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Human cognition is in�uenced by the way the nervous system processes information and is linked to this mechanical explanation of
the human body’s cognitive function. Accuracy is the key emphasis in neuroscience which may be enhanced by utilising new
hardware, mathematical, statistical, and computational methodologies. Feature extraction and feature selection also play a crucial
function in gaining improved accuracy since the proper characteristics can identify brain states e�ciently. However, both feature
extraction and selection procedures are dependent on mathematical and statistical techniques which implies that mathematical and
statistical techniques have a direct or indirect in�uence on prediction accuracy. ­e forthcoming challenges of the brain-computer
interface necessitate a thorough critical understanding of the complicated structure and uncertain behavior of the brain. It is
impossible to upgrade hardware periodically, and thus, an option is necessary to collectmaximum information from the brain against
varied actions. ­e mathematical and statistical combination could be the ideal answer for neuroscientists which can be utilised for
feature extraction, feature selection, and classi�cation. ­at is why in this research a statistical technique is o�ered together with
specialised feature extraction and selection methods to increase the accuracy. A score fusion function is changed utilising an
enhanced cumulants-driven likelihood ratio test employing multivariate pattern analysis. Functional MRI data were acquired from
12 patients versus a visual test that comprises of pictures from �ve distinct categories. After cleaning the data, feature extraction and
selection were done using mathematical approaches, and lastly, the best match of the projected class was established using the
likelihood ratio test. To validate the suggested approach, it is compared with the current methods reported in recent research.

1. Introduction

­e signi�cance of neuroscience has become iconic in recent
years due to the demand for intelligent systems in daily life.
In the last decade, neuroscience becomes very famous due to
its tremendous advances and applications. Neuroscientists
from all over the world have progressed in this area; indi-
vidual investigators also played a vital role in this �eld and
worked in small groups on speci�c projects. Since neuro-
science is an emerging �eld and has enormous applications,

and therefore, during the last decade, a huge amount of
funding is provided. In 2013, US President approved a grant
of USD 100 million to unlock the mysteries of the brain [1].
Similarly, in 2013, the European Union [2] also approved
funding of 1 billion Euros for human brain projects. ­e
main driving force in the �eld is the impact of brain disease
on the population and the knowledge gaps in neuroscience,
requiring a collaborative large-scale e�ort of scientists. ­e
increasing demand for this �eld is due to its strength as it can
be used in various �elds. From medical to defense, it can be
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used in any field including trials in court and as a basic
research tool. Previously, it was used as evidence by the court
in India [3], also used in various medical applications [4],
and can be used for defense purposes [5, 6]. It can also be
used to see the effect of the brain on various products. A
blind test was done between Pepsi and Coke based on
functional magnetic resonance imaging (fMRI) data to see
which one is better [7]. *e results showed that although
Coke is a more valuable and successful brand, more people
liked Pepsi. In Baylor College of Medicine, Houston per-
formed another research in which fMRI data were used to
see the brain activations for the taste of Pepsi and Coke [8].
*e participants drank Pepsi or Coke and different parts of
the brain light up depending on the cola being drunk. A
linear regression analysis using behavioral preferences in-
dicated the difference in brain responses evoked by Coke and
Pepsi in the ventromedial prefrontal cortex. *e average
count was higher for labeled Coke compared to the labeled
Pepsi. *is shows that high activation was found when the
participant drank their favorite cola. It is concluded that if
acceptable accuracy can be achieved, then the prediction of
the human brain can help in many applications including
medical and health care.

In the above paragraph, the importance of prediction is
discussed that how it can change our lives. Although several
other applications are dependent on this field [9–11], the
purpose of this paper is not to mention all the applications as
they will be beyond the scope. *e primary question that
arises in the current situation is why we are not using this
field for various applications as discussed above, for ex-
ample, in court trials, and it is easy to predict from a sus-
pect’s brain measure whether he/she is involved in crime or
not. *e answer is it is not possible till now due to limited
accuracy and reliability.

*is research work comes under the field of computa-
tional neuroscience which uses theoretical neuroscience to
validate and crack computational models. *is should also be
seen as a domain of theoretical neuroscience, but both areas
are mostly related. *e word mathematical neuroscience is
used to emphasize the numerical character of the discipline
occasionally [12, 13]. Computational neuroscience focuses on
the description and physiology of biologically plausible
neurons (and neural systems) as well as their dynamics, but
biologically unreal models used for relativism, theory of
control, cybernetics, quantitative psychology, machine
learning, artificial neural networks, artificial intelligence, and
computer education are not directly involved [14, 15]. While
there is shared motivation and often no strict boundary
within disciplines, paradigm abstractions depend on the
complexity of the study and on the functionality by which
biological structures are evaluated in computational neuro-
science. In the current study, a method is proposed that can
improve the accuracy and hence make this field more reliable.
*ere are different steps from experiment design to the
prediction of the class including data collection, feature ex-
traction, and selection as shown in Figure 1. Different studies
focused on different steps, but the common goal was to
achieve better accuracy [16, 17]. For example, a better ex-
periment design can improve prediction accuracy, and

similarly, by collecting quality data, accuracy can be im-
proved. In short, the current research is mainly focusing on
the analysis of fMRI data instead of depending on new
hardware so in this study we have also focused to improve the
accuracy by introducing a novel method. Since fMRI is a
mature modality in neuroscience and is used for two decades,
a lot of literature is available, and various techniques are used
for better results. *e primary focus of these studies was on
experiment design and specific brain regions instead of new
statistical techniques like many studies that used a support
vector machine (SVM) for classification and took features
from the region of interest (ROI) [17–20]. *erefore, the
target of this study is to introduce a novel method in neu-
roscience and compare the results with the existing methods.

Prediction of the human brain is always a challenging
task for neuroscientists due to its complex structure and
rapid changing behavior. In the initial years of research,
univariate-based approaches were very common and pro-
vided acceptable results [21, 22]. Univariate is the simplest
form of analyzing data in which the data being analyzed
contains only one variable. As univariate has a single var-
iable, it does not deal with relationships or causes. Over time,
improvements were done not only in hardware but new
methods were also introduced for the analysis of complex
brain data. Instead of univariate analysis, brain mapping and
multivariate pattern analysis (MVPA) were introduced
which improved the previous results significantly
[17, 23, 24]. In MVPA, the primary focus is on distributed
patterns of activity for analysis and comparison. In this way,
the differences between different brain conditions can be
detected with higher sensitivity.

In the initial years, functional magnetic resonance imaging
(fMRI) was the most common, reliable, and widely used ap-
proach for the collection of brain data [22, 25], and in most of
the initial studies, the datawere extracted only from a particular
brain region like occipital region for any visual task or from a
temporal region in case of a cognitive task. As time passes,
other modalities were also extensively used in neuroscience
which provided good results such as an electroencephalogram
(EEG), magnetoencephalography (MEG), and functional near-
infrared spectroscopy (fNIRS) [26, 27]. In fMRI, brain activity
is measured by identifying the changes that occurred due to the
flow of blood.*e fMRI uses the blood oxygen level-dependent
(BOLD) contrast which was initially discovered by Seiji Ogawa
[28]. In case of any neuronal activity, more blood is needed in
that region which later flows and increases the blood level in
that region. Due to blood flow, more BOLD contrast can be
observed in that region. Since, in fMRI, brain activity is
measured using blood flow, it is an indirect method tomeasure
brain activity. Functional MRI is an indirect method of
measuring brain activity patterns, but still the best among other
modalities due to its higher spatial resolution. On the other
hand, in EEG, the direct neuronal activity can be measured as
its time resolution is in milliseconds, which is good compared
to fMRI as it has in seconds.

*e collection of brain data is itself a difficult task in-
cluding experiment design and conduction. However, after
the recording of brain data, the primary goal is to clean the
data and find a significant difference in the temporal and
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spatial characteristics of the data, which contrasts the various
states as precisely as possible. ­e goal of neuro-computing
is to achieve this precise contrast, so a variety of simple and
traditional statistical methods such as grand averages and
region of interest were used in building the good model
[22, 29, 30]. Currently, these methods are not common due
to limited accuracy and reliability in comparison with new
and complex statistical methods [20, 31, 32]. Although it is
not possible to measure and analyze the billions of neurons
present in the brain and none of the current modalities can
do that, improvement is always demanding and challenging.
Moreover, it is not easy to update the hardware regularly.
­at is why presently the focus of neuroscientists is on
computations based on statistical and machine learning
techniques which are applied in various �elds, to improve
the results instead of waiting for new technology [33–36].

Various research groups are working on neuro-com-
puting, and improvements have already been observed both
in terms of hardware and computational techniques, but this
�eld still has a lot of potentials. Neuroscientists also used
both fMRI and EEG together (simultaneously) in some
studies [37–39] for improved results. In short, this �eld still
has a chance of improvement in many ways. In hardware
improvements, 7 Tesla fMRI machines and 512 channel EEG
caps are available, and researchers are focusing on statistical
and mathematical approaches to bring advancement in
existing techniques with the help of advanced hardware.
Many novel approaches are observed during the last decade,
especially for feature extraction, feature selection, and
prediction [26, 40]. Various projection and dimension re-
duction methods also emerged for the extraction of sig-
ni�cant data. ­e common algorithms used for feature
extraction are principal component analysis (PCA), inde-
pendent component analysis (ICA), t-test, and many others
[17, 41–43].

Apart from the above-discussed techniques, machine
learning plays a vital role in the prediction of brain activities
as the brain consists of a huge amount of data. Di�erent
machine learning and prediction techniques are used in this
regard such as linear discriminant analysis (LDA), support
vector machines (SVM), Näıve Bayes, Bayesian, and many
others [42, 44–51]. Each of them took part in better results;

however, SVM is the most common in neuroscience com-
pared to others. ­e likelihood ratio test (LRT) is also a
statistical test used for comparing the best �t of two sta-
tistical models. LRT has mostly been used in likelihood
ratio-based score fusion (LRBSF) which is a mature and
widely used technique, especially in biometric systems [52],
and however, it is rarely used in the neuroscience research
area. In an existing study, [53], it was shown that LRBSF can
produce better results in terms of accuracy for both fMRI
and EEG data sets as compared to many existing methods,
especially SVM.

1.1. Contribution of the Research. In this manuscript, a
hybrid method is proposed. In the proposed algorithm, time
series mathematical equations of various cumulants are used
along with the likelihood ratio-based score fusion (LRBSF)
method. ­e results are compared with the recent state-of-
the-art methods. In the proposed method, the initial β values
are taken as features that are found using GLM. ­ese
features are further re�ned with various orders (up to
fourth) of cumulants and �nally used likelihood ratio-based
score fusion (LRBSF) which helped in better results with less
time. In LRBSF, the number of features plays a great role,
and limited features increase the performance by reducing
the processing time of the existing method other than the
prediction results.

1.2. Organization of the Article. ­e rest of the paper is
organized as follows. Section 2 presents the experimental
methodology of this paper. Section 3 deals with the statistical
techniques which are mainly used in this research article.
Section 4 represents the results based on the experimental
setup, and a detailed discussion is given in the section. In the
last Section 5, a conclusion of this research work is
presented.

2. Experimental Methodology

­e motivation behind the presented research work is to
propose a method based on cumulants that can help in
improving the accuracy using the fMRI data because the
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Figure 1: System model for the analysis of fMRI data.
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implementation of neuroscience applications is dependent
on higher accuracy. *e reliability of any method is de-
pendent on accuracy; if the accuracy is higher, the method is
considered accurate and reliable. Cumulants are widely
adopted in classification problems such as modulation
recognition [54, 55]. To the best of our knowledge, this
approach is seldom explored for fMRI analysis. *erefore, a
novel prediction approach of cumulants-driven likelihood
ratio-based score fusion (LRBSF) along with multivariate
pattern analysis (MVPA) is presented in this research article
to optimize the prediction results based on the fMRI data set.

For this study, the experiment was designed in e-prime
[56], and fMRI was collected using a 3 T Philips machine and
preprocessed using standard preprocessing methods in SPM
[57]. During analysis, raw data were taken as features that
were followed by feature selection done using a t-test.
Multivariate pattern analysis (MVPA) has been used with
fMRI data to extract information from distributed activation
patterns of the brain. *e significant features were still in
large numbers, so different orders of cumulants were applied
to reduce the number of features. Finally, the likelihood ratio
test (LRT) was applied to those selected features and found
the prediction accuracy.

*e main steps of fMRI data analysis include experiment
design, data collection, preprocessing, data transformation,
data selection, feature extraction, prediction, and finally,
results which are shown in Figure 1, and details are given in
the following section.

2.1. Experiment Design. *e initial step is the experiment
design which helps in the extraction of data from the brain.
Better experiment design can collect valuable and numerous
data from the brain like event-related design, which helps in
measuring the rapid change of brain-behavior. For the fMRI
study, experiment design is an important factor as fMRI
scans are expensive and time-consuming and need human
resources.*at is why experiment design should be carefully
designed which can extract sufficient data for further
analysis. *e best experiment design can maximize the
contrast of interest.

2.2. Experimental Data Collection. After the experiment
design, data collection is a key step in which extensive care is
required to retrieve useful data. *e main goal during data
collection is to record the data according to the task with the
minimum artifacts or noise. In fMRI, data collection re-
quires special consideration. *e collected data should have
strong physiological signals so that the discrimination be-
tween the brain states can be done easily along with the
safety measures due to human involvement. For the ex-
perimental setup, healthy subjects were selected, and all were
Hospital Universiti Sains Malaysia (HUSM) students. *eir
ages were between 18 and 26. *e approval of the study
protocol was taken from the Human Research Ethics
Committee (HREC), Universiti SainsMalaysia (USM) under
IRB Reg. No: 00004494, FWA Reg. No: 00007718, and USM
issuing letter number is USMKK/PPP/JEPeM[257.3.(4)].
*erefore, it does not require registration with the

International Committee of Medical Journal Editors
(ICMJE). *e consent from all participants (subjects) was
obtained before the start of the experiment. For safety
purposes, the data were recorded in the company of the
doctor at HUSM. A brief training session was arranged for
each participant before the data collection.

Subject selection and machine parameters should pre-
cisely be chosen. Moreover, the duration of the session
should not be too long. In this study, the data were collected
from 12 subjects, and 8 were used for the analysis as data of 4
subjects were excluded due to artifacts and low accuracy. A
total of 260 images were shown to the subjects in three
different sessions, and all the images were grayscale images.
*ese images were taken from the study [53] and are
available online. *ese images were belonging to five dif-
ferent categories as described earlier means a picture of a
human or animal or fruit or natural scene or building was
presented to the subject. *e subject should see the image
carefully and recognize the category or class of the image.
*e target of the study is to see and find the differences in
brain activities for various types of images significantly, in
other words, to know whether the brain behaves differently
for different categories.

Functional MRI data were collected using 3 Tesla ma-
chines with response time (TR) � 2000ms, echo time
(TE) � 30ms. After every 2 second, 35 slices of the brain
were taken. *e anatomical data of 5mins were separately
taken which was later used during the registration of
functional images with a structural MRI image. *e pre-
processing of the data was done using SPM 8. All the
gradient echo-planar imaging (EPI) images were realigned
to the first image as it has minimum head movement. *e
normalization was done using the Montreal Neurological
Institute (MNI) space, and spatial smoothing was done with
a voxel size of 3 × 3 × 3mm. *e final dimension of each
fMRI image is 63 × 53 × 46. *e proposed method is trained
and tested along with other methods that are used as the
baseline compared to the proposed method. *e reported
results are with 8 subjects, and the average accuracy of them
is mentioned in the result section.

2.3. Preprocessing. Preprocessing also plays a vital role
during the analysis as it detects and reduces most of the
artifacts and noise from the data. *e main steps involved in
preprocessing are slice timing correction, realignment,
coregistration, segmentation, spatial normalization, and
smoothing. In slice time correction, the differences in slice
acquisition times are corrected.*is correction is required to
make the data on each slice correspond to the same point in
time. *e realignment process detects and corrects the
motion of the subject inside the scanner during recording.
During the process of coregistration, the functional images
(T2) are aligned with the anatomicalMRI images also known
as T1 or structural images. In segmentation, the gray matter,
white matter, and cerebral spinal fluid are separated and can
be seen separately. Since every brain size is different, nor-
malization is done to put the different scanned images into a
standard Montreal Neurological Institute (MNI) template.
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*e standard MNI template is based on the average of MRI
scans of healthy subjects. In smoothing, average values of the
neighbor voxels are found for minimal noise. *is is the last
step of preprocessing which blurs the fMRI image by giving
different weights based on the Gaussian kernel.

2.4. Data Transformation. After preprocessing, data trans-
formation is done which is the initial stage of analysis. Data
can be transformed in various ways, depending on the
analysis procedure. In data transformation, the data are
converted from one format to another format which may be
more suitable for analysis. *e new format can be a new
destination system.*e fMRI data are a 4-D data set that can
be transformed into a 1-D data vector or can analyze as 2-D
data with a different number of slices against the time.

2.5. Data Selection. *e next step is data selection which has
a convincing role in analysis, as it helps in extracting most of
the significant information from the brain. *e brain’s slight
behavior is changed during the task so data selection is
necessary as most of the fMRI data slices do not have any
contrast information. *e size of fMRI data is large and less
significant, so data selection becomes important in fMRI
data. In the literature, various algorithms and methods are
used for data selection like t-test, analysis of variance
(ANOVA), entropy, Bhattacharyya distance, and others. In
this study, β values found using t stats are used as initial
features which are later refined using cumulants.

2.6. Feature Extraction. Feature extraction is an important
part in which significant features should be extracted to
make the analysis more valuable and reliable with improved
accuracy. In fMRI data analysis, various features are already
used such as region of interest, temporal-based feature se-
lection, Dynamic causal modeling, features found using
convolutional neural network, and many others. *is es-
sential part mostly uses statistical and mathematical
methods to correlate different brain areas and helps in
finding differences between the tasks. In the current study,
various order cumulants are used as features that are given to
the classifier for prediction.

2.7. Prediction. In this final step, prediction algorithms are
used which help in determining the right classes for the
testing data. Various algorithms and machine learning
methods are used for this specific purpose such as support
vector machine (SVM), linear discriminant analysis (LDA),
Softmax, and others. *e outcome of optimal predictor is in
the form of accuracy based on true positives and true
negatives which is later compared with various existing
methods for validation.

3. Statistical Methodology

*e proposed methodology of the paper is described as
follows.

3.1. General Linear Model. *e t-stats were found using a t-
test from the raw data used as features for further analysis.
*ese t-stats are found using the general linear model
(GLM). *e general linear model (GLM) is similar to sta-
tistical analyses [58], but it is also completely ideal both for
various contextual and multifaceted variables. GLM is
suitable for carrying out all parametric statistical tests with a
dependent variable, like some factory configuration
ANOVA, and designs with a combination of multiple
variables (covariance analysis, ANCOVA). GLM is a key
instrument for fMRI data analysis since being introduced by
Friston and colleagues into the neuroimaging community
[59] thanks to its versatility to integrate numerous, quan-
titative, and qualitative independent variables. In terms of a
linear combination of the explanatory variables and an error
term, a general linear model describes the response variable
Yj.

Yj � xj1β1 + xj2β2 + · · · + xjLβL + ϵj. (1)

*e β parameters here are undisclosed to be estimated.
xjL is the explanatory variable, and ϵ is the error term that is
arbitrary, with zero mean and variance σ. *ey are dis-
tributed independently and equally normally (i i d). *e xj

must be calculated j � 1, 2, . . . , j and L � 1, 2, . . . , L for each
observation. In a single session, there are 400-time points
mean value of J� 400, and 9 or 12 columns mean value of
L� 9 or 12, according to the experiment performed. GLM
can be written in matrix form which helps in deriving least
squares parameter estimation. Equation (1) can be expanded
as follows:

y1 � x11β1 + x12β2 + · · · + x1LβL + ϵ1,

≔ � ≔ ,

yj � xj1β1 + xj2β2 + · · · + xjLβL + ϵj,

≔ � ≔ ,

yJ � xJ1β1 + xJ2β2 + · · · + xJLβL + ϵJ,

(2)

where Y is the observing column vector
Y � yj j � 1, 2, . . . , J, ϵ is the error terms column vector, and
β is the parameter column vector; X is the matrix of order
J × L, and it is defined as the design matrix. *e architecture
matrix has one column or explaining element and one row
per observation per model parameter.

3.2.Cumulants. *e estimated parameters of GLM are fed to
the optimal detector block as input data, which includes
feature extraction and prediction stages after it has been
transformed and selected. *e extraction block calculates
statistics called cumulative characteristics consisting of
moments. Let Mpq represents the moments of input data
x(n) which are estimated parameters of GLM and is cal-
culated using

Mpq � E x(n)
p− q

x
∗
(n)

q
􏼈 􏼉, (3)
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where E ·{ } is defined as the expected value function which
calculates the expected value of a random variable, and p and
q are the indexed power term to define cumulants.

E x{ } � 􏽚
∞

−∞
xf(x)dx . (4)

For the defined input data x(n), cumulants Ψij of the
second and fourth order are as follows [34]:

Ψ20 � E x
2
(n)􏽮 􏽯,

Ψ21 � E |x(n)|
2

􏽮 􏽯,

Ψ40 � M40 − 3M
2
20,

Ψ41 � M40 − 3M20M21,

Ψ42 � M42 − M20
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

− 2M21.

(5)

3.3. LikelihoodRatioTest. *e likelihood ratio test (LRT) is a
test that is based on statistical analysis. It is a hypothesis test
that tells how rightly two models can fit. *is helps in
choosing the best model between them [52]. *e best model
is chosen based on the likelihood function, means which
maximizes the likelihood function.

Let Y � [y1, y2, y3, . . . , yk] represents the match scores
for K individual matchers. *e random variable yk repre-
sents the kth matcher’s match score, where k � 1, 2, . . . , K.
Let’s call the two classes M0 and M1, where M1 denotes a
true positive (genuine) class and M0 denotes a true negative
class. *e conditional joint densities of the k match scores
assigned to the first and second classes, respectively, are
p(Y|H0) and p(Y|H1), where Y � [y1, y2, y3, . . . , yk], and
assume that the null hypothesis is H0 and the alternative
hypothesis is H1. Suppose the aim is to categorise the ob-
served match score vector Y into one of two classes: M0 or
M1. *e null hypothesis should be dismissed, and the al-
ternative hypothesis should be accepted.*e likelihood ratio
between null and alternative hypotheses is evaluated and
analyzed for a decision threshold θ. *e likelihood ratio test
(LRT) is described as

LR Y, H0, H1( 􏼁 �
p Y|H0( 􏼁

p Y|H1( 􏼁
, (6)

where Y is the observed parameter, p(Y|H0) is the likeli-
hood function for the null hypothesis which is evaluated for
Y, similarly p(Y|H1) is the likelihood function for alternate
hypothesis, and θ is the decision threshold which decides the
acceptance or rejection of the null hypothesis. For example,
if LR(Y, H0, H1)≥ θ, the null hypothesis is accepted; oth-
erwise, the alternative hypothesis is accepted.

In this study, Kernel density estimation (KDE) [53, 60]is
used along with LRT for the acceptance or rejection of the
null/alternative hypothesis. *e approximation of proba-
bility density functions (pdfs) for training data is done using
KDE. *is is a nonparametric approach and has benefited
because there is no permanent structure in KDE. Moreover,
during estimation in KDE, all the data points are included in
the analysis.

3.4. Proposed Algorithm. *e collected data are first trans-
formed into a simple matrix having rows and columns. *is
transformation is done using GLM based on T-values which
is explained in the next section.*e /beta values found using
the design matrix are used as initial features and are
comprehensively discussed in the performance evaluation
section. SPM is used for the initial analysis of the data.

*e kernel density function which is also known as
kernel density estimation (KDE) is used for estimated class
value; that is, the best match of each class with the test vector
is found. Features from 50 to 5000 have been used and
transformed these features using cumulants to reduce the
size of the features vector. As a result, a maximum of eight
features has been formed instead of 50 or 5000. Now, it is
easy for kernel density function in terms of computation to
process and find the best match during the fusion of match
scores. Moreover, in this study, one-to-one results are ex-
tended to multiclass classification or multiclass decoding. In
this case, one out of five classes was found using the pro-
posed method. *e detail is discussed in the result section.
For cross-validation, Monte Carlo sampling is used, and the
accuracy is found based on the average of 100 trials for each
class to make the result reliable. *e pseudo-code of the
proposed methodology is depicted in Algorithm 1.

4. Results and Discussion

In this section, a detailed performance evaluation of the
proposed optimal predictor is presented. In the experiment
design, we had different images which were divided into five
different categories. *ese images were taken from [61], and
the categories were also made based on the same study. *e
images of five different classes are human, animal images,
images of the building, images of natural scenes, and images
of fruits. *e design matrix is a matrix of values that consists
of explanatory variables of different conditions or categories.
Since there are five different categories, one variable (re-
gressor) is defined for every category in the design matrix. A
total of five variables are defined in the design matrix for five
different conditions, and furthermore, for baseline and re-
alignment parameters, separate variables (regressors) are
used in the design matrix. Six realignment parameters are
used to remove noise also known as nuisance regressors.
*ere are five conditions, six nuisance regressors and a
baseline, so a total of 12 regressors are used in the design
matrix. *e activity difference is found between the con-
dition and the baseline for each category separately. For
example, the activity difference between humans and
baseline is shown in Figure 2. *e statistical analysis of the
image (Figure 2) is mentioned in the corresponding Table 1.
Table 1 explains the degree of freedom, full width at half
maximum (FWHM), voxel size, the position of voxels, z-
values, number of clusters, number of significant voxels in
each cluster, and other information. In the figure, the red
arrow (<) shows the current location of the voxel (mostly the
highest significant voxel), and the detail of this voxel is
present in the first row (if highly significant) of Algorithm 1
with MNI coordinates, as also shown in red color. Since the
significant voxels are important during analysis, so in the
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tables, the arrangement of voxels/clusters is shown in
descending order means voxels/clusters with higher T-
values are mentioned �rst. In Algorithm 1, the �rst three
rows show the three most signi�cant voxels of the most
signi�cant cluster while the �rst row shows the most sig-
ni�cant voxels of the whole brain region for this task. In
Figure 2, the brain activations are shown between humans
and baseline while the behavior of the brain is the same for
other sessions and participants. In the glass brain, it is
observed that the activation area is the same for all the
conditions (occipital region), but small di�erences can be
seen among di�erent categories. Generally, in the brain,
there is always a small di�erence during the task concerning

baseline [57], so further statistical analysis is required to �nd
that di�erence. In the �rst-level analysis, those signi�cant
voxels are found which shows the activity di�erences during
the condition to baseline for all sessions of every participant.
­ese voxels are just the β-value for each trial and each voxel
which was then used as a feature [17] for further analysis. In
the existing study [17], these β-values are directly used as
features and given to the classi�er, that is, SVM to �nd the
accuracy. On the other hand, in the current study, these
features are further re�ned using a di�erent order of
cumulants, and �nally, instead of using SVM, a di�erent
statistical technique is used, that is, LRT. SVM is the most
common, reliable, and widely used classi�er in neuroscience

(i) Data Transformation.
(a) Estimated values of the voxels are found using the General linear model.
(b) ­e signi�cant brain area is found and shown based on the highest T-value.
(ii) Data Selection
(a) ­e signi�cant features are selected based on p-values.
(b) Set several selected features having lower p-values.
(iii) Feature Extraction
(a) Extract the HOCs from data x(n) using equation (5) [Ψ]Ni�1, where N is number of selected features.
(iv) Likelihood Ratio Test
(a) Do the estimation of the densities for di�erent classes using the Kernel density estimator.
(b) ­e density-based score fusion is done using likelihood ratio-based score fusion
(c) ­e estimation of the score of the class is done using the likelihood ratio test using equation (6).

ALGORITHM 1: Optimal prediction algorithm.

Human vs Baseline

SPM {T391}

50
1

[-
15

, -
85

, 4
]

100

150

200

250

300

350

400

2 6 10
Design matrix

(b)(a)

SPMresults:\sub18-1\face_rep\categorical
Height threshold T = 3.111206 {p<0.001 (unc.)}
Extent threshold k = 0 voxels

contrast

Figure 2: (a) (First-level analysis event-related design: human images vs baseline). (b) Design matrix which has 12 columns. In the design
matrix, a number of variables are given horizontally, and trials are given vertically.
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studies, but we propose different classification technique
which shows better results compared to SVM.

During the analysis, the raw fMRI data were cleaned and
passed through GLM to find the β-values which were used as
initial features since fMRI data have a lot of features so
feature reduction or refinement is very common. *ese
initial features were refined and passed through LRT to
predict the right class. *e accuracy between 5 different
classes was found using the one-to-one decoding method
[62] between every two classes separately. *e same pro-
cedure was repeated for other existing methods as shown in
Table 2 to see the performance of the proposed method.
*ere were a total of 10 one-to-one decoding combinations
due to five different classes. *e data were randomly dis-
tributed between 90% of training data and 10% of test data
using Monte Carlo cross-validation. *e 10% test data
evaluate the performance of the proposed method. One-vs-
one decoding results are shown in Figure 3 for all 10
combinations along with the number of features. In Figure 3,
it is mentioned that the best results exist between 400 − 500
features in most of the cases. Classification accuracy is found
for every individual participant but after combining the
voxels of all three sessions. Classification is done one-
against-one with multiclass SVM between every condition
and participant separately. An uncorrected p-value of 0.001
is used to find the significance of every category.

It is very common in existing studies to take initial
features from fMRI data (either raw data or β-value) and
used SVM to find the prediction accuracy [17, 19, 63, 64].

In this study, we have proposed a different method that is
more refined in terms of significant features and pre-
dictors. *at’s why to check the performance of the
proposed system, the results are compared with various
existing methods. *e performance is checked based on
accuracy and time which is one of the important factors.
*e proposed method is compared with various other
methods mentioned in Table 2 and is also shown
graphically in Figure 4. In linear discriminant analysis
(LDA), β-values were taken as features as directly given to
the classifier [17]. *e features were not refined like the
proposed method. Similarly, for the LibSVM case, same
β-values were taken as features, and LibSVM was used as a
classifier [65]. In the case of LRBSF, same features were
used for the further process, but instead of any existing
classifier, LRTwas performed to find the best match of the
predictor. In the existing study, LRT is used with refined
features, that is, features found using cumulants.

For multiclass discrimination, the above-mentioned
method (2 class likelihood ratio test) is extended to mul-
ticlass. Instead of choosing the best score match between two
classes, we have chosen the match score with the highest
value between the match score of the test vector and the class
type. *e result of multiclass decoding is shown in Figure 5
which indicates the accuracy against the number of features
for all five classes simultaneously. *e result is approxi-
mately 35% which is quite good as the chance in multi-
decoding is quite low, especially in 5 classes. Multiclass
likelihood test is also used using LRBSF.

Table 1: Static table for human vs baseline shows the degree of freedom, FWHM, voxel size, the position of voxels, t-value, cluster, and other
details.

Statistics: p-value adjusted for search volume
Set level Cluster level Peak level

mm mm mm
p c pFEWcorr

qFDRcorr
kE puncorr pFEWcorr

qFDRcorr
T Z puncorr

0.002 45 0.000 0.000 2094 0.000 0.000 0.000 9.75 Inf 0.000 −15 −85 4
0.000 0.000 9.67 Inf 0.000 −9 −91 l
0.000 0.000 8.94 Inf 0.000 −27 −61 −2

0.000 0.000 80 0.000 0.007 0.003 5.25 5.15 0.000 57 23 52
0.328 0.047 4. 44 4 .38 0.000 54 32 34

0.000 0.000 118 0.000 0.013 0.006 5.12 5.03 0.000 −45 −1 40
0.029 0.010 4 .96 4 .88 0.000 −36 −4 61
0.953 0.190 3.90 3.86 0.000 −45 −7 55

0.005 0.001 39 0.000 0.026 0.010 4.98 4.9 0.000 24 −67 61
l.000 0.676 3.35 3.32 0.000 30 −73 73

0.004 0.001 40 0.000 0.037 0.012 4.91 4.83 0.000 −15 68 40
0.000 0.000 248 0.000 0.071 0.020 4.77 4.70 0.000 27 11 70

0.143 0.029 4.62 4.56 0.000 21 23 67
0.221 0.037 4.52 4.46 0.000 9 17 73

0.000 0.000 64 0.000 0.082 0.021 4.74 4.67 0.000 −24 −10 76
0.628 0.081 4.24 4.19 0.000 −12 −19 85
0.677 0.088 4.20 4.15 0.000 −18 −16 76

0.205 0.021 16 0.008 0.082 0.021 4.74 4.67 0.000 75 −19 7
l.000 0.777 3.27 3.25 0.001 69 −13 7

0.000 0.000 123 0.000 0.087 0.021 4.73 4.66 0.000 33 47 1
0.174 0.031 4.58 4.51 0.000 24 38 −11

Table shows three local maximamore than 0.8mm apart. Height threshold: T� 3.11, p� 0.001 (1.000). Extent thresMd: k: 0 voxels. Expected voxels per cluster,
<k> 2.012. Expected number of clusters, <c≥ 28.41. FWEp: 4.846, FDRp: 4.427, FWEc: 27, FDRc: 14. Degree of freedom� [1.0, 3.91, 0]. FWHM: 7.7, 7.9,
7.6mm mm mm; 2.6, 2.6, 2.5 (voxels}. Volume: 1481436� 54868 voxels� 2846.7 resels. Voxel size: 3.0 3.0 3.0mm mm mm; (resel: 17.29 voxels).
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Table 2: Accuracy comparison of various methods using the fMRI data set.

Condition LDA (%) Deep learning (%) Lib SVM (%) LRBSF (%) Proposed method (%)
Human vs animal 58.10 60.60 59.50 61.15 66.98
Human vs building 62.40 64.14 63.27 64.92 70.43
Human vs natural scenes 65.95 67.94 67.60 68.37 71.84
Human vs fruit 62.84 67.20 64.13 67.79 69.96
Animal vs building 65.25 68.80 66.23 69.42 71.71
Animal vs natural scenes 68.84 70.95 67.49 71.30 73.66
Animal vs fruit 66.12 67.17 67.74 67.73 68.88
Building vs natural scenes 58.54 60.10 57.68 59.47 67.72
Building vs fruit 62.29 64.25 63.93 64.62 70.10
Natural scenes vs fruit 62.47 64.84 63.92 65.52 69.82
Average 63.25 65.60 64.10 66.10 70.11
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Figure 3: Average prediction accuracy of various combinations against the number of features. One-versus-one prediction for �ve di�erent
conditions which made 10 di�erent combinations.
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A comprehensive analysis of brain response and be-
havior is done, and the new features are used to improve the
accuracy and response time. ­is study will help in various
ways as it is contributing in many ways. ­e likelihood ratio
test (LRT) is applied with cumulant features along with
MVPA, and moreover, di�erent classi�ers are used to
compare the results with LRT. ­is study gives the basic
knowledge as well as focuses on advanced statistical and
mathematical methods like LRT and the role of di�erent
levels of cumulants for the fMRI data set.

In short, this study is an addition to the existing methods
proposed for fMRI data analysis. Since hardware limitations
are not easy to overcome, new statistical and mathematical
methods are always helpful in the analysis of neuronal data
including fMRI, EEG, and MEG data.

5. Conclusion

In this study, a hybrid method is proposed which is an
extension of various existing methods such as basic β-values
or raw fMRI data are used as features for further analysis in
most of the existing studies [17, 64]. In this study, these

β-values are further polished to make the features more
signi�cant. Similarly, instead of using SVM which is the
most common and widely technique of classi�cation, a
di�erent statistical technique is used in neuroscience, that is,
LRBSF. ­is technique is widely used in other applications
[52, 66, 67] but has never been used in the analysis of fMRI
data before. ­is LRBSF technique was initially introduced
for fMRI data in 2017 by our research group [53]. In other
words, this study is an extension and improvement of the
previous study in terms of accuracy and response time. In
the previous study, the response time was quite high which is
improved in this study along with the accuracy. In short, this
study includes numerous statistical and mathematical
methods during the extraction of features. ­ese new fea-
tures are combined with the existing method, that is, LRBSF,
which provides a novel hybrid method for the analysis of
brain data acquired using fMRI. ­e new features which are
introduced in the proposed algorithm are di�erent levels of
cumulants, and these features improved the overall accuracy
from 66% to 70% while less response time is used than the
previous one [53].

In the future, this algorithm can be applied to other
modalities such as EEG and MEG. Moreover, other statis-
tical methods such as the Gaussian mixture model and
sequential Markov chain methods [27] and further levels of
cumulants can be used with the existing methods to see the
e�ect of additional features. ­is will be a new challenge for
the researchers to work on various statistical techniques
along with di�erent modalities. ­e purpose is to achieve
su�cient accuracy so that the neuroscience applications can
widely be used especially BCI applications which can easily
work with EEG data. By achieving acceptable accuracy, the
fear among people can be reduced and actively build public
support for neuroscience research.­e goals should be set so
that the public can recognize this �eld and share.

Data Availability

­e data were collected at the Hospital Universiti Sains
Malaysia (HUSM). ­e details of the data are given in the
manuscript.­e processed data can be provided on demand.
In our study, we have normal subjects, not patients, and we
only examine the e�ect (for example, provider knowledge or
attitudes). ­erefore, the International Committee of
Medical Journal Editors (ICMJE) on trial registrations is not
required.
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