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 is work aimed to investigate the application value of the multimodal magnetic resonance imaging (MRI) algorithm based on the
low-rank decomposition denoising (LRDD) in the diagnosis of knee osteoarthritis (KOA), so as to o�er a better examination
method in the clinic. Seventy-eight patients with KOA were selected as the research objects, and they all underwent T1-weighted
imaging (T1WI), T2-weighted imaging (T2WI), fat suppression T2WI (SE-T2WI), and fat saturation T2WI (FS-T2WI). All
obtained images were processed by using the I-LRDD algorithm. According to the degree of articular cartilage lesions under
arthroscopy, the patients were divided into a group I, a group II, a group III, and a group IV.  e sensitivity, speci�city, accuracy,
and consistency of KOA diagnosis of T1WI, T2WI, SE-T2WI, and FS-T2WI were analyzed by referring to the results of ar-
throscopy.  e results showed that the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) of the I-LRDD
algorithm used in this work were higher than those of image block priori denoising (IBPD) and LRDD, and the time consumption
was lower than that of IBDP and LRDD (p< 0.05).  e sensitivity, speci�city, accuracy, and consistency (Kappa value) of
multimodal MRI in the diagnosis of KOA were 88.61%, 85.3%, 87.37%, and 0.73%, respectively, which were higher than those of
T1WI, T2WI, SE-T2WI, and FS-T2WI.  e sensitivity, speci�city, accuracy, and consistency of multimodal MRI in diagnosing
lesions in group IV were 95%, 96.10%, 95.88%, and 0.70%, respectively, which were much higher than those in groups I, II, and III
(p< 0.05). In conclusion, the LRDD algorithm shows a good image processing e¡cacy, and the multimodal MRI showed a good
diagnosis e�ect on KOA, which was worthy of promotion clinically.

1. Introduction

Knee osteoarthritis (KOA), also referred to as knee arthritis,
is a common degenerative non-in¢ammatory disease in the
clinic. It is mainly caused by the degeneration of cartilage in
the knee joint, and it may involve the meniscus and bony
ligament [1]. Nowadays, the aging of various diseases is
becoming more and more serious, such as cardiovascular
diseases [2], and KOA is also one of them because its in-
cidence and damage will increase with age [3].  erefore,
KOA is more frequent in the elderly population [3].
However, with people’s attention to �tness exercises in
recent years, KOA caused by excessive joint load has trended
to the young [4]. In the early stage of KOA, the water content
of the articular cartilage is reduced, and the cartilage be-
comes thinner; in the later stage, cartilage disappears, and

joints are narrowed, resulting in loss of joint function, which
gives the patient a great quality of life.  erefore, timely
diagnosis and treatment are necessary [5, 6].

 e composition of cartilage is quite special. At present,
magnetic resonance imaging (MRI) is the only imaging
technology that can clearly display cartilage tissue in clinical
examination. A large number of studies have shown that
MRI has a good application e�ect in KOA, but there are
di�erences in the diagnostic e¡cacy of images under dif-
ferent examination sequences, especially the high overlap in
the image performance of conventional sequences [7–9]. In
order to improve the diagnostic e�ect of MRI, the multi-
modal MRI technology is clinically proposed, which com-
bines multiple imaging sequences and comprehensively
analyzes its qualitative and quantitative parameters, and it is
the best MRI diagnostic e¡ciency for diseases [10].
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Clinically, according to the imaging principle of MRI, it is
divided into three modalities: structure, diffusion, and
perfusion. *e conventional structure imaging sequence
includes T1-weighted imaging (T1WI), T2-weighted im-
aging (T2WI), and dynamic enhanced magnetic resonance
imaging (DCE-MRI); diffusion imaging sequences include
diffusion-weighted imaging (DWI) and diffusion tensor
imaging (DTI); and perfusion imaging sequences refers to
the three-dimensional arterial spin-labeled perfusion im-
aging (3D-ASL) [11]. However, MRI images will be con-
taminated by noise during the imaging or transmission
process, resulting in impaired image display quality.
*erefore, research on denoising algorithms becomes of
certain significance and value in order to obtain high-
quality MRI.

With the rapid development of science and technology,
artificial intelligence technology under deep learning has been
widely used in imaging, providing solutions for the imbalance
between the number of imaging doctors and clinical imaging
data, the level of imaging doctors, and the allocation of re-
sources. Deep learning methods have been fully and rea-
sonably used in image processing and analysis in the medical
field. In recent years, many denoising algorithms have been
proposed, such as image block priori denoising (IBPD) al-
gorithm [12] and low-rank decomposition denoising (LRDD)
algorithm [13]. IBPD algorithm is often used in combination
with the Gaussian mixture model (GMM) [14]. In research,
GMM is often used to learn the priors of external noise-free
image blocks and used for image denoising processing. *e
application research of the LRDD algorithm in image
denoising processing is relatively extensive, but its application
effect is limited [15,16]. *en, someone proposed an LRDD
algorithm based on a noise-free image block prior algorithm
(here, it is referred to as the I-LRDD algorithm). It was found
that the denoising method could remove the noise and better
retain the texture detail information of the image itself after
experimental research [17].

In this work, 78 patients with KOA were selected as the
research objects; multimodal MRI images based on I-LRDD
were used to diagnose cartilage damage in KOA patients;
and the diagnostic effects of single sequence MRI and
multimodalMRI technology after algorithm processing were
compared. It was hoped to improve people’s understanding
and application of imaging examination methods for KOA
cartilage injury, especially multimodal MRI, and provide
more effective diagnosis methods for patients.

2. Research Methods

2.1. Research Objects. In this work, 78 patients who were
admitted to the joint surgery department of our hospital
from March 2020 to September 2021 and diagnosed with
KOA and underwent periarticular cartilage examination
using arthroscopy were randomly selected as the objects.
Among them, 44 were male patients and 34 were female
patients, ranging in age from 32 to 70 years old, with an
average age of 49.4± 15.17 years old. Cartilage was examined
arthroscopically in 78 patients, including 198 cartilages in
total (some patients examined multiple knee cartilage), of

which 123 had lesions and 75 did not. All patients were
scanned with conventional T1WI, T2WI, fat suppression
T2WI (SE-T2WI) sequence, and fat saturation T2WI (FS-
T2WI).*e results of T1WI, T2WI, SE-T2WI, and FS-T2WI
scans were set as T1WI group, T2WI group, SE-T2WI group,
and FS-T2WI group, respectively. In addition, the result of
comprehensive sequence diagnosis was set as a multimodal
group. *e T1WI, T2WI, SE-T2WI, and FS-T2WI single-
sequence diagnosis results were compared with the com-
prehensive sequence diagnosis results, and the diagnosis
effects of multimodal MRI under different articular cartilage
lesions were evaluated by using the arthroscopic test results
as the criteria. According to the grade of articular cartilage
disease under arthroscope, the patients were rolled into
groups I–IV.*e diagnostic effect of multimodal MRI under
different articular cartilage lesion grades was evaluated. *is
study had been approved by the relevant medical ethics
committee.

Inclusion criteria were defined as follows: (1) all patients
were over 18 years old; (2) all patients were diagnosed
according to the Guidelines for the Diagnosis and Treatment
of Osteoarthritis in China (2019 Edition) [18]; (3) all patients
had complete MRI required; and (4) all patients had signed
the informed consent forms.

Exclusion criteria were given as follows: (1) patients who
could not undergo MRI examination; (2) patients with a
history of high-intensity exercise training; and (3) patients
with a clear history of trauma.

2.2. Imaging Examination. All patients were examined with
the same instrument before and after treatment by an ex-
perienced (20 years or more of experience) technician in
charge or deputy chief technician. *e primary image in-
terpretation and diagnosis were carried out by the attending
physicians, and two senior doctors were invited to further
interpret the results to guarantee the accuracy of the results.
*e examination instruments were Siemens MAGNETOM
Prisma 3.0 T and PHILIPS Multira1.5 T. During the exam-
ination, the patient was instructed to take a supine position,
and an 8-channel knee joint special coil was adopted for
inspection. *e scanning sequence was as follows: the
conventional sagittal T1WI and T2WI, spin-echo T2WI (SE-
T2WI) sequence of transverse, and coronal and oblique
sagittal were performed firstly, and transect and coronal fat-
saturated T2WI scans were then performed. *e scanning
parameters were set as follows: for the T1WI sequence: time
of repetition (TR) was −14ms, time of echo (TE) was
−3.5ms, and flip angle was −10° and 25°; for the T2WI
sequence: TR was −42ms, TE was −10ms, 20ms, 40ms, and
55ms; and for FS-T2WI sequence: field of view (FOV) was
20, layer thickness was 3mm, layer spacing was 0.5mm, TE
was 85.0, and matrix was 288×192. MRI postprocessing
workstation (Siemens MultiModality Workplace) was used
for image reconstruction, and MRI low-rank decomposition
denoising algorithm based on noised image block prior was
used for image feature extraction and denoising. *e IBPD
and LRDD algorithms were used to process the image and
compared with the algorithm adopted in this work.
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2.3. Images’ Preprocessing. *e working process of the
multimodal MRI-based LRDD algorithm was described as
follows. *e first step was to use the GMMmodel to learn the
MRI IBPD. *e second step was to use the GMM obtained in
the first step to cluster the noisy MRI image blocks. After
clustering, it should stack the MRI image blocks in the
Gaussian class to form a low-rank matrix and use the low-
rank decomposition method for denoising.*e third step was
to reconstruct a clear MRI image based on the denoised data.

Step 1: It was assumed that the original MRI image was Q, it
would be overlapped and cut into m image blocks of the
same size; then a set can be formed as follows:

RQ � R1Q, . . . RiQ, . . . , RmQ( , (1)

where R1Q represents the ith image block in the imageQ.
If the set RQ is divided into K classes and there are K
Gaussian classes in GMM, then the probability of any image
block RiQ in RQ can be expressed as follows:

p RiQ|Θ(  � 
K

k�1
wkpk RiQ|μk,  k , (2)

where Θ � (μ1, . . . , μk,  1, . . . ,  k, w1, . . . , wk) repre-
sents the parameter set of GMM, wk represents the weight of
the kth Gaussian distribution, μk refers to the mean of the
kth Gaussian distribution,  k represents the covariance
matrix of the kth Gaussian distribution, and pk(RiQ|μk,  k)

represents the density function of the k-th Gaussian dis-
tribution. pk(RiQ|μk,  k) could be expressed as follows:

Pk RiQ|μk,k  � c × exp −
1
2

RiQ −μk( 
T



−1

K

RiQ −μk( ⎛⎝ ⎞⎠,

(3)

where c represents the normalization constant, and the
negative exponent in (−1/2(RiQ − μk)T 

−1
K (RiQ − μk))

represents the Mahalanobis distance between RiQ and μk

In order tomake the expression of the calculation formula
simpler, the Gaussian class to which each image block belongs
was expressed as C � (c1, c2, . . . , cm), ci ∈ 1, 2, . . . , K{ };
then, under the parameter set Θ of GMM, the probability of
the k-th Gaussian class inRiQ(i � 1, . . . , m) can be expressed
as p(RiQ, ci � k|Θ). If RiQ and RjQ(i, j � 1, . . . , m, i≠ j)

were independent of each other, then the probability that the
MRI image block set RQ underΘ was clustered into K classes
can be expressed as follows:

p(RQ, C|Θ) � 
m

i�1
p RiQ, ci|Θ( . (4)

After the logarithmic conversion of formula (4), the
following equation could be obtained:

log p(RQ, C|Θ) � 

m

i�1
log p RiQ, ci|Θ( , (5)

and

log p(RQ, C|Θ) � 
m

i�1
log p ci( p RiQ|ci( . (6)

*e following equation could be obtained by combining
(2) with (6):



m

i�1
log p ci( p RiQ|ci(  � 

m

i�1
log wci

pci
RiQ|μci

,  ci . (7)

Step 2: It was assumed that a noisy MRI image was Y, and
the image block set obtained from its segmentation was
RY � (R1Y, . . . , RiY, . . . , RmY). When the prior informa-
tion of the noise-free MRI image learned by GMM was
known, RY was divided into K categories; then the matrix
composed of all image blocks in the k-th category can be
expressed as RkY � (Rk, . . . , Rk(d)k), where d(k) represents
the number of similar blocks in the k-th class. *e image
blocks in the same Gaussian class had similar information,
so RkY can be expressed as follows:

RkY � Zk + Nk, (8)

where Zk represents the low-rank matrix and Nk represents
the noise matrix. *e noise on each pixel in the MRI image
was assumed to be independently distributed; then, the
following equation could be acquired based on the condi-
tional possibility:

p RkY|Zk( ∝ exp −
1
σ2

RkY − Zk

����
����
2
F

 . (9)

*en, it could minimize (9) to obtain the following
equation and the value of Zk:

E Zk(  � τ Zk

����
����∗ +

1
σ2

RkY − Zk

����
����
2
F
, (10)

where τ represents the normal number, σ represents the
noise standard deviation, ‖ · ‖∗ referred to the kernel norm of
the matrix, and ‖.‖F was the Frobenius norm of the matrix.
According to the minimization problem shown in the above
equation, the optimization solution was carried out through
the weight kernel norm. U  VT was supposed to represent
the SVD decomposition of RkY; then the following equation
could be given:

ZRk
� USw  V

T
 , (11)

where Sw() represents the singular value contraction
operator.

Combining the above analysis, it can reconstruct noise-
free MRI images according to the following objective
function:

X, C, Zk   � argmin
λ
σ2

X,C, Zk{ }

‖Y − X‖
2
2

− log p(RY, C|Θ) + 
K

k�1
E Zk( ,

(12)
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where λ and σ represents the normal number and the
noise standard deviation, respectively.

Step 3: *e MRI image was reconstructed according to the
denoised data combined with the above algorithm.

To evaluate the effect achieved by the above algorithm
models, the denoising performance was evaluated by the
peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and convergence time. *e smaller the value of
PSNR, the lower the degree of image distortion. *e closer
the value of SSIM is to 1, the more similar the processed
image is to the original image. *ey were expressed as
follows:

PSNR � 10 log10
M

‖Y − Y‖
2
2

⎛⎝ ⎞⎠, (13)

where Y represents the noise-free MRI image, Y represents
the denoised image, and M represents the number of pixels
in the image.

SSIM(x, y) �
2αxαy + e1  2βxy + e2 

α2x + α2y + e1  β2x + β2y + e2 
, (14)

where αx and αy represent the average value of x and y,
respectively; β2x and β2y refer to the variance of x and y,
respectively; and βxy represents the covariance of x and y.

2.4. Observation Indicators. *e arthroscopic diagnosis was
undertaken as a criterion to evaluate the imaging charac-
teristics and diagnostic efficacy (sensitivity, specificity, ac-
curacy, and Kappa value) of five MRI methods (T1WI,
T2WI, SE-T2WI, FS-T2WI single sequence, and multimode
sequence scan) and multimode MR in different grades of
cartilage injury (group I, group II, group III, and group IV).

2.5. Statistical Methods. Statistical analysis was performed
using SPSS 22.0 software. Different sequences of MRI di-
agnosed different grades of cartilage damage accuracy were
compared using the χ2 test, and when p< 0.05, statistical
differences were considered. Kappa test was used to evaluate
the consistency of cartilage injury diagnosis and arthro-
scopic results comparison among different sequences ofMRI
examination. Kappa value< 0.45 was considered to be poor
or general; 0.45∼0.75 was considered to be strong; and >0.75
was considered to be strong.

3. Results

3.1. Evaluation of the Effect of Computer Image Preprocessing.
In order to evaluate the application effect of the I-LRDD
algorithm, it was compared with image block prior
denoising algorithm (IBPD) and low-rank decomposition
denoising algorithm (LRDD) on real MRI data. As shown in
Figure 1, when the rice intensity was 1%, 3%, and 5%, the
PSNR values of the I-LRDD algorithmwere 0.993, 0.979, and
0.961, respectively, which were significantly higher than
those of IBPD and LRDD algorithms (p< 0.05). As

illustrated in Figure 2, the lower the rice intensity was, the
better the denoising effect was. When the rice intensity was
1%, the MRI image quality processed by the I-LRDD al-
gorithm was closest to that of the noise-free image, and the
processing effect was the best.

3.2. General Information of Patients. *e distribution of
patients in groups I, II, III, and IV was shown in Figure 3.
*ere were 12 male patients in group I (27.27%), 11 cases in
group II (25%), 11 cases in group III (25%), and 10 cases in
group IV (22.73%). In addition, there were 9 female patients
in group I (26.47%), 8 cases in group II (23.53%), 8 cases in
group III (23.53%), and 9 cases in group IV (26.47%). *e
average age distribution showed 48.79± 15.45 years old in
group I, 49.52± 15.12 years old in group II, 49.62± 14.35
years old in group III, and 49.42± 13.87 years old in group
IV.*e average course of disease showed 9.74± 1.17 months
in group I, 9.19± 0.87 months in group II, 9.88± 0.98
months in group III, and 9.37± 1.32 months in group IV.
After comparative analysis, it was found that there was no
significant difference in gender, average age, and the average
course of disease among different groups of patients
(p> 0.05), as shown in Figure 3, indicating that the com-
parison was feasible.

3.3. Comparison of Diagnostic Effects. *e diagnostic results
of the T1WI sequence MRI scan and arthroscopy were
shown in Table 1. After calculation, it can be concluded that
the diagnostic sensitivity, specificity, accuracy, and consis-
tency (Kappa value) were 47.15%, 46.67%, 46.97%, and 0.37,
respectively.

*e diagnostic results of the T2WI sequence MRI scan
and arthroscopy were shown in Table 2. After calculation, it
can be concluded that the diagnostic sensitivity, specificity,
accuracy, and consistency (Kappa value) were 52.03%,
53.33%, 52.53%, and 0.41, respectively.

*e diagnostic results of the SE-T2WI sequence MRI
scan and arthroscopy were shown in Table 3. After calcu-
lation, the diagnosis sensitivity, specificity, accuracy, and
consistency (Kappa value) were 56.91%, 57.33%, 57.07%, and
0.43, respectively.

*e diagnostic results of FS-T2WI sequence MRI scan
and arthroscopy were shown in Table 4. After calculation,
the diagnosis sensitivity, specificity, accuracy, and consis-
tency (Kappa value) were 61.79%, 60%, 61.11%, and 0.46,
respectively.

*e diagnostic results of multimodal MRI scan and
arthroscopy were shown in Table 5. After calculation, it can
be concluded that the diagnostic sensitivity, specificity,
accuracy, and consistency (Kappa value) were 88.61%,
85.33%, 87.37%, and 0.73, respectively.

As illustrated in Figures 4 and 5(d), the comparison
showed that in the T1WI group, T2WI group, SE-T2WI
group, FS-T2WI group, and multimodal MRI group, the
sensitivity, specificity, accuracy, and consistency of the five
groups of inspection methods were in upward trends.
However, there was no significant difference among the first
four groups (p> 0.05), and those of the multimodal MRI
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Table 1:  e statistics of diagnosis results using T1WI sequence MRI scan and arthroscopic diagnosis results.

Arthroscopic diagnosis results
(n� 198 cases) Total

KOA Non-KOA

T1WI sequence (n� 198 cases) KOA 58 40 98
Non-KOA 65 35 100

Total 123 75 198

Computational Intelligence and Neuroscience 5



group were significantly better than those in the T1WI
group, T2WI group, SE-T2WI group, and T2 group
(p< 0.05). Figure 5 illustrated the KOA scan images of
different sequences ofMRI.*e damage to articular cartilage
can be observed in Figure 5; both T1WI and T2WI showed
low signal, while the SE-T2WI sequence showed a high
signal shadow.

3.4. ?e Diagnostic Effect of Multimodal MRI on Cartilage
Lesions of Different Grades. After arthroscopy, the results
showed that among the 123 cartilage lesions, there were 36
articular cartilage lesions in grade I, 27 in grade II, 31 in
grade III, and 29 in grade IV. Multimodal MRI and ar-
throscopy were used to analyze the diagnosis results of
cartilage lesions of different grades, as shown in Figure 6.*e
results showed that the sensitivity, specificity, accuracy, and
consistency of multimodal MRI for the diagnosis of group I
lesions were 78.96%, 69.61%, 79.44%, and 0.55, respectively;
the four indicators of group II lesion diagnosis were 80%,
70.53%, 80.35%, and 0.57, respectively; those in group III
lesion diagnosis were 86.96%, 85.14%, 86.46%, and 0.68,

respectively; and those of group IV lesion diagnosis were
95%, 96.10%, 95.88%, and 0.70, respectively. It suggested that
the diagnosis rate of group IV was significantly higher than
that of the other three groups, while that in group III was
higher than the other two groups (p< 0.05), but there was no
significant difference between groups I and II (p> 0.05).

4. Discussion

*e occurrence of KOA is closely related to the degenerative
damage of knee cartilage. MRI, as the only scanning method
that can clearly show the cartilage lesions of the joint, has
been extensively studied in clinical practice. However,
conventional MRI examinations are often ignored due to
thicker scans, small lesions, and failing to accurately diag-
nose early lesions of articular cartilage in patients with KOA
[19]. *erefore, the multimodal MRI technology was pro-
posed in this work, aiming to understand its application
effect in the diagnosis of cartilage damage grade in KOA
patients.

In order to make the results of the study more ac-
curate, the MRI LRDD algorithm based on IBPD was

Table 2: *e statistics of diagnosis results using T2WI sequence MRI scan and arthroscopic diagnosis results.

Arthroscopic diagnosis results
(n� 198 cases) Total

Non-KOA Non-KOA

T2WI sequence (n� 198 cases) KOA 64 35 99
Non-KOA 59 40 99

Total 123 75 198

Table 3: *e statistics of diagnosis results using SE-T2WI sequence MRI scan and arthroscopic diagnosis results.

Arthroscopic diagnosis results
(n� 198 cases) Total

KOA Non-KOA

SE-T2WI sequence (n� 198 cases) KOA 70 32 102
Non-KOA 53 43 96

Total 123 75 198

Table 4: *e statistics of diagnosis results using FS-T2WI sequence MRI scan and arthroscopic diagnosis results.

Arthroscopic diagnosis results
(n� 198 cases) Total

KOA Non-KOA

Fat-saturated T2WI (n� 198 cases) KOA 76 30 106
Non-KOA 47 45 92

Total 123 75 198

Table 5: *e statistics of the diagnosis results of multimodal MRI scan and arthroscopic diagnosis.

Arthroscopic diagnosis results
(n� 198 cases) Total

KOA Non-KOA

Multimodal sequence (n� 198 cases) KOA 109 11 110
Non-KOA 14 64 88

Total 123 75 198
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adopted to process the MRI of KOA patients, and the
denoising e�ects were analyzed and compared.  e results
showed that when the rice intensity was 1%, 3%, and 5%,
the PSNR values (44.89 dB, 38.67 dB, and 34.88 dB), SSIM
(0.993, 0.979, and 0.961), and consumption time (1.761 s,
1.981 s, and 2.121 s) of the algorithm adopted in this work
were better than IBPD and LRDD under the corre-
sponding rice intensity (p< 0.05), suggesting that the
denoising e�ect of the two algorithms combined was
better than that of a single method. Xie et al. (2020) [20]
proposed that the e�ectiveness of the LRDD algorithm
was still worthy of improvement.  e IBPDmethod in this
study was used for learning through GMM, which

indirectly indicates the e�ectiveness of GMM. Many
studies have shown that GMM is very good in the opti-
mization e�ect of the algorithm [21], suggesting that the
results of this study are precious. However, analysis of the
research results revealed that with the increase of rice
intensity, the PSNR value and SSIM result of the algorithm
adopted in this work, IBPD algorithm, and LRDD algo-
rithm gradually decreased, and the time consumption of
the algorithms gradually increased. It shows that the
application of the above algorithms is limited by the noise
intensity.  e higher the rice intensity, the worse the
denoising e�ect and performance, which requires further
optimization.
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Figure 4: Comparison of MRI diagnostic e�ects of di�erent sequences.
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Figure 5: MRI scan images: (a) sagittal T1WI, (b) sagittal T2WI, (c) cross-sectional SE-T2WI, and (d) coronal SE-T2WI.
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Comparison results of multimodal MRI technology with a
single MRI scan sequence revealed that the diagnostic sen-
sitivity, speci�city, accuracy, and consistency (Kappa value) of
themultimodal group were 88.61%, 85.33%, 87.37%, and 0.73,
respectively.  e results showed that the combination of
multiple MRI sequences in the multimodal technique was
more e�ective in the diagnosis of knee osteoarthritis and
chondropathy. Ohno et al. [22] proposed in their study that
MRI, FDG PET/MRI, and FDG PET/CT have higher diag-
nostic accuracy in TNM staging than conventional imaging
examinations. In addition, Gui et al. [23] proposed in their
study that a multimodal MRI scan has a diagnostic sensitivity
of 68.8%, speci�city of 72.5%, and accuracy of 70.5% for
diseases, which were lower than the values in this work,
suggesting that arti�cial intelligence algorithm has the role of
improving MRI diagnosis e�ect. Borić et al. [24] also pro-
posed multimodal MRI as an e�ective means of evaluating
cartilage lesions, and the results were basically consistent with
the results of this work. Moreover, multimodal MRI tech-
nology not only has a good application e�ect in the diagnosis
of KOA cartilage lesions but also has good development
prospects in the application of multimodalMRI technology in
breast diseases [25], brain diseases [26,27], tumor diseases
[28], and other aspects.  e above results show that multi-
modal MRI has good application advantages in disease di-
agnosis. During the research process, multimodal MRI
technology was also used to diagnose di�erent grades of knee
cartilage lesions, and the grading results under arthroscopy
were used as the standard for evaluation.  e results showed
that the sensitivity, speci�city, accuracy, and consistency of
multimodal MRI in the diagnosis of group IV lesions were
95%, 96.10%, 95.88%, and 0.70, respectively, which were
signi�cantly higher than those of groups I, II, and III
(p< 0.05). However, the sensitivity, speci�city, and accuracy
in group III (86.96%, 85.14%, and 86.46%) were higher than
those of groups I and II, indicating that the higher the lesion
grade, the better the diagnostic e�ect of multimodal MRI.
However, the results of Wei et al. (2019) [29] showed that the
change of the sensitivity of the knee cartilage by quantitative
magnetic susceptibility mapping decreased with the increase
of cartilage degeneration, which is contrary to the results of

this work. Such inconsistent results may be caused by the
di�erence between MRI and quantitative magnetic suscep-
tibility mapping detection principle and the di�erence in
sensitive substances to the human body.  e research results
of Spahn et al. [30] are consistent with the conclusions of this
work, but because there are relatively few similar studies, this
conclusion still needs further veri�cation.

5. Conclusion

 is work not only processed the diagnostic e�ect of MRI
images of various sequences based on the I-LRDD denoising
algorithm in cartilage injury of KOA patients but also analyzed
the diagnostic e�ect of multimodal MRI in cartilage injury of
di�erent levels, so it was relatively more comprehensive.
According to the research results, the LRDD algorithm based
on noised image block prior showed a good image processing
e�ect, and the diagnostic sensitivity, speci�city, accuracy, and
consistency (Kappa value) of multimodal MRI (88.61%, 85.3%,
87.37%, and 0.73%, respectively) were better than that of single
scan sequence, which was more conducive to the diagnosis of
KOA cartilage lesions.  erefore, it was worthy of clinical
application and promotion. Moreover, the higher the cartilage
lesion grade, the better the diagnostic e�ect of multimodal
MRI. However, the number of patients in each group was too
small, and the selection range of research objects was limited,
leading to the lack of accuracy and representativeness of the
results, which required further expansion.  is work proved
that the combined use of multiple MRI sequences for disease
diagnosis was more conducive to the diagnosis and treatment
of doctors, and its clinical development prospects were very
promising.
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