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Travel time estimation (TTE) is widely applied for ride dispatching, ride-hailing, and route navigation. Even for a given trajectory,
the travel time is affected by many spatial-temporal factors, including static ones such as distance, road type, and so on and
dynamic ones such as speed, traffic condition, and so on. Challenges of accurate estimation lie in proper representation of these
spatial-temporal factors and more importantly capturing the complex relationship among them for TTE. To tackle such
challenges, we present a framework based on the fact that the travel time of each road segment is affected by its adjacent segments.
It features a graph convolutional neural network and a recurrent neural network for basic TTE for each road segment and a graph
attention network for the relation to estimations on the adjacent road segments. Finally, a multitask learning model is proposed
for the travel time of the entire given path and that for each road segment. Experimental results on real taxi trajectory datasets of
two cities show that the percentage estimation error of the new approach is well controlled at 13.91% and the proposed method
outperforms three state-of-the-art methods significantly.

1. Introduction

Travel time estimation (TTE) is a classic yet challenging
problem using trajectory data. In urban cities, it plays a key
role in route planning [1], vehicle dispatching [2], and ride-
hailing [3] applications, such as Uber, Lyft, and DiDi. *e
accuracy of TTE is vital to user stickiness and activity.
According to [4], inaccurate travel time estimation leads to
28.4% car-booking cancellation.

*ere exist many factors that affect the accuracy of TTE,
which can be summarized into two categories: the static ones
such as road type, e.g., highway or byway, road width, speed
limit, and in-degree and out-degree, and the dynamic ones
such as weather, accident, traffic speed, time interval, and so
on. It is worth noting that factors of road segments may have
implicit dependency, which will affect TTE in a very complex
way. For example, the speed on a road segment may be

affected by its adjacent and congested segment since the
vehicles have to slow down and wait.

To accurately estimate the travel time, such factors
should be combined all together; however, there are three
challenges to do so. (1) How to investigate the effects of
these factors on the travel time, e.g., how does road type
(e.g., main road and secondary road) affect the estimation
of the travel time. (2) How to encode the complex factors
and learn effective features from them, especially for the
implicit ones, such as the traffic condition characteristics.
Inadequate understanding of these factors may cause
inaccuracy in the estimation. (3) How to fuse spatial-
temporal correlation factors for travel time estimation.
Among all these factors, traffic condition is the most im-
portant. Existing work on TTE [5–9] mainly aims to es-
timate the travel time of a path considering the factors such
as traffic flow, weather condition, road type, and so on but

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6622734, 9 pages
https://doi.org/10.1155/2022/6622734

mailto:jsx@hit.edu.cn
https://orcid.org/0000-0001-5692-0074
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6622734


lacks the study of the aforementioned implicit dependency
among road segments.

To address the challenges, we present dependent rela-
tionship travel time estimation (DRTTE). We first analyze
the relationship among various factors that may affect the
estimation of the travel time. Based on the analysis, we then
learn several features for TTE via a sequence of graph neural
networks. We use graph convolutional network (GCN) to
obtain spatial feature, followed by gated recurrent unit
(GRU) capturing the spatial-temporal feature. *e extracted
features, when combined with auxiliary information, such as
weather, are used to learn the traffic condition representa-
tion. *e traffic condition representation, along with the
road segment information, generates a vector for the speed
on each road segment. Graph attention network (GAT) is
then applied to update the speed vector considering the
dependency of the road segments. With a multitask learning
model, these new speed vectors are used in the final step for
travel time estimation over all road segments and the entire
path.

We highlight the following contributions in this work:

(i) Learning the road segment traffic conditions by
exploring the static and the dynamic features.

(ii) Proposing a multitask learning framework for
learning the feature of each factor by exploiting the
dependency and fusing them together to predict the
travel time.

(iii) Conducting extensive experiments to confirm the
effectiveness of our proposed solution in compar-
ison with the state-of-the-art baselines.

*e rest of the paper is structured as follows. State-of-
the-art solutions for TTE and related deep learning algo-
rithms are reviewed in Section 2. *e problem statement is
given in Section 3. *e methodology and computational
framework are described in Section 4 and evaluated in
Section 5. Finally, conclusions and discussions are given in
Section 6.

2. Related Work

Machine learning and deep learning have been widely ap-
plied for spatial-temporal problems, including path infer-
ence [10], path query [11], path selection [12–14], crowd-
sourcing analysis [15, 16], path traffic [5, 17], and travel time
estimation. However, the above work aims to infer, query, or
select a path, and less attention is paid on estimating the
travel time which depends on relationship of road segments.
Our method focuses on the two places: each road segment
and the whole path. *e SOTA methods focus on the whole
path. In recent years, there are also many new approaches
towards TTE. New methods of machine learning encoding
the spatial-temporal features have been applied to solve TTE
problems. ConLSTM [18] combined CNN and LSTM. Pa-
per, [7, 9] proposed a data-driven regression model con-
sidering complex factors. DEEPTRAVEL [9] extracted
multiple features of TTE for a path. Paper, [6, 19] utilized
only GPS data for TTE. However, limitations such as path

scale, auxiliary information, correlation, and dependency
among road segments are not well addressed, leading to
affected degree of accuracy.

3. Preliminary

3.1. Definitions

Definition 1. (directed graph for road network). A road
network is represented as a directed graph G � (V, E,A),
where V is the vertex set of road segments with order
Ν � |V|, E is the edge set of connectivity between road
segments, and A is a Ν × Ν adjacency matrix that captures
how the directed edges are connected.

Attributes of a road segment include static spatial
geographic ones as ID, length, direction, and so on and a
dynamic one, the speed of vehicle as a function of time.

Several feature tensors of G are defined based on the
above attributes. *ey are F ∈ RN× M× J for original geo-
graphic features, its time t variant Ft ∈ RN×M, and static
variant Fs ∈ RN×(M− 1). Correspondingly, after representa-
tion learning, these are feature tensor S ∈ RN×D×J, static
feature matrix S ∈ RN×D×J, and dynamic feature matrix.
Here M, J, D are the numbers of attributes of the road
segment, time steps of data available, and features of the road
segment after spatial representation learning, respectively.

Definition 2. (path and trajectory). A path is the sequence of
road segments Ρ � 〈v1, v2, . . . , vi, . . . , vj, . . . , vn〉, with |Ρ| �

n and 1≤ i≤ j≤ n.

Definition 3. (traffic condition). *e traffic condition
∁ ∈ RN×D×K fuses the spatial-temporal correlations and
auxiliary data feature.

3.2. Problem Statement

Problem Definition. For a given path p and a departure time
ts, a travel time query is to be performed. A multitask
learning framework called DRTTE is proposed, which can
return the travel time ti for road segment vi and ten for the
entire given path simultaneously.

Subproblem Definition. Prediction of traffic condition is a
subproblem of TTE of each road segment and hence is
carried out along with the prediction of spatial-temporal
features. *e kernel of the feature prediction is spatial-
temporal correlation st on the object road segment. For the
time series sequence st, its prediction is to get values of K
future time steps based on the given values of J time steps as
stated below:

stt+1, . . . , stt+K
� F G; Ft−J

, . . . , Ft􏼐 􏼑􏼐 􏼑, (1)

where Ft is the observation feature matrix at time t on the
object road segment. Spatial-temporal features stt+ 1,. . .,
stt+K are from the dynamic feature matrix Ft of the past J
time steps in the time sequence.
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Path travel time ten depends on path length and path
speeden. *e speeden depends on traffic conditions C and Ss
defined previously.

4. Methodology

To solve the TTE problem defined, a multitask learning
framework is proposed, which consists of three major
modules, namely, traffic condition module, speed module,
and travel time module. Figure 1 shows the logic structure of
the framework. During the training phase, features of traffic
condition C and speed sp are effectively extracted. Also,
during the test phase, ten is estimated for the given p and ts.
*e three kernel modules are specified below. *eir inputs
and outputs are detailed in Table 1.

4.1. Traffic Condition Module. As shown in Table 1, with
original feature matrix Fs and adjacency matrix A, static
spatial geographic representation of the road segments is
captured as Ss. Similarly, from Ft and A, the dynamic feature
St can be captured, resulting in st, the spatial-temporal
representation of road segments over time. Traffic condition
C, as the core of the framework, is then obtained via fusion of
auxiliary feature (e.g., weather) and st.

4.1.1. Spatial Feature Capturing. Acquiring the traffic
condition C is a key issue in TTE. A road segment traffic
condition module is designed for its learning using adja-
cency matrix A and other feature matrices. Note that local
characters of the road network are missing in the original
matrices. To fix this, a convolution is used to obtain the
spatial characteristics with structural information of road
segments. However, due to the nature of nonregular grid of
the road network data, the intricate topological structure of
the road network and the spatial dependency of the road
segment cannot be obtained by traditional convolution
neural network (CNN).

Instead, the graph convolution network (GCN) [20] is
adopted for this purpose, using a line transformation after
convolution with its surrounding road segments. With a
filter in spectral domain, the topology structure of the road
network is captured simultaneously. Also, the spatial de-
pendence at fixed time slice can be learned. Graph con-
volutional filters are used to extract the local features shared
by topologically adjacent elements in graph G. It is seen that
with GCN filters, the input stochastic weights can be
“propagated” to adjacent and correlated edges during
convolutions via road network topology.

Hence, capturing both static and dynamic spatial fea-
tures is done via the GCNmodel from corresponding feature
matrices of road segments, i.e., Ss from Fs and St from Ft.
Mathematically, they can be described as

Ss � GCN Fs, A( 􏼁 � σ _AFsW􏼐 􏼑,

St
� GCN F

t
, A􏼐 􏼑 � σ _AFtW􏼐 􏼑,

(2)

where _A � 􏽢D
−1/2 􏽢A 􏽢D

−1/2 denotes the graph convolution filter,
􏽢A � A + IN is a matrix with self-connection structure, 􏽢D �

􏽐j
􏽢Aij is a degree matrix, W is the weight matrix, and σ(·)

represents the activation function. In Table 1, ss is the row of
Ss and denotes the learned static spatial vector for the road
segment; st is the row of St and denotes the learned dynamic
spatial vector for the road segment.

4.1.2. Spatial-Temporal Feature Prediction. *e temporal
feature is another key issue in spatial-temporal correlation
on each road segment. *e collection forms a sequence data,
which can be generally processed by the widely used re-
current neural network (RNN) that is most widely used for
processing sequence data. However, the traditional RNN has
limitations for long-term prediction because of the gradient
vanishing and gradient explosion. *e above problem has
been addressed by long short-term memory (LSTM) and
gated recurrent unit (GRU) models, which are designed
according to the basic principle that the gated mechanism is
used to memorize as much long-term information as pos-
sible. LSTM takes a longer time to train because of its
complex structure. Compared with GRU, LSTM takes a
longer time to train because of its complex structure and
more parameters. *e mathematical formulation is

u
t+1

� σ Wu · st
[t + 1], st[t]􏽨 􏽩 + bu􏼐 􏼑,

r
t+1

� σ Wr · st
[t + 1], st[t]􏽨 􏽩 + br􏼐 􏼑,

c
t+1

� tanh Wc · st
[t + 1], r

t ∗ st[t]􏼐 􏼑􏽨 􏽩 + bc􏼐 􏼑,

st[t + 1] � u
t ∗ st[t] + 1 − u

t+1
􏼐 􏼑∗ c

t+1
,

(3)

where σ(·) is an active function defined as
σ(x) � (1 + exp(−x))−1, Wu,Wr,Wc are weights, bu, br, bc

are parameters, operator [,] represents vector concatenation,
and ∗ denotes matrix multiplication.

Consequently, the GRU model is opted for temporal
information processing. *e spatial-temporal feature st at
time t+K in the object road segment is predicted by a se-
quence of GRU cells, with the dynamic spatial feature vector
st at time t as input.

*e spatial-temporal feature st obtained from above can
be fused with auxiliary data (such as weather w) to get the
traffic condition C � [st,w], where [,] is again the concat-
enation operator. C plays a key role in the remaining
modules.

4.2. Speed Module. *e purpose of this speed module is to
learn the speed on road segments in the next K time steps.
*ey are known to be highly dependent on the traffic
condition. Hence, C is taken as an influence factor of the
speed feature sp on a single road segment at time step t+ 1,
as shown in (4). *e other factor is the static spatial feature

spt+1
� LSTM C, Ss, sp

t
; θb􏼐 􏼑, (4)

where θb is a parameter for LSTM.
Moreover, the connectivity nature of the road network

implies that along the whole path speeds of road segments
are related, especially for those adjacent segments. *is
higher level of dependency indicates that another update to
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the speed feature of the current road segment by its
neighboring road segments at the time t+ 1 is necessary.

To handle this, a graph convolution known as graph
attention network (GAT) [21] is adapted to combine in-
formation about the neighbors of the object road segment.
We embed the traffic from the road segment component into
the path component using the GAT with time to get the
traffic in the next time step along the path. *e key idea is to
weight the features of the neighbors using an attention
mechanism. *e attention coefficients from the GAT shows
the level of dependency between road segments. *e weight
is the level of influence of neighbors on the target road
segment. For target road segment ]j with |N(j)| neigh-
boring road segments, the graph has |N(j)|+ 1$ nodes.
Features of the object road segment and its neighbors are
combined. *e dependency of the target road segment can
be represented by the ats

ik using GAT. Finally, the new speed
on the target road segment Vi at next time step ts + t is
combined by the activation function σ, as shown in Algo-
rithm 1.

In (5), function f(·) applies the LeakReLU nonlinearity
(with negative input slope� α0.1). When expanded, the
coefficients computed by the attention mechanism can be
expressed as

αts
jk �

exp f spts
j , spts

k􏼐 􏼑􏼐 􏼑

􏽐i∈N(j)∪jexp f spts
j , spts

i􏼐 􏼑􏼐 􏼑
, (5)

where spts
j is the representation speed of road segment vj at

time ts. *e traffic condition is effected by the time which is
the daily periodic. Intuitively, αts

jk is the level of dependency
or weight of road segment vk on road segment vj.

*e above procedure for speed representation on the
path is implemented in Algorithm 1. *ere are two major
steps. *e first (in lines 7–11) captures the correlation to the
object road segments and their neighbor road segments.
Also, the second (in line 12) updates the speed of the object
road in the next time step.

4.3. Travel Time Module. Travel time on a road segment
finally depends on its length and travel speed. Here only
speed needs to be calculated since length is fixed. Based on
the multitask learning framework depicted in Figure 1, speed
can be derived from the feature of speed 􏽢sp learned from the
previous two modules.*is leads to travel time estimation of
road segments and the entire path with 􏽣spi and 􏽤spen.

To achieve this, 􏽣spi on road segment vi is designed to go
through fully connected layers, resulting in the mapped

t1
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t2 ti

vi vj vn

tj tn ten

speed1 speed2 speedi speedj speedn speeden
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LSTM LSTM

LSTM LSTM
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Figure 1: *e architecture of dependent relationship travel time estimation (DRTTE).

Table 1: *e input and output variables of the modules.

Traffic module Speed module Travel time module
Input A, Fs A, Ft St st, w Ss, C sp ŝp Speed, length
Model GCN GCN GRU GAT Multitask learning
Output Ss St st C sp ŝp Speed t
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scalar speed. Here a two-layer model instead of the tradi-
tional LSTM model is adopted due to its better prediction.

Speed feature spen for the entire path is a comprehensive
quantity over spi for each road segment. A simple way to
accomplish this is to use the mean pooling or max pooling,
i.e., 􏽢spmean � 1/n 􏽐

n
i�1 􏽣spi. However, the largely uneven speed

features on each road segment lead to significant error of the
above pooling. To improve, the equal-weight 1/n can be
replaced by a set of specially designed weights, as in the
following attention mechanism.

􏽢spatt � 􏽐
n
i�1 αi 􏽣spi, where αi � exp(spi)/􏽐 exp(spi) is the

normalized weight for the i-th road segment. *e resulting
􏽢spatt is then fed to residual fully connected blocks that train a
very deep neural network [22]. Based on the above result,
􏽢spen is finally obtained via a MLP simple neural network
model.

5. Experiments

5.1. Experiment Settings. Effectiveness and overall perfor-
mance of the DRTTEmodel are evaluated on two large-scale
real-world taxi datasets, namely Harbin and Chengdu. For
convenience, continuous road networks are segmented into
discrete parts, and two-dimensional GPS data are trans-
formed accordingly along with road segment ID by map
matching algorithm [23]. We adopt Adam algorithm [24]
optimization to train the parameters of the model. *e

learning rate is 0.001. We select the best models by 3-fold
cross-validation.

5.1.1. Evaluation Metrics. *e evaluation metrics we adopt
include mean absolute percentage error (MAPE), root mean
squared error (RMSE), and mean absolute error (MAE).
MAPE compares the estimation value to the percentage of
the ground-truth value, while RMSE and MAE are the gaps
between estimation and true values.

5.2. Comparisons with Baselines. Results in performance of
DRTTE are compared against the baseline methods in-
cluding ARIMA, TEMP [25], and DeepTTE [6]. Table 2
shows the details. It is seen that ARIMA is the lowest
performing method. TEMP gives medium performance and
cannot cope with the complicated traffic conditions either.
TEMEP and DeepTTE work better than ARIMA, but
DRTTE outperforms them significantly on the two datasets.

*e reason is twofold. Firstly, static and dynamic spatial
information can be obtained by DRTTE using graph con-
volution operations. Secondly, the dependency among the
road segments with road properties can be captured by
graph attention network. *ese innovations help preserve
the spatial-temporal characteristics of the traffic condition
and the relationship between the road segments.

Input: sp, p, N, ts, t
Output: 􏽢sp
Initialize matrix: 􏽣SP randomly
Initialize vector: 􏽢sp randomly
Initialize scalar: α randomly
// sp ∈∈RN×E×K: the speed tensor.
// 􏽢sp ∈ RN×F×K: the speed after GAT operation.
// P: the given path.
// N: the neighbor road segments of the object road segment.
// ts: the start time of the given path.
// t: the return travel time of the road segment.
// j: the ID number of the object road segment.

(1) //*e road segment ID involving the given path
(2) while i< |p|
(3) 􏽢sp [i]� sp[i]
(4) //*e time step K;
(5) for s� ts; s<K; s++ do
(6) //*e neighbor road ID of the object road segment.
(7) for j� i; j< |N (i)| + 1; j++ do
(8) // *e correlation of the neighbor road segments.
(9) αs

j � GAT(sp[j][s]) (see (4))
(10) 􏽢sp [j][s]� αs

j · sp[j][s]

(11) end for
(12) 􏽢sp [j][s + t]� σ( 􏽢sp[j][s] + sp[i][s] )

(13) end for
(14) 􏽢sp
(15) end while
(16) Return 􏽢sp

ALGORITHM 1: *e dependency between road segments along the path.
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5.3. Efficiency of Different Components. *ere are four sig-
nificant components in DRTTE, i.e., LSTM, GCN, GRU, and
GAT. Building upon the base model LSTM, other compo-
nents are selectively combined, resulting in four models with
new features potentially in an order of higher-level accuracy.

(1) “LSTM”: multitask learning without information of
road segments and road network characters.

(2) “LSTM+GCN+GRU”: with spatial-temporal in-
formation of the road segments.

(3) “LSTM+GCN+GRU+GAT”: with dependency
between road segments.

(4) “LSTM+GCN+GRU+GAT+ attention”(DRTTE):
with attention mechanism in the multitask layer.

*eir effectiveness and efficiency are measured using the
set ofmetrics, with results given in Table 3. Several observations
can be made. Firstly, “LSTM” exhibits the lowest performance.
Secondly, “LSTM+GCN+GRU” is comparable to DeepTTE

in performance due to their similar structures of model
framework. However, the spatial-temporal feature time series
prediction of each road segment is missing in DeepTTE. *is
limits its capacity in accurate travel time estimation of the
entire path. *irdly, “LSTM+GCN+GRU+GAT” performs
better than DeepTTE since the latter lacks the dependency of
the speed of the adjacent road segment. Lastly, DRTTE per-
forms even better than “LSTM+GCN+GRU+GAT”with the
help of attention mechanism.

*e above comparisons show that DRTTE is the best in
the set of methods built on LSTM. It addresses spatial-
temporal feature time series prediction of each road and
dependency of the speed of the adjacent road segment,
enabling it to estimate travel time in a more efficient way
with higher accuracy.

5.4. Travel Times and Distance Patterns. Effects of travel
distance to MAPE and MAE are depicted in Figure 2. *e
calculations are based on 9,870 road segments randomly

Table 3: Efficiency of different components.

Chengdu Harbin
MAPE (%) RMSE (sec) MAE (sec) MAPE (%) RMSE (sec) MAE (sec)

LSTM for multitask learning 30.14 312.84 241.09 29.47 309.64 232.76
LSTM+GCN+GRU 19.25 286.02 207.98 18.78 262.65 183.91
LSTM+GCN+GRU+GAT 16.48 276.06 188.18 15.16 230.22 167.56
DRTTE (this work) 13.91 252.32 155.71 11.64 242.7 136.29

Table 2: Performance comparison with baselines.

Chengdu Harbin
MAPE (%) RMSE (sec) MAE (sec) MAPE (%) RMSE (sec) MAE (sec)

ARIMA 35.49 444.42 357.22 32.32 413.62 310.47
SimpleTTE/TEMP 26.45 324.18 213 22.75 314.08 193.61
DeepTTE 19.37 289.51 191.26 17.61 267.04 164.23
DRTTE (this work) 13.91 252.32 155.71 11.64 242.7 136.29
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Figure 2: Effects of travel distance to MAPE and MAE.
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selected from the validation datasets. Figure 2 shows that
with increasing length of path, both DeepTTE and DRTTE
see loss of accuracy in different degrees. *is is natural and
expected since uncertainty of traffic condition increases with
the length of path, resulting in performance degradation for
any model inevitably. However, it is noted that the per-
centage estimation error of DRTTE is well controlled (13%∼
20%) for intermediate lengths (2∼7 km), while this range for
DeepTTE is (17%∼ 30%). Also, in the field test, the MAE of
DRTTE is controlled in around 2.4 minutes, while for
DeepTTE, it is around 3 minutes. *is shows that DRTTE
gains around 20%∼30% in accuracy on average compared to
DeepTTE and is less sensitive to distance.

Results of MAPE and MAE with epoch amounts of “20,
40, 60, 80, and 100” are depicted in Figure 3. It is seen that a
higher epoch reduces the MAPE from (Chengdu 50.75%,
Harbin 42.23%) to (Chengdu 13.91%, Harbin 11.64%) and
reduces the MAE from (Chengdu 320.75 s, Harbin 280.23 s)
to (Chengdu 155.71 s, Harbin 136.29 s). *ese results
demonstrate the effectiveness of epoch for accuracy im-
provement of travel time estimation.

5.5. Effects of Kernel Size. Figure 4 shows the effects of kernel
size of the graph convolutional operation. It is seen that the
MAPE, MRSE, and MAE have the same trend, and the best
results are obtained when the kernel size is intermediate.
When the kernel size is less than 4, spatial correlation cannot
be captured entirely, but when it is greater than 4, more
unnecessary information is captured that damages the true
correlation between road segments.

6. Conclusion

In this work, we proposed a novel multitask learning
framework DRTTE to explore the effect of spatial-temporal
correlation of the traffic to travel time estimation, consid-
ering traffic conditions and dependency relationship of road
segments. *e effectiveness and efficiency of DRTTE are
validated based on experiments of two real taxi trajectory
datasets. Our findings show that the proposed framework
outperforms the existing methods with higher level of ac-
curacy. More importantly, it is demonstrated that the spatial
features have significant effects to travel time estimation.
Future work will focus on federated learning for travel time
estimation to prevent privacy leaking.
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