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With the aim of adapting a source Text to Speech (TTS) model to synthesize a personal voice by using a few speech samples from
the target speaker, voice cloning provides a speci�c TTS service. Although the Tacotron 2-based multi-speaker TTS system can
implement voice cloning by introducing a d-vector into the speaker encoder, the speaker characteristics described by the d-vector
cannot allow for the voice information of the entire utterance. �is a�ects the similarity of voice cloning. As a vocoder, WaveNet
sacri�ces speech generation speed. To balance the relationship between model parameters, inference speed, and voice quality, a
voice cloning method based on improved HiFi-GAN has been proposed in this paper. (1) To improve the feature representation
ability of the speaker encoder, the x-vector is used as the embedding vector that can characterize the target speaker. (2) To improve
the performance of the HiFi-GAN vocoder, the input Mel spectrum is processed by a competitive multiscale convolution strategy.
(3) �e one-dimensional depth-wise separable convolution is used to replace all standard one-dimensional convolutions, sig-
ni�cantly reducing the model parameters and increasing the inference speed.�e improved HiFi-GANmodel remarkably reduces
the number of vocoder model parameters by about 68.58% and boosts the model’s inference speed. �e inference speed on the
GPU and CPU has increased by 11.84% and 30.99%, respectively. Voice quality has also been marginally improved as MOS
increased by 0.13 and PESQ increased by 0.11.�e improved HiFi-GANmodel exhibits outstanding performance and remarkable
compatibility in the voice cloning task. Combined with the x-vector embedding, the proposed model achieves the highest score of
all the models and test sets.

1. Introduction

Voice cloning [1] is a speech synthesis method that allows
machines to synthesize the speech of a speci�c target
speaker. It also provides a critical technical means for
generating personalized speech. In personalized human-
computer interaction scenarios, voice cloning technology
possesses a wide range of applications in intelligent elec-
tronic terminal equipment like autonomous robots, Internet
of Vehicles, Internet of �ings, etc.

�is technology can be divided into two categories based
on the amount of target speaker corpus used. One method is
a speech synthesis method that is based on a large amount of
the target speaker corpus. �e fundamental principle of this
method is to train a speech synthesis system with a large
amount of the target speaker’s speech and synthesize the

voice of the target speaker. �e main disadvantage is that it
needs to collect a large number of speech samples of a
speci�c person, which is a tedious job in many cases. Hence,
this method is rarely used. �e second approach is based on
a small number of samples.�ere are two ways to implement
this method. One method involves using the speaker ad-
aptation method [2]. �e basic idea is to obtain a more
matchable acoustic model by �netuning the parameters of
the trained multispeaker generation model through an
adaptive algorithm. Speaker adaptation entirely depends on
adaptation parameters and leads to an increase in memory
storage and serving costs. �e second approach is to use the
speaker encoding method [3]. �e basic idea is to select an
independent speaker encoder to extract the embedding
vector of the target speaker and then splice the speaker
embedding vector into the multispeaker speech generation
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model for controlling the speech. Finally, the voice of the
target speaker is synthesized by the vocoder. )e advantage
of this method is that the trained speaker encoding model
does not require any finetuning, and the speaker embedding
vector can be directly inferred from only a couple of speech
samples of the target speaker, so the cloning speed is fast.)e
key part of this method is to design a good speaker encoder
that has the capacity to extract the features that characterize
the target speaker from a small number of speech fragments.
)e similarity of the cloned speech can be determined by the
quality of extracted speaker features. Arik et al. made a
detailed comparison between the speaker encoding and
speaker adaption methods and both methods performed
well in voice cloning tasks [1]. )e speaker adaptation
method requires thousands of finetuned steps to achieve a
high-quality adaptive effect, making it more difficult for
deployment in mobile devices without real-time synthesis.
)e cloning time and necessary memory for the speaker
encoding method are really less, which is crucial for practical
applications.

Although previous works in voice cloning have appro-
priately considered the limited speech samples inpersonalized
voice, they have not completely addressed the key issues.)ey
finetune the whole model [4] or the decoder part [5, 6],
achieving good quality but leading to too many adaptation
parameters. Reducing the number of adaptation parameters is
crucial for the practical application of voice cloning tasks.
Also, the memory storage can explode due to the increase in
the number of users. Some works only finetune the speaker
embeddingor train the speaker encoder part [7, 8],whichdoes
not require any fine-tuning during voice cloning. Although
these approaches lead to a lightweight andefficient adaptation,
they provide poor cloning quality.

So far, Tacotron 2 [9], based on sequence-to-sequence
architecture, has been a very popular model in the field of
speech synthesis, possessing great development prospects
and significant versatility. Tacotron 2 can be divided into two
submodules: the acoustic feature prediction module and the
vocoder module. At the time of training, the acoustic feature
prediction module usually inputs the text sequence and
outputs the acoustic features, while the vocoder module
restores the predicted acoustic features to speech waveforms.
However, Tacotron 2 cannot precisely control and synthe-
size diverse speech samples. To synthesize sounds closer to
human beings, Tacotron 2 is usually extended and applied in
several other tasks such as voice cloning, speech style
control, speech prosody control, code-switching, etc. Wang
et al. achieved prosody transfer and enhanced the emotional
information of synthesized speech by adding a prosody
encoder in the acoustic feature prediction module to model
and learn the prosody features in both supervised as well as
unsupervised ways [10, 11]. )e speaker encoder can be
simply regarded as a text-independent speaker recognition
model. Kinnunen et al. completed speech conversion based
on i-vector [12] in speaker recognition [13]. It is difficult to
retain the nonlinear features in the original data when the i-
vector uses a linear transformation to reduce the dimen-
sions, which have been replaced by a d-vector with strong
antinoise ability [14]. By adding the speaker encoder and

extracting the d-vector with the target speaker features, the
multispeaker TTS system [15] realizes the preliminary voice
cloning. However, d-vector does not fully consider the
context information of the entire utterance, which leads to
the omission of speaker information. Snyder et al. first
proposed a framework for extracting speaker embedding
features based on the time-delay neural network (TDNN)
[16] and successfully obtained the x-vector, which was ap-
plied to the speaker verification task and outperformed the
traditional speaker vector. )e application of the x-vector in
the speaker encoder can effectively guide the prediction of
acoustic features, which can significantly improve the
similarity of the cloned speech. By combining WaveNet [17]
based on the autoregressive model as a vocoder, Tacotron 2
can generate high-quality speech, but the sequential rea-
soning process of the autoregressive model makes it sluggish
and inefficient to generate speech, which cannot meet the
requirements of real-time applications. To address the
limitations of autoregressive models, more and more re-
searchers began focusing on nonautoregressive models
based on generative adversarial networks (GAN). Parallel
WaveGAN [18] and MelGAN [19] are the early attempts of
GAN on vocoder. Although the model reasoning speed can
be significantly improved, the speech they generated is not
satisfactory in terms of quality. )e appearance of HiFi-
GAN [20] breaks the shackles not only by effectively
modeling the long-term correlation of the speech waveform
but, more importantly, by effectively modeling the periodic
mode of the speech waveform. Besides, it achieves real-time
and high-fidelity speech waveform generation. Moreover, as
one of the most advanced vocoder networks, the HiFi-GAN
model is used as the backend by many end-to-end speech
synthesis systems to restore the predicted Mel spectrum to
speech waveforms. However, there are still some short-
comings in HiFi-GAN, which fail to balance the speech
quality with model parameters and inference speed.
)erefore, the HiFi-GAN model must be improved for
better application in the voice cloning task.

Although the multispeaker TTS model based on Taco-
tron 2 can expand the system architecture along with
supporting the voice cloning function of multiple speakers, it
is still slightly insufficient in terms of speaker feature ex-
traction and synthesis speed. )e speech information of the
entire sentence is not taken into consideration by the
d-vector, which affects the similarity of the cloned voice.)e
WaveNet vocoder can have a severe impact on the speed of
speech generation. To better balance the relationship be-
tween speech quality, model parameters, and inference
speed of the voice cloning system, the speaker features are
extracted based on TDNN, and the output of each speech
segment is aggregated after passing through the model
through statistical pooling.)is represents the feature vector
of the target speaker and improves the quality of the gen-
erated speech. In this paper, a competitive multiscale con-
volution (CMSC) strategy and a depth-wise separable
convolution (DSC) strategy are introduced to improve the
HiFi-GAN model, which replaces the WaveNet vocoder, to
significantly reduce the number of model parameters and
further enhance the inference speed.
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2. Methods

)e overall structure of the voice cloning system based on
the improved HiFi-GAN model can be divided into three
groups: speaker encoder network, feature prediction net-
work, and vocoder network. As illustrated in Figure 1, a
network based on speaker verification is adopted by the
speaker encoder network. )is encoder is trained by im-
proving the performance of the speaker verification system.
)e feature prediction network follows the Tactron 2 ar-
chitecture, which is implemented by an encoder-decoder
architecture. First, the text sequence is converted into a
semantic vector in this architecture by the encoder. After the
semantic vector and the speaker embedding vector are
spliced, it is processed by using the attentionmechanism and
forwarded to the decoder of the feature prediction network.
Eventually, the decoder converts the sequence into the Mel
spectrum. )e vocoder network is implemented with an
improved HiFi-GANmodel, which quickly converts the Mel
spectrum into speech waveforms while ensuring the quality
of the generated speech.

2.1. Speaker Encoder Based on the X-Vector. )e speaker
encoder network is one of the core parts of the model, which
determines the similarity of the cloned speech. In this paper,
the speaker verification architecture is used to implement
the speaker encoder based on the x-vector. In the speaker
verification architecture, the input is the speaker’s speech
feature, and the output is the speaker’s discrimination in-
formation . )e network structure is shown in Figure 2 [16].

)e first five layers of the network are frame-level layers.
)e output nodes of the other layers are 512, while the
output nodes of the fifth layer are 1500. )e actual input is a
20-dimensional MFCC speech feature. )e current frame is
spliced with the input of the first and last two frames and
then sent to frame 1. )e corresponding total context in-
formation is 5 frames, and the input is a 100-dimensional
feature vector. )e three frames of {t− 2, t, t+ 2} are spliced
and sent to frame 2 as the output of the frame 1 layer. At this
time, there are 9 frames including in-context information,
and the splicing input is a 1536-dimensional feature vector.
)e operation of the frame 3 layer is similar, which com-
prises 15 frames’ contextual information, and the splicing
input is a 1536-dimensional feature vector.)e output of the
previous layer is directly used by frames 4 and 5 as input after
batch normalization without splicing the context informa-
tion. )e statistical pooling layer receives the output of the

frame 5 layer as input and computes the mean and standard
deviation of all the frames {0, T} of the input speech. )ese
two statistics are spliced together to form a 3000-dimen-
sional vector and sent to the next two segment-level pro-
cessing layers. Considering different situations, the output
dimensions of segments 6 and 7 can be set, and finally, the
output is sent to the output layer to obtain the probability
distributions of different speakers.)e specific parameters of
each layer of the network are mentioned in Table 1.

A multiclass cross-entropy objective function is used to
train the network to distinguish different speakers. )e
probability distribution of the samples corresponding to
each label is obtained after normalizing the output layer by
the SoftMax function. )en, the cross-entropy loss function

Speaker
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HiFi-GAN Vocoder

Feature Prediction 
network

Speaker
reference
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Figure 1: System architecture of voice cloning is based on improved HiFi-GAN.
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Figure 2: Network structure based on the x-vector extracted by the
TDNN.

Table 1: Detailed parameters of TDNN.

Layer Layer context Total context Input× output
Frame 1 [t− 2, t+ 2] 5 100× 512
Frame 2 {t− 2, t, t+ 2} 9 1536× 512
Frame 3 {t− 3, t, t+ 3} 15 1536× 512
Frame 4 {t} 15 512× 512
Frame 5 {t} 15 512×1500
Sats pooling [0, T) T 1500T× 3000
Segment 1 {0} T 3000× 512
Segment 2 {0} T 512× 512
SoftMax {0} T 512×K
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is used to calculate the similarity of the results to the true
sample probability distribution. )e network parameters are
continuously updated through backpropagation until con-
vergence. As shown in (1), it is assumed that there are K
speakers in the N training speech segments.P(spkrk | x

(n)
1: T)

denotes the probability that the input speech x
(n)
1 ,

x
(n)
2 , ..., x

(n)
T of given T frames corresponds to the speaker k. If

the corresponding speaker label of speech segment n is k,
then dnk is 1, else, it is 0.

E � − 
N

n�1


K

k�1
dnk ln P spkrk x

(n)
1: T

  . (1)

2.2. Basic Structure of the Feature Prediction Network.
)e feature prediction network in this paper is based on the
encoder-decoder model [21]. Its primary function is to direct
the conversion of the input text into the Mel spectrum with
the target speaker’s characteristics after splicing with the x-
vector vector output by the speaker encoder that describes
the speaker’s characteristics, so that the vocoder can restore
waveforms. Figure 3 depicts its fundamental architectural
principle.

)e encoder first models the contextual information of
the input text sequence with a 3-layer convolutional net-
work, and the output of the final convolutional layer is fed
into a bidirectional long-short-term memory network with
512 units to convert the input text sequence into a high-level
feature sequence. )e attention mechanism computes the
weight of each element in the high-level feature sequence,
assigns different weights to the encoder output, performs
weighted summation, and then feeds it into the decoder. In
this case, the attention network employs the location-sen-
sitive attention mechanism, which extends the additional
attention mechanism [22], alleviating potential error pat-
terns caused by the decoder repeating or ignoring some
subsequences. )e decoder is a 5-layer convolution post-
processing network with a 2-layer fully connected pre-
processing network, a 2-layer unidirectional long short-term
memory network, two linear mapping layers, and a 2-layer
fully connected preprocessing network. )e posterior
probability of the output sequence and the output Mel
spectrum are computed.

2.3. ImprovedHiFi-GANModel. HiFi-GAN uses GAN as the
basic generative model and includes a generator and two
discriminators, which can efficiently convert the spectrum
generated by the acoustic model into high-quality audio.
HiFi-GAN is a vocoder commonly used in both academia
and industry in recent years, but it still has some short-
comings. In order to reduce the model parameters of HiFi-

GAN and improve the inference speed without sacrificing
the speech quality, we use CMSC and DSC strategies to
improve the HiFi-GAN model, and the details are described
in the following submodules.

2.3.1. Generator. Figure 4 shows the structure of the gen-
erator, which adopts the Mel spectrum as input and con-
tinuously up-samples it by transposed convolution until the
length of the output sequence is matched with the temporal
resolution of the original waveform. Each transposed con-
volution is followed by a multireceptive field fusion (MRF)
module. Figure 5 shows the specific structure of the MRF.

)e sum of the outputs of multiple residual blocks
(ResBlock) is accumulated by the MRF module. Each re-
sidual block is composed of a series of one-dimensional
convolutions.)ese convolutions have different convolution
kernels and dilation rates that form different sized receptive
fields, effectively modeling the long-term correlations of
speech waveforms.

Unlike the original generator network, a CMSC strategy
is used to extract the features from the input Mel spectrum.
)e multisized convolution kernels are used to process the
input Mel spectrum, and the sum of these processed results
is returned. Compared with the original convolutional layer
with a fixed convolution kernel size to extract features from
the Mel spectrum, CMSC can better capture the local fea-
tures between different frames and interframe correlations

Mel Spectrum

Leaky ReLU (0.01)

K=ku[l] ConvTranspos1d
Stride:ku[l] /2, channels:hu/2l

MRF

Leaky ReLU (0.01)

K=7 Conv1d
channels:1

Tanh

Raw Waveform

Competitive Multi-Scale 
Conv1d channels:hu

for l=1, …, len (ku) LOOP

Figure 4: Structure diagram of the generator (K represents the size
of the convolution kernel).

AttentionEncoder Decoder

Figure 3: Encoder-decoder model structure.
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of the Mel spectrum and express the feature information
extracted from the Mel spectrum in a better way while
providing sufficient information for the subsequent network
learning. It thus improves the learning ability of the model.
Besides, the original generators are composed of standard
1D convolutional layers except for a few transposed con-
volutional layers for upsampling. Inspired by the DSCs in
images [23], in this paper, these standard 1D convolutions
are replaced with 1D DSCs, which is expected to further
compress the model size and speed the model inference
without compromising the quality of the generated speech;
making it significant for applications with limited hardware.
It must be noted that DSC using weight normalization is
equivalent to the depth-wise convolution and the pointwise
convolution, which adopt weight normalization [24].

2.3.2. Discriminator. For generative adversarial networks,
the discriminator primarily plays an adversarial training role
for the generator by guiding the generator to generate more
realistic data. Here, the discriminator of the model basically
adopts the original configuration of the HiFi-GAN model,
which has two discriminators: a multiperiod discriminator
and a multiscale discriminator.

2.3.3. Multiperiod Discriminator. Figure 6 highlights the
structure of the multiperiod discriminator (MPD). )e left
represents the overall structure, and the right represents the
network structure of the subdiscriminator. )e feature map
represents the feature output of each network layer and is
used in the feature matching loss in the next section. It
comprises multiple subdiscriminators with the same net-
work structure, and each subdiscriminator can capture a
part of the periodic signal of the input speech to detect
various potential periodic patterns in the speech data.

To realize that the subdiscriminator captures the peri-
odic pattern in the speech signal, the subdiscriminators do
not directly process the speech waveform but pad and re-
shape the speech waveform. Figure 7 highlights the case
when the period parameter p is 3. For ensuring that each
subdiscriminator only accepts equally spaced sampling

points of the input speech waveform, the interval is rep-
resented by p. )us, the original one-dimensional speech of
length T is processed into two-dimensional data with height
T/p and width p. )erefore, the MPD needs to use a two-
dimensional convolutional neural network to process these
data. Other than the last network layer, the other layers use
two-dimensional stride convolutions, which only stride in
height, and each convolution layer uses weight normaliza-
tion. In each convolutional layer of MPD, the size of the
width axis of the convolution kernel is limited to 1.)is leads
to an independent processing of the periodic speech samples
in the width axis direction. )us, each subdiscriminator can
capture the underlying periodic patterns that differ from
each other in the speech by observing different parts of the
speech waveforms.

2.3.4. Multiscale Discriminator. Figure 8 shows the structure
of the multi-scale discriminator (MSD). )e left represents
the overall structure, and the right represents the network
structure of the subdiscriminator.)eMSD is a combination
of three discriminators with the same network structure but
working at different scales: processing the raw speech, ×2
average-pooled audio, and ×4 average-pooled audio. To
allow the use of larger-sized kernels while keeping a smaller
number of parameters, the subdiscriminator employs
grouped convolutions. Apart from applying spectral nor-
malization [25] in the first subdiscriminator for raw speech
processing, which is used here to help stabilize training, the
other two sub-discriminators apply weight normalization.

2.4. Loss Function. )e loss function can be categorized into
three parts: adversarial loss, feature matching loss, and Mel
spectrum loss.

2.4.1. Adversarial Loss. For the adversarial training objec-
tives of the generator and discriminator, the settings of
LSGANmodels are followed.)e discriminator classifies the
speech samples, where the real speech is classified as 1, and
the speech generated by the generator is classified as 0. )e

K=kr  [n] Conv1d
dilation:dr [n, m, l]

Leaky ReLU (0.01)
ResBlock [1]
Kernel:kr [1]
dilations:dr [1]

len (kr) blocks

for l=1, ę,len (dr [n, m])

for m=1, ę,len (dr[n])

Figure 5: Structure diagram of MRF.

Computational Intelligence and Neuroscience 5



generator generates the speech according to the input
conditions to deceive the discriminator, leading to an in-
correct classification of type 1 in the generated speech.
Eventually, the generator can achieve the effects of mixing
the spurious with the genuine through the mutual game
processing between the generator and the discriminator.)e
adversarial loss functions of the generator and discriminator
are represented in equations (2) and (3), respectively.

LAdv(G; D) � Es (D(G(s)) − 1)
2

 , (2)

LAdv(D; G) � E(x,s) (D(x) − 1)
2

+(D(G(s)))
2

 . (3)

In brief, MSD and MPD are described as discriminators,
where x represents the real speech and s denotes the input
condition (mel spectrum extracted from the corresponding
real speech).

2.4.2. Feature Matching Loss. To improve the ability of the
generator, the feature matching loss (FML) proposed in the
MelGAN model is adopted. )e FML improves the gener-
ator’s forgery ability by comparing the difference between
the real speech and the generated speech in the output
features of each layer of the discriminator network. To
measure this difference, the L1 distance is used. )e feature
matching loss function formula is mentioned in equation
(4).

LFM(G; D) � E(x,s) 

T

i�1

1
Ni

D
i
(x) − D

i
(G(s))

����
����1

⎡⎣ ⎤⎦, (4)

where Trepresents the number of convolutional layers in the
discriminator, and Di and Ni indicate the features and
number of features in the i-th layer of the discriminator,
respectively.

2.4.3. Mel Spectrum Loss. By jointly optimizing the multi-
resolution spectral loss and the adversarial loss, parallel
WaveGAN effectively models the time-frequency distribu-
tion of real speech waveforms. Similar to the multiresolution
spectral loss, the HiFi-GAN adopts the Mel spectrum loss
based on the characteristics of the human auditory system,
thereby improving the perceptual quality of the generated
speech. Specifically, the Mel spectrum loss is the L1 loss in

Time

Pad

Reshape

W
id

th

Height

Figure 7: Schematic diagram of filling and reshaping in speech
waveforms.
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Figure 6: Schematic diagram of the multiperiod discriminator.
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the Mel spectrum between generated speech and real
waveform, as illustrated in equation (5).

LMel(G) � E(x,s) ‖ϕ(x) − ϕ(G(s))‖1 , (5)

where ϕ(·) represents the function of extracting the Mel
spectrum from speech. It must be noted that the Mel
spectrum extracted here is full-band (the lowest frequency is
0Hz and the highest frequency is half of the speech sampling
rate), which differs from the band-limited Mel spectrum as
the input condition. )is full-band Mel loss helps the model
learn the full-band frequency information of the speech.

2.4.4. Total Loss. Feature matching loss and Mel spectrum
loss are used as auxiliary losses to stabilize themodel training
and accelerate the convergence. Hence, the final loss
functions used to train the generator and discriminator are
mentioned in equations (6) and (7).

LG � 

K

k�1
LAdv G; Dk(  + λLFM G; Dk(   + μLMel(G),

(6)

LD � 
K

k�1
LAdv Dk; G( , (7)

where Dk represents the kth subdiscriminator in MPD and
MSD, λ and μ denote the hyperparameters used to control

the proportion of each loss, and their values are, respectively,
set to 2 and 45 in this experiment.

3. Experimental Setup

3.1. Corpus. )e LibriSpeech [26] speech recognition cor-
pus is used here as the training corpus, which was widely
used in the public datasets. It contains 1000 h of audiobooks
at 16 kHz with corresponding texts. )e audio recordings
are split and sorted into shorter segments of 35 s. Also,
there are two clean training sets that contain 436 h of
American English speech from 1172 speakers with widely
varying tonal styles. )ese speakers are inconsistent be-
tween the training, development, and test sets. )e
THCHS-30 [27] Chinese Corpus is approximately 33.5 h
long, with a total of 13,388 sentences recorded by 30 college
students who speak fluent Mandarin, with an average
length of 20 words and an average length of 9 s per sentence.
All audios in the corpus correspond to text, Chinese
characters are represented by pinyin, and “spring” is rep-
resented by “chun1 tian1” (1 represents the first sound),
indicating that all models are trained on prestandardized
data. For accelerating the convergence of the feature pre-
diction network, Montreal Forced Aligner is used to en-
force the alignment of the audio with the corresponding
text, cut silent segments longer than 0.4 s, and resegmented
the data into shorter utterances.

Discriminator Block

Feature maps 
+ Outputs

Discriminator Block

Discriminator Block

Raw Waveform

Avg Pool

Avg Pool

Leaky ReLU (0.01)

K=41 Group Conv1d
stride:4 channels:28+l groups:16

Leaky ReLU (0.01)

K=41 Group Conv1d
stride:2 channels:26+l groups:4l

Leaky ReLU (0.01)

K=15 Conv1d
channels:128

Leaky ReLU (0.01)

Leaky ReLU (0.01)

K=41 Group Conv1d
channels:1024 groups:16
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2×Feature maps

Feature maps
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for l=1, 2

for l=1, 2 

Figure 8: Schematic diagram of the multiscale discriminator.

Computational Intelligence and Neuroscience 7



3.2. Corpus Preprocessing. In LibriSpeech’s training sets, one
can notice ambient background noise and background noise
when muted. To avoid extracting such silent segments from
the complete utterance, the target spectrum is preprocessed
by using spectral subtraction [28] based on voice activity
detection (VAD) to identify and remove those long silences
from the spectrum. For separating the silent and the non-
silent data, webrtcvad is used as the python interface for
VAD, which generates a binary flag to indicate if the voice
segment is pronounced. Finally, to adjust the speaker’s
volume, the speech waveforms are normalized.

3.3. Parameter Settings. Experiments are performed on a
single GPU and CPU (NVIDIA Tesla V100 GPU for
training, Xeon(R) E5–2620 v4 2.10GHz CPU, and NVIDIA
GTX 1080Ti GPU for testing), and the network architecture
of the model is built on PyTorch. Table 2 highlights the
settings of the speaker encoder parameters based on the x-
vector.

)e key training parameters of the feature prediction
network are listed in Table 3.

)e model of the generator is trained with the AdamW
optimizer, where β1 � 0.9, β2 � 0.999, ε � 1e− 6. After each
training epoch, the learning rate decays by a factor of 0.999.
)e batch length of each speech is set to 16384 samples,
while the batch size is tuned to 12 audio samples. )e key
training parameters of the generator model are listed in
Table 4.

For comparative experiments, WaveNet and WaveGlow
vocoders are trained with the same training and model
parameters as the original settings.

3.4. Performance Analysis. By visualizing the speaker em-
bedding vectors, the relationship between the speaker em-
bedding vectors can be monitored more intuitively. )e
naturalness of the final cloned speech is evaluated by the
mean opinion score (MOS), while the similarity is computed

by the similarity mean opinion score (SMOS). In the MOS
test, 20 randomly selected samples are randomly selected as
an evaluation set. A group of 20 listeners who were proficient
in English listened through headphones and scored
according to the quality of the samples.)eMOS is based on
the absolute category rating scale [29], with scores ranging
from 1 to 5. )e MOS scores are recorded with 95% con-
fidence intervals (CI).

4. Results and Discussion

4.1. Embedding Vector Similarity. Using the output of the
trained speaker encoder, the test-other dataset in Lib-
riSpeech is tested, which contains 10 speakers and 10 ut-
terances from every single speaker. )e speaker embeddings
are visualized by reducing the dimensionality, and a clus-
tering algorithm [30] is used to map the embeddings of 100
utterances in a two-dimensional space. Figure 9 represents
the embedding mapping of the d-vector method, and Fig-
ure 10 represents the embedding mapping of the x-vector
method.

Different colors represent different speakers. It can be
observed that the embedding vectors of the same speaker
form the discourse clusters, and the embedding vectors of
different speakers exhibit a certain distance. By comparing
the two figures, it can be observed that the different speaker

Table 2: Speaker encoder model parameters based on x-vector.

Initial learning rate 0.0001
Model embedding size 256
Model hidden layer size 256
Model layers 3
Speaker batch size 32
Number of utterances per speaker 10

Table 3: )e key training parameters of the feature prediction
network.

Dimensions of the speaker embedding vector 256
Silence duration (s) 0.4
Utterance duration (s) 16
Mel spectrum channel number 80
Initial learning rate 0.003
Final learning rate 0.00005
Spectral window length (ms) 50
Spectral window shift (ms) 12.5

Table 4: )e main training parameters of the generator.

Initial learning
rate 0.0002

hu 512
ku [16, 16, 4, 4]
kr [3, 7, 11]

dr

[[[1, 1], [3, 1], [5, 1]], [[1, 1], [3, 1], [5, 1]], [[1, 1],
[3, 1], [5, 1]]]

Speaker

1
2
3
4
5

6
7

9
8

10

Figure 9: Embedding mapping based on d-vector.

Speaker

1
2
3
4
5

6
7

9
8

10

Figure 10: Embedding mapping based on x-vector.
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embeddings based on the x-vector are farther apart and
easier to distinguish.

4.2. Speech Quality, Model Parameters, and Inference Speed
Tests. To compare the speech quality of different vocoders,
which are all trained until convergence, a perceptual eval-
uation of speech quality (PESQ) is used for objective eval-
uation, andMOS is used for subjective evaluation. Before the
PESQ test, the number of sampling points is processed into
an integer multiple of the frameshift by discarding the re-
dundant silence segment at the end of each speech in the test
set. Further, the real Mel spectrum from the processed test
set is extracted and fed into the model to generate speech.
Both the generated speech and its corresponding real speech
are downsampled to 16 kHz and evaluated with PESQ using
the pypesq library. Besides, the parameters of each vocoder
model and the inference speed on GPU and CPU are also
compared, respectively. )e inference speed is measured by
the reciprocal of the real time factor (RTF). RTF demon-
strates the time required to generate a one-second speech.
)e model is considered to have a real-time capability if the
time that it takes to generate a one-second waveform is less
than or equal to one second. )erefore, the reciprocal value
of RTF indicates that the model’s inference speed is a
multiple of real-time.

)e results of different vocoders are listed in Table 5 for
easy comparison of speech quality, inference speed, and
parameters. Based on these results, it can be seen that the
introduction of the improved HiFi-GAN significantly re-
duces the number of parameters, improves the inference
speed of the model on GPU and CPU, and does not damage
the quality of the speech generated by HiFi-GAN. )e
improved HiFi-GAN model not only reduces the number of
parameters by about 68.58% but also slightly improves the
voice quality (MOS increased by 0.13, PESQ increased by
0.11) when DSC and CMSC are combined. Besides, the
inference speed on GPU and CPU has increased by about
11.84% and 30.99%, respectively. Compared with the flow-
based WaveGlow and autoregression-based WaveNet, the
improved HiFi-GAN is superior to them in all indicators.

4.3. Subjective Preference Evaluation. Subjective preference
tests are performed in this section to evaluate the model’s
speech cloning effect.)e testers in the subjective preference
comparison test are all college students majoring in the
corresponding language. )e testers will select their favorite
sample after listening to it. )ey can choose to have no
preference if they have no inclination. Figure 11 depicts the
test results.

)e model enables voice cloning of different languages
by adjusting the construction of character embedding.
Figure 11 shows that the popularity of English voice cloning
samples is greater than that of Chinese voice cloning
samples.)e testers prefer the voice cloning system based on
the improved HiFi-GAN.

4.4. Speech Naturalness and Similarity. To verify the effec-
tiveness of the improved HiFi-GAN model as a vocoder on
the voice cloning task, the acoustic feature prediction model
is trained with the same dataset as the front end. )e dataset
split used to train the acoustic feature prediction model is
also consistent with the dataset split used to train the vo-
coder network so that exaggerating experimental results
because of leaking test data during evaluation can be
avoided. )e Mel spectrum with target speaker features is
transformed into time-domain speech waveforms through
the vocoder. MOS and SMOS are used to evaluate the
naturalness and similarity of the cloned speech. In the test,
30 real speech samples are randomly selected and divided
into three groups according to the reference corpus. One
group is present in the test set from the LibriSpeech dataset,
and the second group is formed in the test set from the
THchs-30 dataset. )e third group is present in the test set
from the VCTK dataset [31] in order to verify the univer-
sality of the improved vocoder. VCTK contains 44 h of clean
speech from 109 speakers, and each speaker provides more
than 400 utterances in British English.

In terms of speech naturalness, the experimental results
are listed in Table 6. )e x-vector-based methods outper-
form the d-vector-based methods on all the models, and the
improved HiFi-GAN model combined with the x-vector

Table 5: Parameters, inference speed, MOS, and PESQ scores of different vocoders.

Vocoder MOS (CI) PESQ Parameters (M) Speed on GPU Speed on CPU
Ground truth 4.56 ± 0.08 4.48 — — —
WaveNet 3.97 ± 0.06 3.35 — ×0.002 —
WaveGlow 3.96 ± 0.07 3.19 — ×5.26 ×0.13
HiFi-GAN 4.25 ± 0.07 3.63 13.94 ×70.34 ×2.42
Improved HiFi-GAN 4.38 ± 0.06 3.74 4.38 ×78.67 ×3.17

English Chinese
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

(%
)

Multi-speaker TTS
Improved HiFi-GAN+x-vector
No preference

Figure 11: Scores of subjective preference evaluation.
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embedding achieves the highest MOS on both datasets. If
data augmentation is used, the quality of the speech syn-
thesized by the voice cloning system may be better.

In terms of speech similarity, the experimental results are
mentioned in Table 7. )e x-vector-based methods perform
much better than the d-vector-based methods on all the
models, and the SMOS is higher, especially on the Lib-
riSpeech dataset.

It can be observed from the abovementioned two tables
that the x-vector is stronger than the d-vector in repre-
senting the target speaker, and the quality of cloned speech is
significantly improved. )e cloned speech effect referring to
the LibriSpeech corpus is better than relying on the VCTK
corpus. )is may be due to the fact that the training is
performed in American English, and the testing is done in
British English. When the experimental results in the sub-
jective preference evaluation are combined, it is clear that the
quality of English speech synthesis is superior to that of
Chinese speech synthesis, which may be due to the com-
plexity of Chinese prosodic structure and the difficulty of
feature expression. )e improved HiFi-GAN model com-
bined with x-vector embedding achieves the best results in
both naturalness and similarity of cloning speech, suggesting
that the improved HiFi-GAN model has good compatibility
in voice cloning tasks. We plan to use the Mel spectrum
output of the acoustic feature prediction network under the
teacher forcing condition as the input of the back-end
network to fine-tune the vocoder for narrowing the dif-
ference between the real Mel spectrum and the predicted
Mel spectrum.

5. Conclusions

In this paper, a voice cloning method with fewer parameters,
faster inference speed, and higher voice quality is proposed

based on the multispeaker TTS model. First, to improve the
similarity of cloning speech, the x-vector feature vector that
can better represent the characteristics of the target speaker
is extracted based on TDNN. )en, the HiFi-GAN vocoder
is improved to effectively characterize the input Mel spec-
trum through a competitive multiscale convolution strategy,
providing sufficient feature information for the subsequent
network to generate a higher-quality speech signal. Finally,
the model parameters are effectively reduced by the use of
depth-wise separable convolution, and the inference speed is
improved without degrading the quality of the generated
speech. According to the experimental results, the method in
this paper effectively reduces the parameters of the HiFi-
GAN model and improves the generated speech quality
(MOS increased by 0.13, PESQ increased by 0.11), and the
model inference speed on GPU and CPU is increased by
about 11.84% and 30.99%, respectively. )is proves to be
very meaningful for deploying the model to application
scenarios with insufficient hardware conditions and limited
memory and for improving the adaptability of the model.
)e improved HiFi-GAN model has remarkable perfor-
mance and good compatibility on the voice cloning task and
achieves the highest combined score combined with x-vector
embedding in all the tests.

Data Availability

)e data that support the findings of this study are available
from from LibriSpeech corpus, THchs-30 corpus, and
VCTK corpus, which are publicly available.

Conflicts of Interest
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Table 6: MOS of cloning speech naturalness of different models.

Metric Settings LibriSpeech VCTK THchs-30

MOS (CI)

Multispeaker TTS 3.93 ± 0.06 3.57 ± 0.07 3.64 ± 0.05
Multispeaker TTS + x-vector 4.02 ± 0.08 3.72 ± 0.09 3.78 ± 0.07

WaveGlow+ d-vector 3.85 ± 0.06 3.49 ± 0.08 3.47 ± 0.06
WaveGlow+ x-vector 3.93 ± 0.07 3.74 ± 0.08 3.69 ± 0.08
HiFi-GAN+ d-vector 4.21 ± 0.10 3.86 ± 0.06 3.92 ± 0.07
HiFi-GAN+ x-vector 4.30 ± 0.07 4.15 ± 0.07 4.13 ± 0.09

Improved HiFi-GAN+ d-vector 4.28 ± 0.09 4.06 ± 0.05 4.11 ± 0.04
Improved HiFi-GAN+ x-vector 4.36 ± 0.06 4.28 ± 0.08 4.28 ± 0.06

Table 7: SMOS of cloning speech similarity of different models.

Metric Settings LibriSpeech VCTK THchs-30

SMOS (CI)

Multispeaker TTS 3.56 ± 0.07 3.18 ± 0.06 3.25 ± 0.08
Multispeaker TTS+ x-vector 3.91 ± 0.06 3.44 ± 0.07 3.59 ± 0.06

WaveGlow+ d-vector 3.55 ± 0.09 3.11 ± 0.09 3.32 ± 0.07
WaveGlow+ x-vector 3.89 ± 0.08 3.47 ± 0.09 3.64 ± 0.05
HiFi-GAN+ d-vector 3.82 ± 0.05 3.38 ± 0.07 3.43 ± 0.09
HiFi-GAN+ x-vector 4.15 ± 0.07 3.61 ± 0.08 3.68 ± 0.08

Improved HiFi-GAN+ d-vector 3.99 ± 0.10 3.52 ± 0.06 3.61 ± 0.05
Improved HiFi-GAN+ x-vector 4.23 ± 0.06 3.80 ± 0.08 3.84 ± 0.07
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