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Deep learning uses mechanical time-frequency signals to train deep neural networks, which realizes automatic feature extraction
and intelligent diagnosis of fault features and gets rid of the dependence on a large number of signal processing technology and
experience. Aiming at the problem of misclassi�cation of similar samples, a fault diagnosis algorithm based on adaptive hi-
erarchical clustering and subset (AHC-SFD) is proposed to extract features and applied to gearbox fault diagnosis. Firstly, the
adaptive hierarchical clustering algorithm is used to analyze the characteristics of di�erent data, and then the data set is clustered
into multiple feature groups; �nally, according to the feature group, the SubCNN model is established for multiscale feature
extraction, so as to carry out fault diagnosis. �e test results show that the fault recognition rate achieved by the proposed method
is more than 99.7% on the gearbox dataset, and the method has better generalization ability.

1. Introduction

Major accidents caused by mechanical equipment failure [1]
constantly alert people to ensure the safe and reliable op-
eration of equipment, especially the mechanical equipment
failure at the key core of the production line will bring
signi�cant shutdown losses to the whole production line, not
only causing huge economic losses, but also endangering
personal safety in serious cases. �e online monitoring, fault
diagnosis, and prediction of mechanical equipment [2, 3]
play an important role in improving equipment operation
reliability, optimizing operation and maintenance strategies,
and are crucial to the maintenance of mechanical equip-
ment. Traditional intelligent fault diagnosis methods need to
master a large number of signal processing techniques to
extract relatively accurate feature parameters. At the same
time, if the shallow model is used to characterize the

relationship between signal and fault, and the diagnosis
ability and generalization ability are insu�cient, it is di�cult
to meet the actual needs of fault diagnosis under big data.

In recent years, the application of deep learning in fault
diagnosis of complex industrial systems has begun to take
shape [4]. Lei et al. [5, 6] proposed a big data health moni-
toring method based on denoising self-encoder (DAE) for
mechanical equipment, which has realized a variety of fault
diagnosis for planetary gears, re�ecting the powerful ability of
deep learning to extract mechanical vibration signal char-
acteristics. Yu and Zhao [7–9] e�ectively integratedDAE and
EN to solve the problem of noise interference in fault diag-
nosis, e�ectively detect abnormal samples in industrial
processes, and isolate fault variables from normal variables.
Nguyen et al. [10–12] proposed a deep learning network
composed of automatic encoder and softmax classi�er to
identify bearing faults of di�erent degrees. DBN is more

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6464516, 10 pages
https://doi.org/10.1155/2022/6464516

mailto:haohj@sdas.org
https://orcid.org/0000-0002-5364-135X
https://orcid.org/0000-0003-0088-3774
https://orcid.org/0000-0001-5421-2816
https://orcid.org/0000-0003-2093-3740
https://orcid.org/0000-0002-2723-4697
https://orcid.org/0000-0002-2026-8018
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6464516


combined with other technologies to solve the problem of
fault diagnosis. Since CNNwas used to identify bearing faults
in 2016, fault diagnosis performance and scope of application
have been continuously improved. Hoang and Kang [13–16]
proposed a new method based on CNN for rolling bearing
fault diagnosis. By using the effectiveness of CNN in image
classification, theCWRUbearing data set can achieve 100%
diagnosis accuracy. Based on resnet-50, a transfer learning
convolution neural network TCNN is proposed by Wen
et al. [17, 18] for fault diagnosis, and the prediction ac-
curacy is significantly better than other DL models and
traditional diagnosis methods. 'e application of RNN in
fault diagnosis began to recover in 2015. Abed et al. [19, 20]
used RNN for bearing fault diagnosis and realized accurate
detection and classification of bearing faults under non-
stationary conditions. Pan et al. [21–23] proposed amethod
for bearing fault classification by combining one-dimen-
sional CNN and LSTM, and the experimental test accuracy
is 99.6%.

Although the above algorithm has been applied in
mechanical equipment fault diagnosis, there is still a lot of
room to improve the fault recognition rate. Feature ex-
traction is a key part of fault diagnosis. It is found that for
samples with similar features and belonging to different
patterns, a single model will extract similar features,
resulting in false recognition [24] and a reduction in the
accuracy of fault diagnosis. In view of the above problems,
referring to the idea of subset [25, 26], this study proposes
a multiscale feature extraction fault diagnosis algorithm
model AHC-SFD based on adaptive hierarchical clus-
tering and applied to gearbox fault diagnosis. 'e test
results show that the proposed method can achieve the
fault recognition rate achieved by the proposed method is
more than 99.7% on the gearbox dataset and has better
generalization ability.

2. Gear Fault Diagnosis Algorithm Based on
Adaptive Hierarchical Clustering and Subset

Gear boxes generally work in the environment with strong
noise and complex structure, and the collected vibration
signals are easily affected by external factors. To fully develop
the feature extraction ability of the CNN network, this study
proposes a fault diagnosis algorithm based on adaptive
hierarchical clustering and subset. First, all data obtained the
optimal clustering results through adaptive hierarchical
clustering, and a multiscale feature extraction module is
designed according to the clustering results to realize the
classification of fault data.

2.1. AdaptiveHierarchical Clustering. 'enumber of clusters
is an important parameter that affects the clustering effect, but
before clustering, it is often necessary to set the number of
clusters to take a fixed value. As the amount of data changes,
the original parameter values cannot optimize the clustering
result of the algorithm. Combined with the characteristics of
vibrationsignals, anadaptivehierarchical clustering (DIANA)
algorithm is proposed in this study. 'e clustering contour

coefficient is used as the index of clustering effectiveness
evaluation, so that it can adaptively determine the number of
clusters according to the value of self-defined discriminant
function. 'e process is shown in Figure 1.

'e specific algorithm flow chart is as follows:

(1) Extract the average value of each original vibration
signal to form a feature sample set X � x1, x2, . . . ,􏼈

xnum} , U � u1, u2, . . . , uC􏼈 􏼉 indicates fault type set
(2) Start clustering, make k � 0, smax � −∞;
(3) Let k � k + 1, take k as the number of clusters, and

perform hierarchical clustering on the input training
samples (DIANA);

(4) Calculate the contour coefficient s(k),

a(i) �
1

nc − 1
􏽘

j∈Cc,i≠ j

d(i, j). (1)

In equation (1), nc represents the number of samples
of class c, Cc represents the samples of class c, and
d(i, j) represents the absolute distance between
samples i and j;
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Figure 1: Adaptive hierarchical clustering flow chart.
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b(i) �

min

p, p≠ c

1
np

􏽘
j∈Cp,i∈Cc

d(i, j)].
⎡⎢⎢⎢⎢⎢⎣ (2)

In equation (2), p denotes a mark other than Class c,
np represents the number of samples not of class c,
Cp represents a sample that is not class c, Cc is the
sample of class c, and d(i, j) is the absolute distance
between samples i and j;

s(i) �
b(i) − a(i)

max[a(i), b(i)]
. (3)

In equation (3), a(i) represents the average distance
between sample i and all other samples belonging to
the same type of fault, and b(i) represents the
minimum value of the average distance between
sample i and all samples in each class of nonclass i

fault;

s(k) �
1

num
􏽘

num

i�1
si. (4)

In equation (4), si is the contour coefficient of the
sample individual, num is the number of samples in
the feature sample set, and k is the number of clusters;

(5) When s(k)> smax, then s Index � k and smax � s(k),
perform step 7;

(6) When s(k)≤ smax, return to step 3;
(7) Judge whether k is less than n, where n indicates the

number of dataset types:
When k≥ n, s Index is the number of clusters and
the clustering results are output;
When k< n, repeat step 3.

2.2. Multiscale (Subset) Feature Extraction. In order to
maximize the extraction of feature information from
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Figure 2: Multiscale feature extraction module.
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training data and quickly realize iteration, this study designs
a multilayer and multichannel multiscale feature extraction
module based on the CNN. 'e structure is shown in
Figure 2. 'e branch structure of each subset (12 layers in
total) is the same, in which the convolution kernel sizes of
the 8-layer convolution layers are 1∗ 8, 1∗ 8, 1∗ 4, 1∗ 4,
1∗ 4, 1∗ 2, and 1∗ 2, the number of channels is set to 16, 16,
64, 64, 256, 256, 512, and 512, and the step size is set to 2, 2, 2,
2, 2, 1, and 1. 'e relu activation function is used behind
each convolution layer, and the max pool layer of 4 adopts
the 1∗ 2 structure. Finally, the extracted feature information
is output.

2.3. AHC-SFD Diagnostic Algorithm. 'e flow chart of
adaptive hierarchical clustering and subset fault diagnosis
proposed in this study is shown in Figure 3. 'e mean value
of each vibration signal is used as the input of adaptive
hierarchical clustering to obtain the optimal clustering

results. 'e labeled samples corresponding to the results are
input to the multiscale feature extraction module to obtain
more effective fault data features. Finally, the features
extracted by the multifeature extraction module are trans-
formed into one-dimensional data through the fully con-
nected layer. Output the fault diagnosis result through
softmax function.

3. Experimental Verification and Analysis

In order to evaluate the effectiveness and accuracy of fault
diagnosis of the AHC-SFD network model, the gearbox
dataset is used for experimental verification. 'e data are
collected from a reference two-stage gearbox, the gear speed
is controlled by a motor, and the torque is provided by a
magnetic brake, which can be adjusted by changing its input
voltage. A 32-tooth pinion and an 80-tooth pinion are in-
stalled on the first stage input shaft, the second stage consists
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Figure 3: Flow chart of adaptive hierarchical clustering and subset fault diagnosis.
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Figure 4: Gearbox experimental system.
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of a 48-tooth pinion and a 64-tooth pinion. Input shaft speed
is measured by tachometer, and gear vibration signal is
measured by accelerometer, as shown in Figure 4.

3.1. Fault Dataset Description and Processing. 'e pinion on
the input shaft introduces 9 different gear conditions, in-
cluding five different severity labels, such as health, missing
teeth, root cracking, peeling, and tip cutting. 'e number
of samples in each status tag is the same.'e collected data
are roughly divided into training samples and test samples
in the proportion of 4 : 1. Each sampling sample is set to
3600 points. 'e dataset is described in Figures 5–13 and
Table 1.

3.2. Adaptive Hierarchical Clustering

3.2.1. Refactoring Input Data Format. 'e dataset collected
by the test-bed is a one-dimensional vibration signal se-
quence. In order to reduce the clustering time and carry out
the adaptive hierarchical clustering operation quickly and

effectively, this study takes the one-dimensional vibration
signal with 3600 sampling points as the average value and
takes the average value as the input value of the adaptive
hierarchical clustering. 'e specific operation is as follows:
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X �
􏽐

3600
i�1 xi

3600
. (5)

In equation (5), xi represents the i-th eigen value of a
sample and X represents the average value of a sample.

3.2.2. Result Output. 'e principle of adaptive clustering is
to obtain a certain clustering result, so that the distance
between classes is as large as possible, the distance within a
class is as small as possible, and the classes have good
separability. It can be seen from 2.1 that the cluster contour
coefficient is used as the index for cluster effectiveness
evaluation in this study. 'e closer the cluster contour
coefficient is to 1, the better the clustering result is.'e closer
it is to −1, the worse the clustering result is. In this study, the
number of clusters is set between [1, 9]. During clustering,
the cluster contour coefficients obtained with the change of
the number of clusters is shown in Figure 14. It can be clearly
seen that when the number of clusters are 2, the cluster
contour coefficient (Sk) is the largest. 'erefore, the branch
of the multiscale feature extraction module is set to 2.

3.3. Improved CNN Network

3.3.1. Grouping Label Data According to Clustering Results.
Use labeled data; the labeled data samples are
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), ym), x(i) represents the
feature vector, and y(i) ∈ 1, 2, . . . , t{ } represents the fault
type. According to the clustering results in 3.2.2, the label
data (one-dimensional vibration signal) is divided into two
groups. 'e two groups are divided into training samples
and test samples according to the ratio of 39 :11 and 19 : 6,
respectively. 'e description of the training and testing
datasets is shown in Table 2.

3.3.2. Data Standardization Operation. In order to better
speed up the network model training, make the data easy to
calculate and obtain more generalized results, the input data
are standardized, and the vibration signal data aremapped to
the (0,1) interval by using the normalization equation. 'e
mathematical expression is as follows:
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Figure 10: Tip cutting4.
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zi �

xi −
min

1≤f≤F

xf􏽮 􏽯

max

1≤f≤F
xf􏽮 􏽯 −

min

1≤f≤F
xf􏽮 􏽯

. (6)

In equation (6), zi represents the preprocessed data,
xirepresents the frequency value of the vibration signal,
min
1≤f≤F

xf􏽮 􏽯 and max
1≤f≤F

xf􏽮 􏽯 represent the minimum

and maximum values of frequency in each group of vi-
bration signals, and f represents the number of each vi-
bration signal.

3.3.3. Diagnostic Result Output. In order to evaluate the
difference between the normalized prediction result and the
corresponding sample label, the cross entropy function is
used to calculate the error loss value. 'e mathematical
expression is as follows:

J(θ) � −
1
m

􏽘

m

i�1
􏽘

t

r�1
I y

(i)
� r􏽮 􏽯 × log

e
xt

iΔck

􏽐
m
k�1 e

xt
iΔck

⎛⎝ ⎞⎠. (7)

In equation (7), J(θ) represents the loss function, I Δ{ }

represents the logical indication function (when the value is
true, I� 1, otherwise I� 0), and y(i) represents the i-th real
label of the fault.

'e weight matrix θ is iteratively updated by means of
gradient descent. 'e iterative equation is as follows:

θj � θj − α
zJ(θ)

zθj

. (8)

In equation (8), θj represents the weight matrix of the j-
th update.

3.3.4. Model Parameter Structure. 'e experiment was
implemented on a Linux computer using Pycharm platform,
Python as the programming language, and PyTorch deep
learning framework.

During network training based on stochastic gradient de-
scent, the multilayer back-propagation of the error signal can
easily lead to “gradient dispersion” (too small gradient will make
the returned training error signal extremely weak) or “gradient
explosion” (too large gradient will lead to Nan in the model).
With the increase of network depth, training becomesmore and
more difficult. Considering the network lightweight, during the
experiment, the Adam optimizer is used to continuously update
the network training parameters. 'e batch size is set to 30 and
the number of iterations is 200. 'is study introduces the early
stopping mechanism. By monitoring the changing value of the
training set loss function between adjacent iterations during the
training process, early stopping can terminate themodel training
in time to prevent the model from overfitting. 'e learning rate
is 0.0005.'emodel is built on the basis of convolutional neural
network model, so the parameter design is similar to the
convolutional neural network, and the parameter design is
shown in Table 3.

Table 1: Gearbox dataset.

Fault information Sample information Category information
Fault type Fault degree Sample length Number of samples Category tag
Health 0 3600 104 0
Missing tooth 0 3600 104 1
Root crack 0 3600 104 2
Spalling 0 3600 104 3

Tip cutting

5 (lightest) 3600 104 4
4 3600 104 5
3 3600 104 6
2 3600 104 7

1 (most serious) 3600 104 8
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Figure 14: Cluster contour coefficients of different cluster
numbers.

Table 2: Training test dataset.

Grouping
information

'e number of training
samples

'e number of test
samples

Group I 360 102
Group II 360 104
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Table 3: Parameter design.

'e number of layers Structure name Structural parameters 'e number of channels Output size
Input (1,3600) 1 (1,3600)

1 Convolution layer (1,8,2) 16 (1,1797)
2 Convolution layer (1,8,2) 16 (1,895)
3 Pool layer (1,2) (1,447)
4 Convolution layer (1,4,2) 64 (1,222)
5 Convolution layer (1,4,2) 64 (1,110)
6 Pool layer (1,2) (1,55)
7 Convolution layer (1,4,2) 256 (1,26)
8 Convolution layer (1,4,2) 256 (1,12)
9 Pool layer (1,2) (1,6)
10 Convolution layer (1,2,1) 512 (1,5)
11 Convolution layer (1,2,1) 512 (1,4)
12 Pool layer (1,2) (1,2)
13 Full connection layer (1024) (1024)
14 Full connection layer (50) (50)
15 Output layer (9) (9)
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Figure 15: AHC-SFD and CNN experimental results.
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3.4.ResultAnalysis. To verify whether the method has a high
diagnostic rate and good generalization ability, the experi-
mental results in this study are compared with those using
only the CNN. 'e experimental results are shown in
Figure 15.

'e comparison results of AHC-SFD and CNN on the
test set are shown in Figure 16.

It can be seen from the comparison results in Figures 15
and 16 that after 140 epochs, the accuracy of AHC-SFD
algorithm on the test set reaches 99.7%, while the accuracy of
the CNN algorithm on the test set is only 98.9%. 'erefore,
the diagnostic methods in this study tend to be faster, more
stable, with higher accuracy and stronger generalization
ability.

In order to further demonstrate the learning ability of the
model for different categories of features, the t-SNE di-
mension reduction algorithm in flow pattern learning is
introduced to visualize the features learned by the full
connected layer. 'e experimental results are shown in
Figure 17.

It can be seen from the scatter plot Figure 17 that the
method AHC-SFD in this study has identification errors in
the samples of class 0 and class 7, and the other samples are
gathered at the corresponding positions. However, CNN
features have recognition errors in class 1, class 2, class 5, and
class 8 samples, and there are many overlaps in class 1 and
class 5 samples. It can be seen that AHC-SFD has stronger
feature learning ability than the CNN.

4. Conclusion

'e AHC-SFD algorithm established in this study is a di-
agnosis algorithm based on adaptive hierarchical clus-
tering and subset, which has the following three
advantages: (1) the AHC-SFD algorithm directly takes the

original vibration signal as the input of 1D-CNN, which
can obtain the characteristics of vibration signal to
the greatest extent. (2) A grouping method based on
adaptive hierarchical clustering is proposed, which ana-
lyzes the characteristics of different data and then clusters
the dataset into multiple feature groups. (3) A multiscale
feature extraction module is proposed to reduce the
misclassification of similar samples, thus ensuring the
maximum extraction of effective information into
the data. It is verified on the gearbox dataset that the
diagnostic accuracy is better than the single-channel CNN
model.
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