. C. Resende, and C. C. Ribeiro, “TTTplots: a
perl program to create time-to-target plots,” Optimization
Letters, vol. 1, no. 4, pp. 355–366, 2007.

[38] M. L. Ibáñez, J. D. Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle, “.e irace package: iterated racing for automatic
algorithm configuration,” Operations Research Perspectives,
vol. 3, pp. 43–58, 2016.

24 Computational Intelligence and Neuroscience

