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In this paper, an enhanced algorithm based on the Super4PCS algorithm was established to address the problem of prolonged
congruent set verification of Super4PCS for point clouds with many points or low overlap. By comparing normals of corre-
sponding points in a source point cloud and a tentatively transformed target point cloud, this approach dramatically decreases the
time required for candidate transformation verification. 0is strategy has been shown to improve registration efficiency
in experiments.

1. Introduction

Point cloud registration has recently become an important
method in 3D point cloud processing, which is widely
utilized in virtual world reconstruction, computer-aided
industrial design, medical imaging, and autonomous
driving.

In practice, it is difficult to acquire a complete model
directly and several views of a model should be combined,
usually in the form of point clouds, to obtain a complete 3D
model. 0is process is called registration. In detail, in the
registration process, a transformation matrix is obtained to
match a point cloud to another point cloud, or different
views of the point cloud.

As the oldest point cloud automatic registration algo-
rithms, the ICP algorithm and its variants [1–6] have been
widely used owing to high efficiency and precision. In ad-
dition, researchers proposed point cloud registration algo-
rithms with a probabilistic model, such as NDT [7], CPD [8],
and filterReg [9], to handle outliers and noise. However, the
initial position of the point clouds to be transformed is an
important constraint of the algorithms, as mentioned earlier.
Various coarse registration (initial alignment) algorithms
were proposed to solve this problem. Fast and accurate
coarse registration of point clouds is a key technology and

research focus. In general, coarse registration over a point
cloud is managed to find the optimal rigid transformation
that can align two input point clouds to a common coor-
dinate system. In practical applications, the data may be
seriously occluded, and the overlapping area between dif-
ferent views of a model is minimum, making the process of
finding the best rigid-body transformation challenging.
0erefore, finding a fast, accurate, and robust coarse reg-
istration algorithm for point clouds is a widespread research
topic.

Currently, most coarse registration algorithms for 3D
point clouds can be divided into two categories or their
combination: feature-based registration methods and fea-
ture-free registration methods. In the former, keypoints are
extracted, and the corresponding relationship between two-
point clouds is obtained using the feature descriptors that
can remain unchanged under a rigid-body transformation.
Next, registration is performed, for example, using the SAC-
IA algorithm based on the FPFH feature [10] or the SHOT
feature [11]. However, when the feature is not obvious, the
noise is large, or the number of outliers is high and feature
extraction is difficult to perform, limiting the registration
speed and quality. Feature-free registration methods are
based on exhaustive search. By traversing the entire feasible
transformation space, these methods find the
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transformation that minimizes the error function or makes
the largest number of common points shared, such as the
random sample consensus (RANSAC) algorithm. 0ese
algorithms are robust, as compared with feature-based
registration methods. However, these methods are unac-
ceptably time-consuming when the number of points in the
point cloud is large. 0is is because, when the overlapping
rate is low [12], the complexity of the RANSAC algorithm is
often its worst case O(N3), where N represents the cardi-
nality of the target point cloud. Based on RANSAC, the four-
point congruent set (4PCS) algorithm [13] and the 2PNS
algorithm [14] were proposed. 0e method based on ma-
chine learning provides a relatively more robust transfor-
mation between two arbitrary point clouds through the
invariant features generated by machine learning technol-
ogy. Typical representatives of such methods include point
cloud registration network (PCRNet) [15], deep global
registration (DGR) [16], and a learned detector method [17].
Since learning-based methods may use more detailed fea-
tures than other methods, they can be more robust to noise.
However, methods based on machine learning need a lot of
computing overhead in the training stage, and the inter-
pretability of the algorithm is also poor. In addition, global
registration algorithms based on heuristic algorithms belong
to featureless registration methods and generally consume
huge computational resources [18–21]. 0is paper proposes
a method to improve the efficiency of Super4PCS by
shortening verification time of Super4PCS comparing
transformed normals.

2. Related Work

Aiger et al. introduced the 4PCS algorithm, which uses the
geometric information of four points to compute the
transformation matrix between different views. 0e 4PCS
algorithm can run in the O(N2) time. Based on 4PCS,
Mellado et al. proposed the Super4PCS algorithm, the as-
ymptotic complexity of which is O(N). 0e key improve-
ment in the Super4PCS algorithm is the utilization of a grid-
like data structure to search for point pairs within a certain
distance range.

In this paper, we improve Super4PCS by adding veri-
fying parts of normals under a tentative transform matrix
before the verification stage of original Super4PCS and
eliminates fault congruent four-point sets and lowers the
number of potential congruent four-point sets. In addition,
we proposed a method to judge the positive and negative of
normals by the convexity in the point field to ensure the
positive and negative consistency of the normals at corre-
sponding points of different views.

0e time consumption of verification stage in
Super4PCS accounts for a large proportion of the total time
consumption. 0erefore, reducing the time consumption of
verification stage can obviously improve the efficiency of
Super4PCS. Based on the idea, the proposed registration
algorithm adds normal matching before verification and
eliminates fault congruent four-point sets and lowers the
number of potential congruent four-point sets. Raposo et al.
presented the 2PNS algorithm [14]. 0e improved version of

Super4PCS uses point pairs and their endpoint normal
vectors instead of coplanar four points to search corre-
spondences between views. It is experimentally showed that
the 2PNS algorithm can perform registration in a shorter
time than Super4PCS. However, 2PNS could fail if point
clouds are too sparse or strongly dominated by sharp edges
and corners, with the quality of point clouds being poor.

3. Review of Super4PCS

To make the description of the proposed algorithm clear, we
first go over the Super4PCS algorithm briefly. 0e
Super4PCS algorithm was established on the 4PCS algo-
rithm, which was developed based on RANSAC. Original
RANSAC would try to search exhaustively triplets because a
rigid transformation may be obtained from only 3 points. Its
runtime complexity is O(N3).

0e 4PCS algorithm uses coplanar sets of 4 points, in-
stead of the minimum sets of 3 points used in RANSAC, and
employs a method efficiently matching affine invariant ratios
in a source point cloud and a target point cloud to solve the
global 3D registration problem. 0e 4PCS algorithm uses
coplanar sets of 4 points, instead of the minimum sets of 3
points used in RANSAC, and employs a method efficiently
matching affine invariant ratios in a source point cloud and a
target point cloud to solve the global 3D registration
problem. 0e algorithm selects iteratively a base set of 4
coplanar points in the source point cloud P, finds all the 4-
point sets congruent with the base set in the target point
cloud Q within a certain tolerance, verifies rigid transfor-
mations between the base set and its congruent 4-point sets,
and retains the best transformation according to the LCP
score until termination conditions are satisfied. Here, a
coplanar set of 4 points consists of two two-point pairs. 0e
asymptotic complexity of 4PCS is O(N2).

Super4PCS solved two main bottlenecks of 4PCS: pair
extraction and elimination of nonrigid invariant 4-point
candidates and decreased the asymptotic complexity to
O(N).0e target point cloud in a grid-like structure, which is
subdivided recursively, is employed to compute which
points are intersected with spheres centered other points in a
tolerance and which point pairs are possible to make out
congruent 4-point bases. 0e improved pair extraction is the
highlight of this algorithm. In addition, Super4PCS uses
hash-like structure to obtain rigid invariant 4-point can-
didates and avoid elimination process. 0e main steps of the
Super4PCS algorithm are shown as Figure 1 and are as
follows.

4. Proposed Algorithm

0is section describes an improved Super4PCS algorithm
which eliminates wrong transformation matrices before
computing LCP scores to shorten the verification time of
candidates’ transformation matrices in original Super4PCS.

In detail, the proposed algorithm compares normal
directions transformed using a candidate correspondence
at corresponding points across different views under a
candidate transformation to determine whether the
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Randomly select a 4-point base in P
and compute corresponding invariants

Extract 4-point sets congruent with the base in Q

Pick a congruent 4-point sets and
compute the rigid transform matrix

Apply the rigid transform ma-
trix to Q and compute the LCP

Are congruent sets traversed?

Is time over?

Select the result with the best LCP

End
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Figure 1: 0e flowchart of Super4PCS.
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compute the rigid transform matrix

Judge whether the rigid trans-
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Figure 2: 0e flowchart of proposed algorithm.
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correspondence is obviously fault and skip computation of
LCP for fault correspondence. 0is screening process can
avoid wasting the time of computing LCP on those obviously
wrong transformation matrices and shorten the verification
time of original Super4PCS. 0e verification phase of
Super4PCS takes up a large part of the total time cost. If the
time cost of this phase is reduced, the efficiency of the
registration algorithm can be significantly improved.

To describe clearly, we first define a term transformed
normal error here to represent the included angle between
the normal of a point of a point cloud transformed by a
transformation matrix and the normal of the corre-
sponding point of the corresponding target point cloud.
Using this define, the main principle of the proposed
method can be described that the transformed normal
error of a point in the source point cloud under a correct

Start

Assume the matrix is incorrect and
set total count nc, correct count nt

and correct proportion threshold pt

Randomly pick a point in Q, transform the point
and its normal, and denote them as qj and nqj

Obtain the corresponding
point pi and nomral npi in P

Fix directions of normals npi and nqj

npi · nqj > tα?

nt = nt + 1

Repeat nc times?

nt > pt * nc?

The matirx can be correct

End

No

Yes

No

Yes

No

Yes

Figure 3: 0e flowchart of judging whether a transformation is fault.

Start

Pick a point p and its normal np

Calculate the centroid of the neigh-
borhood of p, it is denoted as N (p)

np · (p−N (p)) < 0

Flip the normal np = −np

End

Yes

No

Figure 4: 0e flowchart of fixing normal directions.
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transformation should be very small or smaller than a
certain threshold. If the transformed normal error of the
transformation matrix is calculated according to a cor-
respondence, we could exclude those transformations that
cause large normal errors before the verification stage of
Super4PCS.0is strategy can reduce the range of potential
transformations and time consumption at the verification
stage of Super4PCS.

In practice, we do not need to check normal vector at
all the points in the source point cloud with a trans-
formation matrix to judge whether the transformation
matrix could be optimal. 0e number of transformed
normal errors used depends on the quality of the source
point cloud and the target point cloud. If the quality of the
source point cloud and the target point cloud is high, only
several transformed normal errors need to be checked.

(a) (b)

Figure 5: 0e illustration of views of the dragon model before registration. (a) Bunny 0 and bunny 45. (b) Bunny 0 and bunny 90.

(a) (b)

Figure 6: 0e illustration of views of the dragon model after fine registration. (a) Bunny 0 and bunny 45. (b) Bunny 0 and bunny 90.

Computational Intelligence and Neuroscience 5



0e method directly using the normal error at a point in
the congruent base pair of the source point cloud is an
efficient way because the corresponding points of the
congruent base pair of the source point cloud form the
base pair of the target point cloud that does not need extra
computation. If one of the several transformed normal
errors under the current tentative transformation matrix
is greater than a threshold, it can be considered that the
current tentative transformation matrix is wrong.

For most situations, the quality of point clouds is not
very high; it may not be enough to use only several
transformed normal errors under a transformation. 0ere
may be a large number of points whose normal direction
has great error, especially edge points, corner points, and
points on scattered broken surfaces. It is unreasonable to

negate a possible transformation matrix only according to
the fact that the transformed normal error of one or two
points exceeds the threshold. A more reasonable strategy
is to check a certain number nc of randomly selected
transformed normal errors. 0e possibility that several
transformed normal errors under a wrong transformation
meet the requirements simultaneously is extremely small.
Hence, if the proportion of points whose transformed
normal errors satisfying a requirement is greater than a
certain threshold pt, it is determined that the current
tentative transformation matrix can be used in the LCP
verification stage of Super4PCS. 0e flowchart of im-
proved Super4PCS is showed as Figure 2. 0e flowchart of
judging whether the point meets the requirement is shown
as Figure 3.

(a) (b)

Figure 7: 0e illustration of views of the armadillo model before registration. (a) Bunny 0 and bunny 24. (b) Bunny 0 and bunny 48.
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Before judging whether a point meets the requirement, it
is necessary to ensure the positive and negative consistency
of the normals at corresponding points of different views
because the calculated normal directions of the corre-
sponding points across different views of a point cloud
model may be opposite [22–24]. Here, we solve this problem
according to the convexity of the neighborhood of a query

point. Since the convexity of the neighborhood of a query
point is consistent across different views, we can judge
whether the normal direction of a point is positive or
negative by calculating the cosine value of the angle between
the normal and the convex direction of its neighborhood. If
the cosine value is negative, we will flip the normal direction.
0e direction from the centroid of the neighborhood of a

(a) (b)

Figure 8: 0e illustration of views of the armadillo model after fine registration. (a) Bunny 0 and bunny 24. (b) Bunny 0 and bunny 48.

Computational Intelligence and Neuroscience 7
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point to the point can be used as the convex direction of its
neighborhood. 0e flowchart of fixing normal directions is
shown as Figure 4. After fixing normal directions, whether
the dot product of the normal at a point in transformed
source point cloud and the normal at its corresponding point
in the target point cloud is greater than a certain threshold is
used to judge whether the transformed normal errors under
a transformation is within the tolerance.

0e total steps are shown as follows:

(1) Randomly select a point pair in the target point cloud
and compute corresponding invariants.

(2) Extract congruent pairs with invariants of the above
step in the source point cloud.

(3) Select a congruent pair and compute the rigid
transform matrix.

(4) Randomly select nc points in the source point cloud,
fix their normal directions, and compute their
transformed normal errors of the transformation.

(5) Count the number of the points that satisfy the
requirement nt. If the number is less than pt

∗nc, jump
to step 3, or go to the next step.

(6) Apply the transformation and compute the LCP.
(7) If all the congruent sets are traversed or the time is

out, select the result with the best LCP score.

5. Experiments and Results

In this section, we performed experiments to verify the
efficiency of the proposed registration algorithm. 0e ex-
periments were run on different views of the bunny model,
dragon model, happy buddha model, and armadillo model
from the Stanford 3D Scanning Repository. 0ese models
added outliers with a variance of 0.002mm on 5 percentage
of the points. Figures 5 and 6 show the respective registration
processes of the proposed algorithm over different views of
the point cloud of the bunny. To show the registration
processes clearly, the second views in (a) and (b) of Figure 5
are rotated by approximately 180° away from the first views.
Figure 6 shows the results obtained using the proposed
algorithm. Similarly, Figures 7 and 8 show the registration
process of the happy buddha model. Tables 1 and 2 show
comparisons between the proposed algorithm and other
algorithms on the bunny model, happy buddha model,
dragon model, and armadillo model concerning time, LCP,
translation error, and rotation error. 0e results shown in
the table are the average of the results of 50 runs. 0e results
confirm that the computation time of the proposed algo-
rithm is significantly reduced, compared with Super4PCS
and 2PNS while maintaining accuracy.

6. Conclusion

Registration is now commonly applied in the 3D point cloud
processing field. Unlike algorithms that easily fall into the local
optimum, the Super4PCS algorithm based on the 4PCS point
algorithm as a global registration algorithm achieves good
results. However, the time consumption of the verification of

Super4PCS accounts for a high proportion of the total time. To
reduce the total time of Super4PCS, an improved algorithm
combining the original Super4PCS algorithm with normal
matching is proposed in this paper. 0e method of checking
the angle between normal of corresponding points in a ten-
tatively transformed source point cloud and a target point
cloud is used to obtain the candidate points of the Super4PCS
algorithm to eliminate the obviously wrong transformations.
0e experimental results showed that this method can re-
markably improve the registration efficiency.

However, the proposed algorithm is not suitable for
models with a lot of broken surfaces, where a large pro-
portion of points are difficult to estimate and obtain the
correct normal direction. We plan to improve to make
normal estimation robust to expand the application scope of
the algorithm in the future.
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