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�e multichannel electrode array used for electromyogram (EMG) pattern recognition provides good performance, but it has a
high cost, is computationally expensive, and is inconvenient to wear. �erefore, researchers try to use as few channels as possible
while maintaining improved pattern recognition performance. However, minimizing the number of channels a�ects the per-
formance due to the least separable margin among the movements possessing weak signal strengths. Tomeet these challenges, two
time-domain features based on nonlinear scaling, the log of the mean absolute value (LMAV) and the nonlinear scaled value
(NSV), are proposed. In this study, we validate the proposed features on two datasets, the existing four feature extraction methods,
variable window size, and various signal-to-noise ratios (SNR). In addition, we also propose a feature extractionmethod where the
LMAV and NSV are grouped with the existing 11 time-domain features. �e proposed feature extraction method enhances
accuracy, sensitivity, speci�city, precision, and F1 score by 1.00%, 5.01%, 0.55%, 4.71%, and 5.06% for dataset 1, and 1.18%, 5.90%,
0.66%, 5.63%, and 6.04% for dataset 2, respectively. �erefore, the experimental results strongly suggest the proposed feature
extraction method, for taking a step forward with regard to improved myoelectric pattern recognition performance.

1. Introduction

From the perspective of performing regular activities after
limb loss or from the view of people born with congenital
defects, arti�cial limbs or prostheses are very helpful [1].
Many modern prostheses, such as i-Limb [2], Cyberhand
[3], and Yokoi Hand [4], use EMG signals to control
multiple degrees of freedom of prosthesis movements since
the EMG signal re£ects the activity of a muscle corre-
sponding to a movement [5, 6]. Electromyography is a
technique that senses the bioelectrical potential, also known
as the EMG signal, from a target muscle or group of muscles

with the help of a surface electrode or needle electrode when
these muscles are neurologically activated [7–10]. Generally,
myoelectric pattern recognition employed in prosthetic
hand and game controller (Figure 1) uses surface EMG
because it is noninvasive and convenient for long-term data
acquisition [11–13].

In addition to EMG signal, force myography (FMG), a
noninvasive technique for measuring the pressure patterns
between the underlying muscle and the pressure sensor
during muscle contraction, is also used for upper limb
prosthetic control [14–17]. Also, mechanomyography
(MMG) is another alternative technique that measures
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vibrational characteristics during muscle contraction
employing an accelerometer or microphone [18–20]. But the
frequency spectrum of EMG is wide compared to FMG and
MMG and carries more information corresponding to a
muscle contraction [21]. In myoelectric pattern recognition,
the features, the vital components of myoelectric pattern
recognition, are extracted from the EMG signal. An efficient
feature extraction technique derives unique information
about each movement hidden in the raw EMG signal
[22, 23]. To improve the EMG pattern recognition perfor-
mance and ensure more degree of freedom, large numbers of
time-domain, frequency-domain, and time-frequency-do-
main EMG features have been reported [24, 25]. Popular
time-domain features are found in many studies; these in-
clude the mean absolute value (MAV), waveform length
(WL), number of zero crossings (ZC), and slope sign
changes (SSC), which are mentioned in [26]; the variance
(VAR), complexity (COM), and mobility (MOB), which are
reported in [27]; and the Wilson amplitude (WAMP), log
detector (LOG), and autoregressive coefficients (ARs), which
are described in [28]. In addition, some other time-domain
features are the myopulse percentage rate (MYOP) [29],
skewness (SKW) [30], difference absolute mean value
(DAMV) [31], difference absolute standard deviation value
(DASDV) [31], root mean square (RMS) [24], and maxi-
mum fractal length (MFL) [32]. 0ereafter, the most
commonly used frequency-domain features are the mean
frequency (MNF) and mean power (MNP) proposed in
[33, 34] and the median frequency (MDF), frequency ratio
(FR), spectral moment (SM), total power (TTP), and vari-
ance of the central frequency (VCF) given in [35]. Moreover,
short-time Fourier transforms or wavelet transforms extract
features both in time and frequency domains. However, in
the literature, time-domain features are used more fre-
quently than frequency- or time-frequency-domain features
since these features do not require any transformations and
hence large computing resources, such as processing power
and memory [25, 36]. Consequently, this research is carried
out to determine a further contribution to the time-domain
feature set.

Khushaba et al. [37] proposed six time-domain features
and spectrum correlations between each pair of channels for
arm position-invariant EMG pattern recognition using a
seven-channel EMG signal. Furthermore, Al-Timemy et al.

[38] extended the work of Khushaba et al. [37] and intro-
duced six modified time-domain features to improve EMG
pattern recognition performance against muscle force var-
iations, where eight channels were employed to collect EMG
signals. 0ereafter, Khushaba et al. [39] modified and
upgraded their pilot work and proposed seven time-domain
features that were validated over five EMG datasets. In these
EMG datasets, the number of channels varied from eight to
one hundred twenty-eight. Recently, Asogbon et al. [40]
described five time-domain features to resolve the effects of
both limb position and muscle force variation simulta-
neously, where they included eight EMG signal channels.
0e major limitation of a large number of existing features is
that these features are unable to address all the requirements
for a given application since a specific feature is effective for a
specific type of application with a specific arrangement
[26, 28, 29]. Again, all the authors mentioned above used
multichannel EMG signals with a minimum of seven
channels to validate their proposed features. However,
multichannel myoelectric pattern recognition increases the
computational cost and device cost [41]. In addition, some of
the proposed features are applicable only for multichannel
EMG systems [42–44]. 0us, the existing features validated
for multichannel systems may not be effective for few
numbers of channels. Again, a myoelectric pattern recog-
nition system using the fewest possible channels lacks spatial
information, which in turn decreases the separation margins
among the movements [45–47]. Usually, this problem oc-
curs among movements possessing relatively weaker signals
than the others due to the overlapping of activated muscles,
narrow muscles, muscle activations with low contraction
forces, etc. [32, 48].

In this context, to minimize these limitations, we have
proposed two time-domain features, namely, the LMAV and
NSV, which should improve the separation margins among
the movements when the number of channels used was two.
0ese proposed features are based on the nonlinear scaling,
log, and cubic root of the signal amplitude. 0e LMAV
produced relatively higher discrimination among weak
signals than among strong signals. In addition, the NSV
measured the nonlinear deviation of each sample value from
its linear mean absolute value, focusing on the instantaneous
amplitude of a weak signal. 0ese proposed features max-
imized the margins among the least separable movements.

(a) (b)

Figure 1: Applications of myoelectric pattern recognition. (a) Prosthetic hand source: https://mcopro.com/blog/resources/arm-hand-
prosthetics/ (accessed on 05 Apr. 2022). (b) Game controller (source: https://www.miro.ing.unitn.it/emg-remote-control-of-a/ (accessed on
05 Apr. 2022).
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Consequently, these proposed features improved the EMG
pattern recognition performance of a model in terms of
accuracy, sensitivity, specificity, precision, and F1 score
when these two features were grouped with the existing four
feature extraction methods considered in this study. 0is
performance improvement means that the proposed LMAV
and NSV add some new information to the existing feature
extraction methods which in turn contribute to improving
EMG pattern recognition performance. Moreover, the
LMAV and NSV showed strength over variable window size,
variable SNR, movement-wise performance enhancement
and datasets. In addition, a combined feature extraction
method was also proposed in this study, where the LMAV
and NSV were grouped with existing 11 time-domain fea-
tures, including the WL, WAMP, SSC, ZC, MOB, COM,
SKW, and four autoregressive coefficients. 0e proposed
feature extractionmethod achieved the highest EMG pattern
recognition performance in terms of all performance eval-
uating parameters.

In terms of EMG pattern recognition, many classifiers
have been used in recent studies. 0ese are convolutional
neural networks (CNNs) [49, 50], linear discriminant
analysis (LDA) [51], artificial neural networks (ANNs)
[52], fuzzy methods [53], support vector machines (SVMs)
[54, 55], and k-nearest neighbours (KNNs) [56]. Among
these methods, the CNN provides very strong EMG rec-
ognition performance but is impossible to implement in
cheap hardware for real-time operation [57]. 0erefore, to
minimize the hardware cost and obtain an acceptable level
of performance, we used LDA, an SVM, and the KNN
algorithm as classifiers, all of which are widely used for
these types of applications [39, 51, 58]. Furthermore, the
resulting EMG pattern recognition performance was in-
vestigated over two datasets (newly collected and standard
datasets with the same arrangements) to validate our
results.

0e rest of the sections are structured as follows. Section
2 describes the EMG datasets, proposed features, scatter
plots, and EMG pattern recognition method. Section 3
presents the experimental results, where the resulting per-
formances are evaluated and compared with those of other
considered feature extraction methods. Section 4 investi-
gates the reasons for the obtained performance enhance-
ment, and Section 5 concludes with the overall experimental
results.

2. Methodology

2.1. EMG Data Collection. In this study, we employed two
EMG datasets, where datasets 1 and 2 were collected using
our EMG signal acquisition system and a public dataset from
online, respectively.

2.1.1. Acquisition of Dataset 1. For the acquisition of this
EMG dataset, we employed an EMG signal acquisition
system. Figure 2(a) shows the schematic circuit diagram of a
single-channel bipolar EMG signal acquisition system. It
consists of several functional blocks, including electrostatic

discharge (ESD) protection, DC rejection, an instrument
amplifier, a high-pass and low-pass filter, and a clamper. In
this system, the ESD unit provided a low-resistance path for
a high electrostatic charge on the human body and protects
sophisticated devices [59]. In addition to electrostatic
charge, the raw EMG signal also possesses DC half-cell
potential produced on the electrode-skin interface and its
amplitude is enough to saturate a high gain instrument
amplifier.

So, the DC offset voltage was removed by passing the
signal through a DC rejection circuit (also known as a
balanced AC coupling network). It is mainly a differential
high-pass filter whose cutoff frequency lies near to DC
frequency. 0e advantage of this filter is that it offers a bias
path without any ground connection resulting in a high
common-mode rejection ratio (CMRR) of the instrument
amplifier [60]. 0ereafter, we used an instrument amplifier
integrated circuit (AD620) for the differential amplification
of the raw EMG signal [61]. In addition, there exists an offset
voltage with regard to the instrument amplifier itself. To
eliminate the offset voltage of the instrument amplifier, we
employed a unity-gain inverting amplifier, and the output of
this amplifier was used to ground the instrument amplifier
[62]. During muscle contraction, the electrode shifts slightly
which generate a noise also known as movement artefacts
whose cutoff frequency lies between 0Hz and 20Hz [63]. So,
a second-order high-pass filter of 20Hz was employed to
remove it. Finally, we employed a second-order low-pass
filter of 500Hz to eliminate high-frequency noise [63].0en,
we used a positive clamper circuit to shift the DC level to
2.5V. Finally, we employed an Arduino Mega for digita-
lizing the EMG signal at a resolution of 10 bits with a
sampling frequency of 2000Hz.

Figure 2(b) shows the implementation of the multi-
channel bipolar EMG signal acquisition system, where
the circuit shown in Figure 2(a) was repeated for all
channels. In this system, we used an MFI bar electrode
made in the USA as a surface electrode. In this device, the
average EMG signal strength (RMS) during no-move-
ment condition was considered as noise and the value
found was 11.9 mV where the system gain was 1652 (gain
of instrument amplifier × gain of high pass filter × gain of
low pass filter � 413 × 2 × 2). Figure 3(a) shows the fre-
quency spectrum of noise where the dominant noise
comes from power line artefacts and its harmonics;
however, these can be minimized by employing a digital
notch filter [63]. In addition to the power line artefact,
Figure 3(a) also indicates that the noise includes additive
white Gaussian noise (AWGN) and some low amplitude
EMG signal. Again, Figure 3(b) shows the frequency
spectrum of a movement (mixed with noise) which was
very high in amplitude relative to the noise, but it varied
with the movements (Figure 4) and muscle force levels. In
this dataset, the average SNR for medium force level was
calculated using (1). First, noise (RMS) was eliminated
from the RMS value of the raw EMG signal and the
average SNR value for each subject was calculated in dB.
In this study, the obtained SNR values varied across all
subjects and lied between 5 dB and 23 dB.
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SNR � 20 log10

���������������������������

RawEMGSignal2RMS − Noise2RMS



NoiseRMS

⎛⎜⎜⎝ ⎞⎟⎟⎠.

(1)
For this dataset, we collected a two-channel EMG signal:

channel 1 collects the EMG signal from the flexor digitorum
superficialis, flexor digitorum profundus, and remote flexor

pollicis longus, and channel 2 collects the EMG signal from the
extensor digitorum communis, extensor digiti minimi, and
remote extensor pollicis longus. In addition, the ground
electrode was placed on the wrist, as shown in Figure 5. To
ensure proper contact between the electrodes and skin, the
electrodes were attached to the skin through an adhesive
conductive gel. However, ten intact-limbed subjects aged be-
tween 25 and 55 years were engaged to perform five individual
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Figure 2: 0e EMG data acquisition system. (a, b) 0e schematic circuit diagram and an EMG signal acquisition system.
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finger movements, thumb (T), index (I), middle (M), ring (R),
little (L), and five combined finger movements, i.e., thumb-
index (TI), thumb-middle (TM), thumb-ring (TR), thumb-
little (TL), and hand closing (HC) movements, as shown in
Figure 5(b). During this signal acquisition phase, we informed
all the participants about the objective of the research, and they
provided us with their written consent in this regard. Ethical
approval was provided by the Faculty of Engineering, Uni-
versity of Rajshahi, Bangladesh, to perform this study. During
data collection, the subjects sat on a handled chair to place their

hands freely. During the recording process, each of the finger
movements was repeated six times with a duration of five
seconds. In addition, the subjects were relaxed for 5 to 10
seconds between successive movements.

2.1.2. Description of Dataset 2. In this study, we also collected
the same dataset as dataset 1 to validate the result obtained
from the Khushaba website [64]; here, Delsys DE 2.x series
EMG sensors from Bagnoli Desktop EMG Systems were used
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Figure 3: 0e frequency spectrum of EMG signal acquisition system: (a) noise and (b) EMG signal.
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for data acquisition. In this dataset, there were eight subjects,
including six males and two females aged 20 to 35 years. Each
subject performed five individual movements (T, I, M, R, and
L) and five combined finger movements (TI, TM, TR, TL, and
HC) as shown in Figure 5(b) providing six trials for each
movement where each trial was five seconds long in duration.
0e EMG signal was sampled at 4000Hz and digitalized with a
12bit resolution using a National Instruments BNC-2090. In
this dataset, the signal was in raw condition with the significant
frequency spectrum of 20Hz to 500Hz (Figure 6).

2.2. Feature Extraction. An EMG signal is composed of
hidden unique information for each movement. Feature ex-
traction methods are employed to obtain as few features as
possible, to obtain the most effective feature(s) or to derive a
new feature for a particular application. 0e performance of
EMG pattern recognition strongly depends on proper feature
selection rather than the classification algorithms used [29, 35].

2.2.1. 2e Proposed Time-Domain Features. In our studies,
we have proposed two time-domain features as described
below.

0e first proposal was the log of the mean absolute value
(LMAV), which is mainly a nonlinear scaling of the mean
absolute value.We found that the LMAV for a given window
highly discriminates or focuses on a low amplitude EMG
signal; for this reason, it was expected that it could provide
better performances than currently used features. 0e
LMAV is expressed mathematically as

LMAV � loge

1
N



N

i�1
xi


⎛⎝ ⎞⎠, (2)

whereN represents the size of the window and xi denotes the
ith sample within the corresponding window.

0e second proposal was the nonlinear scaled value
(NSV). 0is NSV is based on nonlinear scaling operations.
0e NSV measures the nonlinear deviation of each sample
value from its linear mean absolute value to focus on the
instantaneous amplitude of a weak EMG signal. It also
emphasizes discriminating low amplitude EMG signals
rather than high amplitude signals.

NSV � loge

����������������

1
N



N

i�1
|x| − xi



1/3

 
2




⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠, (3)

where |x| represents the mean absolute value for a window
of size N. However, the feature extraction steps are sum-
marized in Figure 7.

2.2.2. 2e Feature Extraction Methods. Time-domain fea-
tures are widely used because they do not require any
mathematical transformations or modifications; as a result,
they ensure low time consumption in pattern recognition
tasks [29]. In this study, we used five popular time-domain
feature extraction methods, where each method includes
several features. 0ese include the following.

Huang et al. [65] used seven features (FS1) and six
autoregressive coefficients along with the RMS value.

Du et al. [66] used six time-domain features (FS2) that
include the integration of the EMG (IEMG), WL, WAMP,
ZC, SSC, and VAR.

Time-dependent power spectrum descriptors (FS3) [38]
introduce six time-domain features: the root squared zero-
order, second-order, and fourth-order moments; an irreg-
ularity factor; sparseness; and the waveform length ratio. In
this study, we used six features directly.

0e temporal-spatial descriptors (FS4) [39] describe seven
time-domain features: the root squared zero-order, second-or-
der, and fourth-order moments; an irregularity factor; sparse-
ness; the coefficient of variation; and the Teager-Kaiser energy
operator. In this research, we employed seven features only.

In this study, we have proposed a combined feature ex-
traction method which was selected from the proposed LMAV
and NSV, and the existing time-domain features [26–32]. For
the selection of these features, we used the forward feature
selection algorithm [67] shown in Figure 8, which was eval-
uated across 32 time-domain features. In this feature selection,
first, we selected the highest performing feature among all the
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features. 0en, we grouped the best performing feature with
each of the remaining features one by one and find the group
that yields the strongest performance. However, we considered
a new feature from the highest performing group only when it
satisfied the condition of a minimum performance enhance-
ment of 0.25. 0us, the algorithm selected 13 features which
were denoted as the proposed feature extraction method, in-
cluding the proposed LMAV and NSV along with existing 11
time-domain features, i.e.,WL,WAMP, SSC, ZC,MOB, COM,
and SKW, and four autoregressive coefficients. Here, the
WAMP gives the signal energy, the WL provides the collective
length of the EMGwaveform, the SSC and ZC describe indirect
frequency information, the MOB represents the mean fre-
quency or the proportion of the standard deviation of the

power spectrum, the COM measures the change in frequency,
the SKW is the degree of asymmetry of the spreading of a
random variable around the variable mean, and the AR co-
efficients are based on the linear predictive model.

2.3. Scatter Plot. A scatter plot is normally a presentation of
two variables calculated from a dataset using Cartesian coor-
dinates, and this plot is used to visually observe the clustering
performance of an algorithm and the degree of overlap among
classes. 0e selection of two variables depends on our choice:
unique variables from two channels, two separate variables from
a single channel, or the first two reduced features obtained from
the dimension reduction technique [29]. In our scatter plot, we
used two reduced features from uncorrelated linear discrimi-
nant analysis (ULDA). Here, subject 1 data from dataset 1 was
used, and each data point on the scatter plot denotes the first
two reduced features from ULDA. In this case, the size of the
window considered was 250ms. 0erefore, the ten different
movements were presented by three hundred data points (data
points× trials×movements� 5× 6×10) on a single scatter plot.
Moreover, the reduced feature values were normalized by using
(4) to obtain a better presentation [29].

Normfeati �
feati − mini

maxi − mini

, (4)

where maxi and mini are the maximum and minimum
values of the ith feature, respectively.

2.4. RES Index. For evaluating the clustering performances
of features, the statistical parameter RES (ratio of the Eu-
clidean distance to the standard deviation) index is used. A
higher RES index indicates higher separation among the
classes and vice versa. 0e benefit of using the RES index is
that it is independent of the classifiers used. 0e RES index
can be evaluated as follows [68]:

RES Index �
ED
σ

, (5)

where E D is the Euclidean distance between movements p
and q. It is defined mathematically as

ED �
2

K(K-1)


K-1

p�1


K

q�p+1

������������������������

m1p − m1q 
2

+ m2p − m2q 
2



, (6)

where m is the mean value of a feature and k denotes the total
number of movements. 0e dispersion of clusters p and q is
given by

σ �
1

IK


I

i�1


K

k�1
sik, (7)

where I is the length of the feature vector.

2.5. EMG Pattern Recognition Method. Figure 9 shows the
block diagram of the myoelectric pattern recognition system,
where we employed MATLAB R2017a software (Mathworks,
USA) for the EMG pattern recognition of ten-finger move-
ments. After getting the digital EMG signal through the process
in Figure 2(a) or from dataset 2, we passed the EMG signal
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Figure 8: 0e forward feature selection algorithm.

Computational Intelligence and Neuroscience 7



through a digital preprocessing block using MATLAB R2017a
environment where a digital bandpass filter (20 to 500Hz) and
a digital notch filter (50Hz) were used to reduce movement
artefacts, high-frequency noise [63], and power line artefacts
[69]. In general, two types of windowing, i.e., overlapped and
disjoint windowing, are used [70]; however, between these two,
the overlapped windowing scheme offers better pattern rec-
ognition performance, but its computational cost is higher [71].
As a result, to obtain a lower computational cost with simplicity
[64], we used a 250ms disjoint windowing scheme [72] that
produced 20 segments for each five-second long dataset. Hence,
features were extracted using feature extraction methods (i.e.,
FS1, FS2, FS3, and FS4) that created a high-dimensional feature
space, asmentioned in Section 2.2.2.0e feature dimensionality
was reduced (total classes− 1� 10−1� 9) using ULDA [73].
Now, the 9-dimensional reduced feature vectors for each
feature extraction method were classified using three popular
classifiers: LDA with quadratic function [74, 75], SVM with
Gaussian radian basis kernel function (sigma value� 1) [76],
and KNN with cityblock distance (neighbours� 3) [37]. In this
performance evaluation, five trials containing 1000 samples
(trials×movements× samples per trial� 5×10× 20) were used
as training data, and the remaining trial containing 200 samples
(trials×movements× samples per trial� 1× 10× 20) was used
as testing data. 0e process was repeated six times so that each
of the trials was employed as testing data like 6-fold cross-
validation where trial-wise performance evaluation was per-
formed according to [38, 39]. In addition to generating a large
number of training samples, the EMG pattern recognition
performances during the training and testing periods were also
compared, and it was found that the differences in their per-
formances were negligible, which implied that the data were not
overfitted. However, EMG pattern recognition performance
wasmeasured by accuracy, sensitivity, specificity, precision, and
the F1 score [77, 78]. Accuracy, sensitivity, specificity, and
precision describe the ability of a model to distinguish true
positive and true negative movements; these metrics represent
the number of positive movements correctly identified as
positive, the number of negative movements correctly identi-
fied as negative, and the number of true positive movements
over the positive predicted movements, respectively. Addi-
tionally, the F1 score combines both sensitivity and precision to
find the true positive movements more precisely. 0ese per-
formance evaluation parameters can be defined as follows:

Accuracy �
TP + TN

TP + TN + FP + FN
,

Sensitivity �
TP

TP + FN
,

Specificity �
TN

TN + FP
,

Precision �
TP

TP + FP
,

F1 Score �
2 × Precision × Sensitivity
Precision + Sensitivity

,

(8)

where TP, TN, FP, and FN denote true positive move-
ments, true negative movements, false positive movements,
and false negative movements, respectively.

2.6. Statistical Analysis. To find the significant differences
between any pairs of feature extraction methods mentioned
in Section 2.2.2, a Bonferroni corrected analysis of variance
(ANOVA) test was utilized with a significance level of 0.05.
0e obtained p values below 0.05 imply that the perfor-
mances are significantly different. In this study, the EMG
pattern recognition performances on both datasets were
concatenated to construct an 18-dimensional vector (10 and
8 subjects in dataset 1 and dataset 2, respectively), and then a
Bonferroni corrected ANOVA test was performed.

3. Results

3.1. SignalObservation. 0eEMG signals in the time domain
for the ten individual and combined finger movements
collected from forearm muscles are presented in Figure 4. In
this figure, a time span of 250ms was used for each finger
movement. Here, no distinguishable features except am-
plitude were visually observed. Additionally, it was quite
impossible to discriminate all movements successfully using
either a single channel or a single feature. 0erefore, in
general, complex mathematical functions or transforma-
tions are used to enhance EMG pattern recognition per-
formance for a minimal number of channels used.

3.2. Scatter Plot and RES Index. 0e scatter plot for the
different feature extraction methods mentioned in Section
2.2.2 is shown in Figure 10. In this scatter plot, all the features
of the respective feature extraction methods were extracted,
and the obtained high-dimensional feature space was reduced
by employing ULDA. 0en, ULDA features 1 and 2 were
plotted in the horizontal and vertical directions, respectively.
Figure 10 shows that the proposed feature extraction method
provided better clustering performance than the existing
feature extraction methods considered. ULDA features 1 and
2 were also used to calculate the RES index shown with the
title of the corresponding scatter plot. 0e obtained results
also indicated that the proposed feature extraction method
provided the highest RES index compared to four existing
feature extractionmethods.0erefore, it was expected that the
proposed feature extraction method could provide the best
EMG pattern recognition performance.

3.3. EMG Pattern Recognition Performance. To find the
strength of the proposed feature extraction method in EMG
pattern recognition performance, we compared the per-
formances of the proposed feature extraction method with
four existing feature extraction methods (FS1, FS2, FS3, and
FS4).0e comparison among the feature extractionmethods
in terms of accuracy, sensitivity, specificity, precision, and F1
score is shown in Table 1. 0e table indicates that the
proposed feature extraction method achieved the highest
EMG pattern recognition performance in terms of all
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Figure 9: Block diagram of the myoelectric pattern recognition system.
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Figure 10: Continued.
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performance evaluating parameters. In this study, the FS1
achieved the second-best performance. However, we compared
this FS1 and the proposed feature extractionmethod and found
that on dataset 1 with LDA classifier, the proposed feature
extraction method improved accuracy, sensitivity, specificity,
precision, and F1 score by 1.00%, 5.01%, 0.55%, 4.71%, and
5.06%, respectively; again, on dataset 2 with LDA classifier,
these improvements in accuracy, sensitivity, specificity, preci-
sion, and F1 score were 1.18%, 5.90%, 0.66%, 5.63%, and 6.04%,
respectively. 0e higher F1 score, as found, indicated that the
true positive movements recognition rate was higher, which is
generally expected. In addition, the p value between the pro-
posed method and FS1 was less than 0.001 considering all cases
(Table 2). So, the lowest p values indicated that the proposed
method significantly improved EMG pattern recognition per-
formance. Also, the comparison is shown graphically in Fig-
ure 11where only the F1 scorewas used for simple presentation.

3.4. Performance Enhancement of Existing Feature Extraction
Methodswith the LMAVandNSV. To demonstrate the effects
of the proposed features, the LMAV andNSV, on EMGpattern
recognition performances, the considered feature extraction
methods were arranged into two groups: group 1 contained all
the existing feature extraction methods (FS1, FS2, FS3, and
FS4)mentioned in Section 2.2.2, and group 2 contained each of
the existing feature extraction methods along with the LMAV
and NSV. In this performance evaluation, we employed LDA,
SVM, and KNN classifiers and their experimental results are
shown in Tables 3–5, respectively. Again, to show this per-
formance enhancement with simplicity, we considered the F1
score for both datasets, as shown in Figure 12. 0e tables
implied that the LMAV and NSV enhanced the EMG pattern
recognition performances of the existing four feature extraction
methods with three classifiers except for a negligible degra-
dation in the performance of FS2 with the LDA classifier on

dataset 1.0e performance enhancement induced by using the
LMAV and NSV for each feature extraction method was also
validated with a Bonferroni-corrected ANOVA.0e highest p-
value between group 1 and group 2 was 0.002 (Table 6)
considering all cases except for FS2 with LDA. 0e obtained p
values indicated that the LMAV and NSV significantly en-
hanced EMG pattern recognition performance.

3.5. Movement-Wise Performance Enhancement Induced by
Using the LMAV andNSV. To determine the movement-wise
performance enhancement induced by using the LMAV and
NSV, we considered the proposed feature extraction method
which included the proposed LMAV and NSV and existing 11
time-domain features as described in Section 2.2.2. Further-
more, the EMG pattern recognition performance (F1 score)
was evaluated for existing 11 time-domain features and existing
11 time-domain features along with LMAV and NSV. In this
performance evaluation, we employed an LDA classifier with a
250ms window. Figures 13(a) and 13(b) show the performance
for dataset 1 and dataset 2, respectively. 0e figures demon-
strated that the LMAV and NSV improved the F1 score for all
the cases except for TM and HC movement of dataset 1.
Moreover, all hand movements achieved a noticeably better F1
score (up to 2.60% and 2.30% for dataset 1 and dataset 2,
respectively) for the proposed feature extraction method, the
LMAV and NSV, along with existing 11 time-domain features.
Also, the obtained p value between the overall performances of
11-features and 11-features along with the LMAV and NSV
was less than 0.001 which indicated the significant improve-
ment by the LMAV and NSV.

3.6. Impact of the LMAV and NSV on Performance En-
hancement with a Variable Window Size. To investigate the
impact of the LMAV and NSV on the performance
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Figure 10:0e scatter plot and RES index of different feature extraction methods for subject 1 of dataset 1: (a) FS1, (b) FS2, (c) FS3, (d) FS4,
and (e) the proposed method.
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enhancement with variable window size, we varied the
window size from 50ms to 350ms with an interval of 50ms.
0en, we considered the proposed feature extraction
method only where the F1 score was evaluated for existing
11 time-domain features and existing 11 time-domain
features along with LMAV and NSV using the LDA
classifier, as shown in Figure 14. 0e figure indicated that

the LMAV and NSV improved the F1 score for all window
sizes across both datasets. In addition to the F1 score,
the other performance evaluation parameters (accuracy,
sensitivity, specificity, and precision) followed the trend
of the F1 score. In this study, the SVM and KNN also
provided a similar set of consistent results compared to
those obtained under LDA. Moreover, it was also noted
that the standard deviation decreased with increasing
window size. A similar phenomenon was also observed for
the other two classifiers. In addition, we evaluated p-values
between the performances of 11-features and 11-features
along with LMAV and NSV for each window size. 0e
obtained p values between the F1 scores of 11-features and
11-features along with LMAV and NSV at various window
sizes were less than 0.001 (Table 7). 0e smallest p values
indicated that the LMAV and NSV significantly improved
EMG pattern recognition performance for variable window
sizes.

3.7. Impact of the LMAV and NSV on Performance En-
hancement with a Variable SNR. To find the strength of the
proposed LMAV and NSVwith variable SNR, we considered
the proposed feature extraction method where we mixed
AWGN artificially to the raw EMG signal which ranges from
0 dB to 20 dB with an interval of 1 dB [79, 80]. In this noise
mixing, we employed MATLAB R2017a function (awgn) to

Table 1: 0e EMG pattern recognition performances of different feature extraction methods.

Parameter Classifier FS1 FS2 FS3 FS4 Proposed

Dataset 1

Accuracy
LDA 96.79± 1.00 96.27± 0.88 96.21± 0.92 96.03± 1.05 97.79± 0.52
SVM 95.73± 0.93 95.14± 1.06 95.53± 0.93 95.66± 1.02 97.52± 0.56
KNN 94.94± 1.04 94.39± 1.12 94.95± 0.98 95.25± 1.15 97.23± 0.63

Sensitivity
LDA 83.96± 4.98 81.36± 4.38 81.03± 4.60 80.15± 5.25 88.97± 2.58
SVM 78.65± 4.67 75.70± 5.30 77.63± 4.64 78.30± 5.08 87.62± 2.80
KNN 74.71± 5.19 71.94± 5.60 74.74± 4.90 76.24± 5.77 86.16± 3.13

Specificity
LDA 98.22± 0.55 97.93± 0.49 97.89± 0.51 97.79± 0.58 98.77± 0.29
SVM 97.63± 0.52 97.30± 0.59 97.51± 0.52 97.59± 0.56 98.46± 0.35
KNN 97.19± 0.58 96.88± 0.62 97.19± 0.54 97.36± 0.64 98.62± 0.31

Precision
LDA 85.24± 4.72 82.41± 4.28 82.55± 4.49 81.41± 4.32 89.95± 2.53
SVM 79.42± 5.00 77.11± 5.13 78.83± 4.81 79.61± 5.35 88.47± 2.77
KNN 75.96± 5.19 73.59± 5.40 76.27± 4.69 77.74± 5.58 87.03± 3.11

F1 score
LDA 83.49± 5.13 80.56± 4.57 80.58± 4.69 79.41± 5.59 88.55± 2.72
SVM 78.08± 4.84 75.06± 5.41 76.97± 4.83 77.71± 5.32 87.26± 2.88
KNN 74.22± 5.26 71.38± 5.64 74.26± 4.94 75.74± 5.91 85.77± 3.24

Dataset 2

Accuracy
LDA 97.18± 0.94 96.73± 0.93 96.69± 1.07 95.78± 1.08 98.36± 0.45
SVM 96.58± 0.97 96.00± 0.85 95.88± 1.00 95.32± 1.29 98.07± 0.59
KNN 96.00± 1.08 95.54± 0.96 95.47± 1.24 94.85± 1.41 97.97± 0.66

Sensitivity
LDA 85.88± 4.72 83.66± 4.66 83.43± 5.34 78.88± 5.40 91.78± 2.25
SVM 82.88± 4.86 80.01± 4.24 79.42± 4.99 76.60± 6.44 90.34± 2.96
KNN 80.06± 5.38 77.69± 4.80 77.34± 6.20 74.25± 7.04 89.83± 3.28

Specificity
LDA 98.43± 0.52 98.18± 0.52 98.16± 0.59 97.65± 0.60 99.09± 0.25
SVM 98.10± 0.54 97.78± 0.47 97.71± 0.55 97.40± 0.72 98.93± 0.33
KNN 97.78± 0.60 97.52± 0.53 97.48± 0.69 97.14± 0.78 98.87± 0.36

Precision
LDA 87.02± 4.69 85.26± 4.31 84.79± 4.86 80.05± 4.90 92.65± 1.99
SVM 83.92± 4.92 81.51± 4.05 80.75± 5.01 78.12± 6.58 91.20± 2.68
KNN 81.62± 5.41 79.11± 4.71 78.68± 6.11 75.36± 7.28 90.70± 2.95

F1 score
LDA 85.55± 4.84 83.22± 4.68 83.14± 5.34 78.37± 5.50 91.59± 2.29
SVM 82.63± 5.01 79.78± 4.34 79.00± 5.21 76.17± 6.70 90.19± 3.02
KNN 79.87± 5.58 77.30± 5.12 77.00± 6.40 73.71± 7.33 89.70± 3.39

Table 2: 0e p values between the proposed feature extraction
method and each of the existing feature extraction methods.

Parameter Classifier FS1 FS2 FS3 FS4

Accuracy
LDA p< 0.001 p< 0.001 p< 0.001 p< 0.001
SVM p< 0.001 p< 0.001 p< 0.001 p< 0.001
KNN p< 0.001 p< 0.001 p< 0.001 p< 0.001

Sensitivity
LDA p< 0.001 p< 0.001 p< 0.001 p< 0.001
SVM p< 0.001 p< 0.001 p< 0.001 p< 0.001
KNN p< 0.001 p< 0.001 p< 0.001 p< 0.001

Specificity
LDA p< 0.001 p< 0.001 p< 0.001 p< 0.001
SVM p< 0.001 p< 0.001 p< 0.001 p< 0.001
KNN p< 0.001 p< 0.001 p< 0.001 p< 0.001

Precision
LDA p< 0.001 p< 0.001 p< 0.001 p< 0.001
SVM p< 0.001 p< 0.001 p< 0.001 p< 0.001
KNN p< 0.001 p< 0.001 p< 0.001 p< 0.001

F1 score
LDA p< 0.001 p< 0.001 p< 0.001 p< 0.001
SVM p< 0.001 p< 0.001 p< 0.001 p< 0.001
KNN p< 0.001 p< 0.001 p< 0.001 p< 0.001

Computational Intelligence and Neuroscience 11



generate an AWGN of specific dB with respect to signal and
to mix the noise with the signal. 0en, the EMG pattern
recognition performance (F1 score) was measured for the
existing 11 time-domain features and the existing 11 time-
domain features along with LMAV and NSV using an LDA
classifier. 0e EMG pattern recognition performance with
standard deviation is shown in Figure 15. 0e following
figures indicated that the EMG pattern recognition per-
formance of time-domain features was affected by different
level of AWGN; but the performance was almost stable
above the SNR value of 16 dB. Another important point
noted that the proposed LMAV and NSV contributed more
or less to enhance the performance for all SNR values and it
was valid for both datasets. Another important point noted
that the proposed LMAV and NSV significantly contributed

to enhancing the EMG pattern recognition performance
from the SNR value of 17 dB to 20 dB since the p values were
less than 0.01 (Table 8).

4. Discussion

Biosignals, such as those from electroencephalograms
(EEGs), EMGs, electrocardiograms (ECGs), and photo-
plethysmograms (PPGs), have been widely investigated in
the diagnosis of diseases and the real-time monitoring of
patients [81–84]. Among these biosignals, EMG signals
are widely studied as a control signal for prosthetic hands
[9]. However, there is an industrial demand for providing
amputees with a low-cost prosthetic hand that has reli-
able pattern recognition performance. Generally, the cost

70

75

80

85

90

95

LDA SVM KNN

F1
 S

co
re

 (%
)

FS1
FS2
FS3

FS4
Proposed

(a)

70

75

80

85

90

95

LDA SVM KNN

F1
 S

co
re

 (%
)

FS1
FS2
FS3

FS4
Proposed

(b)

Figure 11: 0e F1 score of different feature extraction methods: (a) dataset 1 and (b) dataset 2.

Table 3:0e EMG pattern recognition performance enhancement of existing feature extractionmethods by the LMAV and NSVwhen LDA
classifier is used.

Parameter Group FS1 FS2 FS3 FS4

Dataset 1

Accuracy Group 1 96.79± 1.00 96.27± 0.88 96.21± 0.92 96.03± 1.05
Group 2 97.10± 0.62 96.23± 0.81 96.62± 0.86 96.54± 0.91

Sensitivity Group 1 83.96± 4.98 81.36± 4.38 81.03± 4.60 80.15± 5.25
Group 2 85.48± 3.09 81.16± 4.05 83.10± 4.28 82.68± 4.55

Specificity Group 1 98.22± 0.55 97.93± 0.49 97.89± 0.51 97.79± 0.58
Group 2 98.39± 0.34 97.91± 0.45 98.12± 0.48 98.08± 0.51

Precision Group 1 85.24± 4.72 82.41± 4.28 82.55± 4.49 81.41± 4.32
Group 2 86.89± 3.09 82.66± 4.00 84.54± 4.20 84.00± 4.48

F1 score Group 1 83.49± 5.13 80.56± 4.57 80.58± 4.69 79.41± 5.59
Group 2 84.94± 3.32 80.33± 4.21 82.62± 4.42 82.10± 4.75

Dataset 2

Accuracy Group 1 97.18± 0.94 96.73± 0.93 96.69± 1.07 95.78± 1.08
Group 2 97.87± 0.64 97.02± 0.84 97.48± 0.78 96.71± 0.86

Sensitivity Group 1 85.88± 4.72 83.66± 4.66 83.43± 5.34 78.88± 5.40
Group 2 89.34± 3.19 85.08± 4.20 87.39± 3.91 83.53± 4.28

Specificity Group 1 98.43± 0.52 98.18± 0.52 98.16± 0.59 97.65± 0.60
Group 2 98.82± 0.35 98.34± 0.47 98.60± 0.43 98.17± 0.48

Precision Group 1 87.02± 4.69 85.26± 4.31 84.79± 4.86 80.05± 4.90
Group 2 90.49± 2.66 86.51± 3.78 88.60± 3.53 84.96± 4.07

F1 score Group 1 85.55± 4.84 83.22± 4.68 83.14± 5.34 78.37± 5.50
Group 2 89.14± 3.19 84.76± 4.26 87.14± 3.95 83.19± 4.32
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is minimized by reducing the number of channels and the
degrees of freedom used [85]. One of the inherent reasons
for compromising on the degrees of freedom in a low-cost
myoelectric pattern recognition system is the least sep-
arable margin among the movements considered, espe-
cially among the movements possessing weak signal
strengths [32, 48]. 0erefore, the objective of this work is
to obtain improved EMG pattern recognition perfor-
mance with a minimal number of channels. To reach this
goal, nonlinear scaling-based features, the LMAV and
NSV, were proposed. 0e LMAV and NSV enhanced the

EMG pattern recognition performance when the LMAV
and NSV were grouped with each of the existing feature
extraction methods considered (FS1, FS2, FS3, and FS4).
0is performance enhancement indicated that the LMAV
and NSV added some new information to the existing
feature extraction methods due to the use of nonlinear
scaling on the signal amplitude rather than using the
original signal amplitude used in [26]. 0e nonlinear
scaling operation yielded higher discrimination among
weak signals than strong signals and thus contributed to
the performance enhancement. In this study, we also

Table 4:0e EMGpattern recognition performance enhancement of existing feature extractionmethods by the LMAV andNSVwhen SVM
classifier is used.

Parameter Group FS1 FS2 FS3 FS4

Dataset 1

Accuracy Group 1 95.73± 0.93 95.14± 1.06 95.53± 0.93 95.66± 1.02
Group 2 96.74± 0.69 95.81± 0.84 95.84± 0.90 96.02± 1.00

Sensitivity Group 1 78.65± 4.67 75.70± 5.30 77.63± 4.64 78.30± 5.08
Group 2 83.68± 3.43 79.06± 4.20 79.19± 4.50 80.10± 5.02

Specificity Group 1 97.63± 0.52 97.30± 0.59 97.51± 0.52 97.59± 0.56
Group 2 97.97± 0.46 97.44± 0.54 97.44± 0.55 97.64± 0.65

Precision Group 1 79.42± 5.00 77.11± 5.13 78.83± 4.81 79.61± 5.35
Group 2 84.59± 3.55 80.28± 3.91 80.21± 4.71 81.20± 5.11

F1 score Group 1 78.08± 4.84 75.06± 5.41 76.97± 4.83 77.71± 5.32
Group 2 83.18± 3.62 78.43± 4.27 78.67± 4.69 79.49± 5.22

Dataset 2

Accuracy Group 1 96.58± 0.97 96.00± 0.85 95.88± 1.00 95.32± 1.29
Group 2 97.51± 0.76 96.63± 0.78 96.73± 0.71 95.95± 0.92

Sensitivity Group 1 82.88± 4.86 80.01± 4.24 79.42± 4.99 76.60± 6.44
Group 2 87.53± 3.79 83.13± 3.90 83.63± 3.56 79.75± 4.59

Specificity Group 1 98.10± 0.54 97.78± 0.47 97.71± 0.55 97.40± 0.72
Group 2 98.61± 0.42 98.13± 0.43 98.18± 0.40 97.75± 0.51

Precision Group 1 83.92± 4.92 81.51± 4.05 80.75± 5.01 78.12± 6.58
Group 2 88.56± 3.49 84.38± 3.51 84.85± 3.38 81.33± 4.38

F1 score Group 1 82.63± 5.01 79.78± 4.34 79.00± 5.21 76.17± 6.70
Group 2 87.40± 3.85 82.98± 3.98 83.39± 3.68 79.51± 4.67

Table 5: 0e EMG pattern recognition performance enhancement of existing feature extraction methods by the LMAV and NSV when
KNN classifier is used.

Parameter Group FS1 FS2 FS3 FS4

Dataset 1

Accuracy Group 1 94.94± 1.04 94.39± 1.12 94.95± 0.98 95.25± 1.15
Group 2 96.35± 0.82 95.39± 0.97 95.40± 0.99 95.76± 1.17

Sensitivity Group 1 74.71± 5.19 71.94± 5.60 74.74± 4.90 76.24± 5.77
Group 2 81.76± 4.11 76.97± 4.84 76.98± 4.97 78.80± 5.86

Specificity Group 1 97.19± 0.58 96.88± 0.62 97.19± 0.54 97.36± 0.64
Group 2 98.19± 0.38 97.67± 0.47 97.69± 0.50 97.79± 0.56

Precision Group 1 75.96± 5.19 73.59± 5.40 76.27± 4.69 77.74± 5.58
Group 2 83.04± 3.97 78.21± 4.69 78.43± 4.71 80.10± 5.53

F1 score Group 1 74.22± 5.26 71.38± 5.64 74.26± 4.94 75.74± 5.91
Group 2 81.25± 4.23 76.39± 4.93 76.52± 4.97 78.32± 5.85

Dataset 2

Accuracy Group 1 96.00± 1.08 95.54± 0.96 95.47± 1.24 94.85± 1.41
Group 2 97.15± 0.91 96.40± 0.88 96.36± 0.76 95.49± 1.04

Sensitivity Group 1 80.06± 5.38 77.69± 4.80 77.34± 6.20 74.25± 7.04
Group 2 85.74± 4.54 82.00± 4.38 81.80± 3.79 77.47± 5.19

Specificity Group 1 97.78± 0.60 97.52± 0.53 97.48± 0.69 97.14± 0.78
Group 2 98.42± 0.50 98.00± 0.49 97.98± 0.42 97.50± 0.58

Precision Group 1 81.62± 5.41 79.11± 4.71 78.68± 6.11 75.36± 7.28
Group 2 86.81± 4.19 83.36± 4.24 83.17± 3.55 79.15± 4.54

F1 score Group 1 79.87± 5.58 77.30± 5.12 77.00± 6.40 73.71± 7.33
Group 2 85.54± 4.76 81.73± 4.60 81.61± 3.88 77.15± 5.37
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Figure 12: 0e F1 score enhancement of existing feature extraction methods with the LMAV and NSV: (a) dataset 1 and (b) dataset 2.

Table 6: 0e p values between group 1 and group 2.

Parameter Classifier FS1 FS2 FS3 FS4

Accuracy
LDA 0.001 0.210 p< 0.001 p< 0.001
SVM p< 0.001 p< 0.001 p< 0.001 p< 0.001
KNN p< 0.001 p< 0.001 p< 0.001 p< 0.001

Sensitivity
LDA 0.001 0.194 p< 0.001 p< 0.001
SVM p< 0.001 p< 0.001 p< 0.001 p< 0.001
KNN p< 0.001 p< 0.001 p< 0.001 p< 0.001

Specificity
LDA 0.002 0.199 p< 0.001 p< 0.001
SVM p< 0.001 p< 0.001 p< 0.001 p< 0.001
KNN p< 0.001 p< 0.001 p< 0.001 p< 0.001

Precision
LDA 0.001 0.069 p< 0.001 p< 0.001
SVM p< 0.001 p< 0.001 p< 0.001 p< 0.001
KNN p< 0.001 p< 0.001 p< 0.001 p< 0.001

F1 score
LDA 0.002 0.198 p< 0.001 p< 0.001
SVM p< 0.001 p< 0.001 p< 0.001 p< 0.001
KNN p< 0.001 p< 0.001 p< 0.001 p< 0.001
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Figure 13: Movement-wise performance enhancement by using the LMAV and NSV using LDA classifier: (a) dataset 1 and (b) dataset 2.
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proposed a combined feature extraction method, in-
cluding the proposed LMAV and NSV, along with the
existing WL, WAMP, SSC, ZC, MOB, COM, SKW, and
four autoregressive coefficients, which achieved the
highest EMG pattern recognition performance in terms
of accuracy, sensitivity, specificity, precision, and F1
score compared with the existing feature extraction
methods [38, 39, 65, 66]. However, the proposed feature
extraction method enhanced accuracy, sensitivity, spec-
ificity, precision, and F1 score by 1.00%, 5.01%, 0.55%,
4.71%, and 5.06%, respectively. Additionally, on dataset 2
with LDA classifier, the proposed method improved
accuracy, sensitivity, specificity, precision, and F1 score
by 1.18%, 5.90%, 0.66%, 5.63%, and 6.04%, respectively.

In this study, the LMAV and NSV were validated
across two identical EMG datasets (one newly collected in
our lab and one standard), where each of the datasets
employed two channels and five individuals and five
combined finger movements. However, these datasets
employed distinct acquisition systems, electrodes, pro-
cessing circuits, numbers of bits for ADC, and sampling
frequencies. Again, an interesting finding was that the
proposed LMAV and NSV contributed to improved EMG
pattern recognition performances for both datasets; this
proved the strength of the LMAV and NSV for the
standard dataset and the experimental dataset that we
collected from our experimental acquisition system.

Again, the LMAV and NSV yielded consistent perfor-
mance enhancements over window sizes ranging from 50ms
to 350ms, thereby ensuring the applicability of the LMAV
and NSV over various window sizes. In this evaluation, we
considered the maximum window size to be 350ms since a
disjoint window size higher than 250ms did not contribute
to significantly enhancing the EMG pattern recognition
performance and increasing the system delay [70]. In ad-
dition, the most noticeable characteristics of the LMAV and
NSV were that the proposed features mostly improved the
movement-wise F1 score (up to 2.60% and 2.30% for dataset
1 and dataset 2, respectively), and this enhanced the strength
of the LMAV and NSV.

It was also important to note that the proposed feature
extraction method showed stable EMG pattern recognition
performances across the LDA, SVM, and KNN classifiers.
0erefore, the proposed feature extraction method pro-
vided an option when choosing a classifier for a given
requirement.

Our study has some limitations. Dataset 1 was collected
using a wet electrode; so, the noise in no movement con-
dition was very less compared to the EMG signal during
muscle contraction (average SNR lies between 5 dB and
23 dB). But, in the case of using a dry electrode, the noise
may increase including power line artefacts and AWGN. So,
to generate the noisy condition artificially, the EMG signal
was contaminated with AWGN using MATLAB R2017a
environment [79]. At low SNR values, the EMG pattern
recognition performance of the proposed feature extraction
method was found less in comparison with the performance
at high SNR, but everywhere the proposed features (LMAV
and NSV) contributed more or less to enhancing the per-
formance. Again, the current EMG pattern recognition
performance included steady-state EMG datasets (dataset 1
and dataset 2) only, but a real-time prosthetic control in-
cluded both steady-state and transient condition. So, further
study is required considering dry electrodes and transient
condition. In addition to these, the contribution of the newly
proposed LMAV and NSV in terms of pattern recognition
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Figure 14: 0e impact of the LMAV and NSV on F1 score with variable window size using LDA classifier: (a) dataset 1 and (b) dataset 2.

Table 7: 0e p values between the F1 scores of 11-features and 11-
features along with LMAV and NSV at various window size.

Window size (ms) p value
50 p< 0.001
100 p< 0.001
150 p< 0.001
200 p< 0.001
250 p< 0.001
300 p< 0.001
350 p< 0.001
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performance will be investigated for a multichannel elec-
trode array. A similar investigation will also be carried out
for the proposed feature extraction method. In addition, the
performance of the proposed feature extraction method on
the other physiological will be investigated.

5. Conclusions

Two nonlinear scaling-based features, the LMAV and NSV,
are proposed and validated across two datasets for four
existing feature extraction methods and three classifiers.
0e experimental results indicate that the proposed
features significantly enhance the EMG pattern recognition
performances yielded when they are grouped with the
existing feature extraction methods. It is also mentioned

that the important strengths of the proposed features are
stable performance enhancements on both datasets, with
classifiers, under a variable window size and a variable SNR.
In addition to the newly proposed features, we also propose a
combined feature extraction method (the LMAV and NSV
along with the existing 11 time-domain features), which
achieves the best performances on both datasets and with all
three classifiers. In this study, FS1 with the LMAV and NSV
achieves the second-best EMG pattern recognition perfor-
mance across all cases. Moreover, it is also noted that the
LDA classifier provides better performance than the SVM
and KNN.
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