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�e nanoindentation technique is employed to characterize the behaviors of biomaterials. Nevertheless, there is a lack of de-
velopment of a miniaturized precise positioner for in situ nanoindentation. Besides, modeling behaviors of the positioner are
restricted due to its complex kinematic characteristics. �erefore, this paper proposes a novel compliant two degrees of freedom
(dof) stage for positioning a biomaterial sample in in situ nanoindentation. In addition, a new modeling and dimensional
optimization synthesis method of the stage is developed.�e proposed e�ective methodology is developed based on a kinetostatic
analysis-based calculation method, the Lagrange approach, and a neural network algorithm. With an increased advance in
arti�cial intelligence, a neural network algorithm is proposed to extend the applicability of arti�cial neural networks in optimizing
the parameters of the stage. First, the 2-dof stage is built via a combination of an eight-lever displacement ampli�er and a
symmetric parallelogram mechanism. Second, a chain of mathematical equations of the 2-dof stage is constructed using a
kinetostatic analysis-based method to calculate the ratio of displacement ampli�cation and the input sti�ness of the 2-dof stage.
�en, the Lagrange method is utilized to formulate the dynamic equation of the 2-dof stage. Finally, a neural network algorithm is
adopted to maximize the natural �rst frequency of the proposed stage. �e optimal results determined that the frequency of the
stage can achieve a high value of 112.0995Hz. Besides, the formed mathematical models were relatively precise by comprising the
simulation veri�cations.

1. Introduction

Advances in in situ nanoindentation testers have resulted
in great interest in developing compact-size mechanical
mechanisms with better performances. �e goals of a
compact-size mechanism are to obtain lightweight, low
cost, and to able be integrated into nanoindentation de-
vices in observing the online mechanical behaviors of a

material sample [1]. Especially, in situ nanoindentation
checking plays a vital role in testing for behaviors of
biomaterials in implants (e.g., bone, teeth, femur, pros-
thetics, and so forth) [2, 3]. In a general in situ nano-
indentation system, there are two main mechanisms/
stages, including the one degree of freedom (dof ) �ne
stage for bringing the indenter and the 2-dof �ne stage for
locating the material sample [4].
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With the aforementioned regards in mind, many re-
searchers have made significant 2-dof mechanical stages in
developing the in situ nanoindentation. Huang et al. [5] used
the concept of flexure hinge-based compliant mechanisms to
design a 1-dof stage for driving the indenter. �en, they
continued to develop a new 1-dof stage with specifications of
crystal silicon [6]. Moreover, Huang et al. [6] designed a 1-
dof stage for characterizing behaviors of metallic glass. In
these studies, they mainly employed the compliant mech-
anism in developing the 1-dof stage for utilizing the indenter
driver. It is well known that compliant mechanisms offer
nonassembled structure, zero friction, and simple manu-
facture which are advantages to overcome the limitations of
rigid-counterparts in precise mechanical engineering. In the
last decade, flexure hinge-based compliant mechanisms have
been widely utilized for precise engineering and fine posi-
tioner with compact sizes such as a positioner [7, 8] and
valve [6, 9].

At present, many different compliant 2-dof stages have
been developed for micro/nanomanipulations. Similar to
these applications, a piezoelectric actuator (PZT) is often
chosen due to its high precision and fast response. Never-
theless, one of the drawbacks of the PZTs is a limited output
stroke [10]. �is causes a limitation of providing a large
input displacement for the 2-dof stages. As a result, a few
common amplifiers were developed, such as lever, bridge,
and hybrid lever-bridge types [11]. Considering the design of
compliant 2-dof stages, many research groups have focused
on developing the series-parallel kinematic chains in cou-
pling with the PZTs to gain the high performances. For
instance, Ling et al. [12] developed a 2-dof stage with good
specifications. �ey used the pseudo-rigid-body model and
the Lagrange method to analyze the kinetostatic and dy-
namic behaviors of the stage. Qu et al. [13] designed a 2-dof
stage using the parallelogram scheme. �ey analyzed the
kinematics, stiffness, and workspace of the 2-dof stage
through the matrix method. More recently, Wang et al. [14]
designed a 2-dof stage, and the compliance matrix was
employed for characterizing the stiffness. Xiao et al. [15]
developed a 2-dof stage, and the stiffness as well as kinematic
models was formulated through the matrix displacement
method. Although the previous 2-dof stages were well de-
veloped, they were almost tended for developing the micro/
nanomanipulations. Based on the aforementioned studies, it
can be seen that there is a lack of deep investigations in
developing compliant 2-dof stages for use in locating bio-
materials in the in situ nanoindentation tester industry.

�is paper aimed to develop a new compliant 2-dof stage
which can be employed in locating biomaterials in in situ
nanoindentation systems. �e design details of the stage are
developed based on the multiple lever amplification
mechanism and series-parallel chain. �e kinetostatics and
dynamics are derived based on the deformable mechanics,
the elastic beam theory, and the Lagrange approach.

�e main contributions of this paper are summarized as
follows: (i) A new compliant 02-dof stage with great dynamic
characteristics is designed for locating biospecimens in
nanoindentation tester systems. (ii) �e stiffness and am-
plification ratio are established. �en, the dynamic equation

of the 2-dof stage is formulated. �e correctness of the
established mathematical models are verified through finite
element simulations. (iii) Finally, the main parameters of the
2-dof stage are optimized using the neural network algo-
rithm which benefits excellent behaviors of an artificial
neural network.

2. ConceptualDesignof aCompliant 2-dofStage

2.1. Design Scheme of the 1-dof Mechanism. Figure 1 de-
scribes the operating mechanism of a 1-dof stage which
comprises an eight-lever displacement amplifier and a
parallelogram mechanism.�e amplifier is aimed to amplify
the displacement, so-called stroke, of the proposed 1-dof
stage. Meanwhile, the parallelogrammechanism is employed
to generate good translation in the desirable motion and
reduce the undesirable motions. It means that this design
scheme ensures a good design with a large amplification
ratio as well as reduces the parasitic motion error.

2.2.OperationSchemeof the2-dofStage. Based on the design
and operation schemes of the 1-dof stage in Figure 1, the
operation principle and design scheme of a new 2-dof
stage are provided in Figure 2(a). �e design of the 2-dof
stage is a module-based scheme. �e module of the 1-dof
stage is symmetrically arranged in the vertical and hor-
izontal directions. It means that the 2-dof stage includes
the four modules of the 1-dof stage. �e positioning stage
is employed to locate the biomaterials in an in situ
nanoindentation system. As illustrated in Figure 2(a), the
P-joint shows a leaf hinge, so-called as the prismatic joint,
to generate a large deformation. Meanwhile, the remain
positions are designed with the elliptical hinges to ensure
good positions. �e overall working operation of the 2-dof
stage is mainly based on the deformations of the elliptical
joints, right circular joints, and P-joints. �e suggested
stage is driven using a PZT actuator. �e main dimen-
sioning parameters of the proposed stage are illustrated in
Figure 2(b). �e values of the parameters are provided in
Table 1.

In the proposed design, a double-lever amplification
mechanism is widely used for many researches on flexure-
based mechanisms [16]. Meanwhile, the symmetric eight-
lever displacement amplifier integrated into the 2-dof stage
for locating biospecimens has been investigated. �erefore,
the proposed displacement amplifier is a new structure for
positioning a biomaterial sample in in situ nanoindentation.

Each component has an important task in overall
nanoindentation. Specifically, the main task of the 2-dof
stage is aimed to locate the fine position of the biospecimens.
�e only difference of the proposed mechanism design in
nanoindentation/in situ nanoindentation in comparison
with traditional mechanisms is a monolithic structure in
order to reduce the mechanical component quantity as well
as to reduce friction and wear of an assembly cluster.
�erefore, inspired from the advantages of the compliant
mechanisms, the authors will investigate to contribute for
the new compliant structures.
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As illustrated clearly in Figure 2(b) and Table 1, the
parameters A, B, and C with different colors are the
thicknesses of the elliptical hinges at lever floor 1, lever floor
2, and lever floors 3 and 4, respectively. In addition, D is the
thickness of the right circular hinge at the end of lever floor
4, and E is the thickness of the leaf hinge of the parallel
guiding mechanism. In addition, the technical specifications
of the proposed stage are determined in Table 2.

3. Proposed Methodology

In this part, a modeling and dimensional optimization
synthesis method is developed for the compliant 2-dof stage.
�e proposedmethodology is formed based on the analytical
methods and the metaheuristic algorithm. In this work, the
deformable mechanics theory is coupled with the elastic
beam theory and Lagrange method in establishing the
kinetostatic and dymamic equations of the 2-dof stage.

3.1. Modeling and Dimensional Optimization Synthesis.
�e flowchart of the proposed methodology for modeling
and dimensional optimization synthesis for the developed
stage is shown in Figure 3. �e main steps of the present
methodology are briefly performed as follows:

(i) Step 1: predetermine a conceptual design of the 2-
dof stage, i.e., a built kinematic chain diagram.

(ii) Step 2: predetermine the specification’s require-
ments for the 2-dof stage.

(iii) Step 3: establish the kinetostatic and dynamic
mathematical equations for the 2-dof stage by
using the the deformable mechanics theory, the
elastic beam theory, and the Lagrange approach.

(iv) Step 4: verify the corrections of mathematical
equations through finite element analysis (FEA).

(v) Step 5: if the kinematic and dynamic equations are
corrected, the calculation process moves to the
further steps. Otherwise, the process goes back the
step 1.

(vi) Step 6: define the design variables, objective, and
constraint functions for the 2-dof stage.

(vii) Step 7: in order to optimize the parameters of the
2-dof stage, the neural network algorithm is
employed in improving the dynamic performance
of the stage.

(viii) Step 8: the optimal results are verified via FEA
analysis. If it satisfied, a protoype of the stage will
be made.

(ix) Step 9: the dynamic performance of the 2-dof stage
is compared with that from the previous stages.

3.2. Neural Network Algorithm. Inspired from the artificial
neural network (ANN), the neural network algorithm
(NNA) was developed [17]. �is NNA optimizer is also
considered as other metaheuristic optimizers based on the
population differential evolution algorithm [18], particle
swarm optimization [19], nondominated sorting genetic
algorithm [20], and so on. �is algorithm is aimed to de-
crease the error among the targets and the predicted values,
and achieve a global optimally best result. �e flowchart of
the NNA is given in Figure 4.

A pattern solution (Ps) is determined as

Ps � x1, x2, . . . , xd􏼂 􏼃, d: problem size. (1)

A matrix of pattern solution (X) is defined by
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Figure 1: Design scheme of the 1-dof symmetrical mechanism.
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Table 1: Main geometric parameters of the proposed 2-dof stage.

Factor Value Factor Value Unit
a 451 k 100 mm
b 451 m 100 mm
c 248 p 54 mm
d 248 A 0.9≤A≤ 1.1 mm
e 20 B 0.7≤B≤ 0.9 mm
f 248 C 0.6≤C≤ 0.8 mm
g 248 D 0.6≤D≤ 0.8 mm
h 54 E 0.6≤E≤ 0.7 mm

Table 2: �e desirable technical specifications of the XY stage.

Technical specifications Desirable results
Workspace size 451× 451 (mm)
Desirable working stroke 770× 770 (μm)
Desirable resonant frequency 100 (Hz)
Desirable displacement amplification ratio 7
Parasitic motion error/cross-axis coupling ratio 0.04 (%)
Safety factor 1.7
Range of the maximum load 3000N
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�e weight value is determined as

􏽘

npop

j�1
wij(t) � 1, i ∈ npop, (5)

wij ∈ U(0, 1), i, j ∈ npop, (6)

A new matrix (X) is calculated by

X
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j (t + 1) � 􏽘
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t�1
wij(t) × Xt(t), j ∈ npop, (7)

Xi(t + 1) � Xi(t) + X
new
i (t + 1), i ∈ npop. (8)

�e weight matrix is updated by following formula:

W
update
t (t + 1) � Wi(t) + 2 × rand

× W
target

(t) − Wi(t)􏼐 􏼑, i ∈ nppop,
(9)

A bias means that the exploration influences a new
solution and weighting. Considering rand>ψ (ψ is solutions
percentage), the function operator is computed by

X
∗
t (t + 1) � Xi(t + 1) + 2 × rand

× X
target

(t) − Xi(t + 1)􏼐 􏼑, i ∈ nppop,
(10)

In this work, an initial population of 20, max iterations of
500, and ψ of 1 are utilized for the NNA.
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4. Results and Discussion

4.1. Modeling of Kinetostatics and Dynamics. �e kineto-
statics and dynamics of the 2-dof stage are performed to
evaluate its behaviors.�e deformable mechanics theory, the
elastic beam theory, and the Lagrange method are utilized
for these analyses. In this work, the specifications of the 2-
dof stage are analyzed (i.e., ratio of displacement amplifi-
cation, stiffness, stroke, and resonant frequency).

4.1.1. Modeling of Amplification Ratio and Input Stiffness.
Figure 5 demonstrates a variant of the modified displace-
ment lever amplifier (MDLA), a so-called variant of a lever
amplifier. It includes the main parameters of the lever
lengths of the different amplification floors. Because of a
symmetrical structure, a half of the displacement amplifier is
chosen to analyze the quality characteristics of the proposed
2-dof stage.

A schematic diagram of the MDLA is provided in
Figure 6. It consists of main levers, including the lever
amplification mechanism #1 (LAM1), lever amplification
mechanism #2 (LAM2), and lever amplification mechanism
#3 (LAM3). Besides, the parameters of the lengths of levers
(l1, l2, l1′, l2′, l3, l4, l5, and l6) are also in Figure 6 in which O1,
O2, O3, and O4 are the rotation centers of the levers.

As shown in Figure 6, the MDLA is operated based on
three levers (LAM1, LAM2, and LAM3). It can be deter-
mined that the output displacement of the amplifier can be
derived as follows [21]:

δout �
l5

l6

l2

l1
+

l4

l3
+ 1􏼠 􏼡 +

l4

l3
+ 1􏼢 􏼣δin, (11)

where δin and δout symbolize the input displacement and the
output displacement, respectively. Next, the amplification
ratio will be computed as follows:

A �
l5

l6

l2

l1
+

l4

l3
+ 1􏼠 􏼡 +

l4

l3
+ 1, (12)

where A is the displacement amplification ratio.
�ree kinds of flexure joints are used at appropriate

places in the original design, thus helping the design to
achieve a large displacement and reduce undesirable mo-
tions of the stage. Figure 7 demonstrates the main associated
dimensions of a flexure circular notched hinge, and it shows
the effect of force and torque that recovers when the
mechanism operates.

�e mechanism’s input stiffness is investigated. �e
general spring with bending stiffness (Kc

δxFx) is generated
via the lateral force, and the torsion stiffness (Kc

θzMz) is made
via the torque. �e linear stiffness (Kc

θyMy) is created via the
axial force for the flexure right circular hinge. Furthermore,
the leaf beam’s torsion and linear stiffness are denoted by
Kl

θzMz and Kl
θyMy, respectively. Correspondingly, the flexure

elliptical notched hinge is behaved with bending stiffness
(Ke

δXFX
) produced via the lateral force, torsion stiffness

(Ke
θzMz) produced via the torque, and linear stiffness

(Ke
θyMy) generated via the axial force [22].
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Next, Figure 8 describes the simplified structure diagram
of the flexure leaf hinge. In addition, the main parameters
such as the length, width, and thickness are also displayed
along with the direction of force and torque acting on the
leaf hinge.

Stiffness values of the leaf hinge are calculated with the
following equations:

K
l
θzMz �

Eba
3

12l
, (16)

K
l
θyMy �

Eba

l
, (17)

M
l
θzMz � K

l
θzMzΔθ. (18)

Figure 9 shows the dimensions of the flexure elliptical
hinge as well as the directions of the force and moment
acting on the elliptical hinge.

Next, the following equations describe how to calculate
the stiffness of the flexure elliptical hinge that bends in
different directions.

K
e
θzMz �

2Eba
2
X

3 ∈ f βy􏼐 􏼑
, (19)

K
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f βy􏼐 􏼑 � f ∈ βx( 􏼁 �
1

2βy + β2y

3 + 4βy + 2β2y
1 + βy􏼐 􏼑 2βy + β2y􏼐 􏼑

⎛⎝

+
6 1 + βy􏼐 􏼑
�������
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􏽱
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− 1

�����
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βy

􏽳
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(25)

g βy􏼐 􏼑 � g ∈ βx( 􏼁 �
2 1 + βy􏼐 􏼑

�������
2βy + β2y

􏽱 tan− 1

�����
2 + βy

βy

􏽳

−
π
2

, (26)

where b denotes the thickness of the flexure hinge, E denotes
the elastic modulus of the manufacturing material, r is the
radius of a flexure circular notched hinge, and t denotes the
smallest width of the circular/elliptical hinge. �e width and
length of the leaf beam are represented by a and l, re-
spectively. �e dimensionless factor representing the ellip-
tical hinge geometry ax is denoted by (βX), and (ay) is
denoted by (βy). �e symbol (∈) is the multiplication factor
of the ratio of major to minor axes. On the other hand, the
symbols (f(βx)) and (f(βy)) are the dimensionless com-
pliance factors according to (βX) and (βy), respectively.

By subjecting an input displacement (∈) at the stage’s
input end, the corresponding input force (Fin) is determined
via the following equation:
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Figure 7: Diagram of a circular arc flexure hinge.
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Fin � Kinδin, (27)

where Kin is the input stiffness of the micromanipulator.
Figure 10 describes the initial state and working state of

the MDLA. �e deformation angles formed from the po-
sition change of the multistage lever help to show the dif-
ferent degrees of deformation of the structure while it is
working.

Figures 11–14 present the force analysis diagram of beam
4, beam 3, beam 2, and beam 1, respectively, in the lever
amplification mechanism. �e diagrams illustrate the details
of the applied force, moment, rotation angle, as well as the
deformation of the elastic joint.

Only half of the displacement amplification structure is
investigated due to the symmetrical structure. A main force
analysis scheme of the mechanical amplification mechanism
is depicted in Figure 10. As a result, the following equations
are formed by using the mechanic equilibrium state of beam
4, as asserted in Figure 11.

�e following force equilibrium equations can be de-
rived as

FO3y � FEy + FGy, (28)

FEyl6 � FGyl5 + MO3t + MGt + MEt. (29)

Specifically, the bending moments of the points O3, G,
and E are represented as MO3t,MGt,, and MEt, respectively.
�ree forces FO3y, FEy, and FGy are acting at points O3, E,
and G in the direction of y-axis when the structure operates,
respectively. �e displacement value at point G is a com-
bination of two displacements including displacement due
to hinges at O3 rotating around its axis (l5θ4) and dis-
placement due to drift (δ4). Furthermore, by multiplying
stiffness by displacement, the forces FO3y and FGy are de-
termined. �ey are calculated via the following equations:

FO3y � KO3xδ4, (30)

FGy � KGy l5θ4 − δ4( 􏼁, (31)

MO3t � KO3tθ4, (32)

MGt � KGtθ4, (33)

MEt � KEtθ4, (34)

where KO3x is the lateral bending stiffness by the force FO3y,
and KGl is the G point’s output stiffness of the MDLA. In
addition, the rotational stiffnesses KO3t, KGt, and KEt are the
stiffnesses of the flexure hinges at points O3, G, and E,
respectively.

Substituting (30) and (31) into (28), the results are
yielded as

KO3xδ4 � FEy + KGy l5θ4 − δ4( 􏼁, (35)

δ4 �
FEy + KGyl5θ4
KO3x + KGy

. (36)

Substituting (31)–(34) into (29), the results are achieved
as

FEyl6 � KGyl5 l5θ4 − δ4( 􏼁 + KO3tθ4 + KGtθ4 + KEtθ4, (37a)

FEyl6 + KGyl5δ4 � KGyl
2
5 + KO3t + KGt + KEt􏼐 􏼑θ4, (37b)

where FEy, FO3y, and FGy are the forces generated at points of
E, O3, and G, respectively, when the structure operates.

Substituting (36) into (37b), the θ4 and δ4 can be derived
as

l6

O3

O2

O1

O4

l5

l4

l2

l’2 l’1

M

J
H

N

A
Fin

l1

I

E

D

C

B

l3

Fout

Beam 4

Beam 3

Beam 2

Beam 1

Fixed

Fixed

Fixed

G


1

1


1


1

Figure 10: Force and deformation diagram of a half of the MDLA.
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FEyl6 + KGyl5
FEy + KGyl5θ4
KO3x + KGy

� KGyl
2
5 + KO3t + KGt + KEt􏼐 􏼑θ4, (38)

FEyl6 KO3x + KGy􏼐 􏼑 + KGyl5 FEy + KGyl5θ4􏼐 􏼑 � KO3x + KGy􏼐 􏼑 KGyl
2
5 + KO3t + KGt + KEt􏼐 􏼑θ4, (39)

θ4 �
l6 KO3x + KGy􏼐 􏼑 + KGyl5

KO3x + KGy􏼐 􏼑 KGyl
2
5 + KO3t + KGt + KEt􏼐 􏼑 − K

2
Gyl

2
5
FEy, (40)

δ4 �
FEy + KGyl5l6 KO3x + KGy􏼐 􏼑 + KGyl5/ KO3x + KGy􏼐 􏼑 KGyl

2
5 + KO3t + KGt + KEt􏼐 􏼑 − K

2
Gyl

2
5FEy

KO3x + KGy

, (41a)

MIt

FIy

FIx I


3


3

FO4y

FO4x

MO4tO4

MHt

H

FHx

Figure 12: Force analysis diagram of beam 3.

MEt

MO3t

O3

FO3y

FO3x

FEy

FEx

E


 


 

FGy

FGx

MGt
G

Figure 11: Force analysis diagram of beam 4.


2


2

FO2y

FO2x

MO2tO2

MJt

J

FJy

MCt

FCy

FCx
C

Figure 13: Force analysis diagram of beam 2.


1


1

MBt

FBy

FBx
B

FO1y

FAy

AFO1x
MO1t

MAt

O1

Figure 14: Force analysis diagram of beam 1.

10 Computational Intelligence and Neuroscience



δ4 �
KO3x + KGy􏼐 􏼑 KGyl

2
5 + KO3t + KGt + KEt􏼐 􏼑 − K

2
Gyl

2
5 + KGyl5 l6 KO3x + KGy􏼐 􏼑 + KGyl5􏼐 􏼑

KO3x + KGy􏼐 􏼑 KO3x + KGy􏼐 􏼑 KGyl
2
5 + KO3t + KGt + KEt􏼐 􏼑 − K

2
Gyl

2
5􏽨 􏽩

FEy, (41b)

δ4 �
KGyl

2
5 + KO3t + KGt + KEt + KGyl5l6

KO3x + KGy􏼐 􏼑 KGyl
2
5 + KO3t + KGt + KEt􏼐 􏼑 − K

2
Gyl

2
5
FEy. (41c)

Regarding beam 4, the ratio of the amplifier and the
input stiffness are determined by

λ4 �
l5θ4 − δ4
l6θ4 + δ4

, (42)

Kin4 �
FEy

l6θ4 + δ4
. (43)

Substituting (40) and (40c) into (42) and (43), respec-
tively, the following formulas can be obtained:

λ4 �
l5 l6 KO3x + KGy􏼐 􏼑 + KGyl5􏽨 􏽩 − KGyl

2
5 + KO3t + KGt + KEt + KGyl5l6􏼐 􏼑

l6 l6 KO3x + KGy􏼐 􏼑 + KGyl5􏽨 􏽩 + KGyl
2
5 + KO3t + KGt + KEt + KGyl5l6􏼐 􏼑

, (44a)

λ4 �
l5l6 KO3x + KGy􏼐 􏼑 − KO3t + KGt + KEt + KGyl5l6􏼐 􏼑

l6 KO3x + KGy􏼐 􏼑 + 2KGyl5l6 + KGyl
2
5 + KO3t + KGt + KEt

, (44b)

λ4 �
l5l6KO3x − KO3t − KGt − KEt

KGy
2

l5+l6( ) + KO3xl
2
6 + KO3t + KGt + KEt

, (44c)

Kin4 �
KO3x + KGy􏼐 􏼑 KGyl

2
5 + KO3t + KGt + KEt􏼐 􏼑 − K

2
Gyl

2
5

KGy
2

l5+l6( ) + KO3xl
2
6 + KO3t + KGt + KEt

. (45)

Figure 12 presents the force analysis diagram of beam 3.
Considering the equilibrium state of beam 3, the force

and moment are computed as

FHy � FIy + FO4y, (46)

FHyl3 � FIy l3 + l4( 􏼁 + MIt + MHt + MO4t, (47)

where MO4t, MIt,, and MHt are moments of bending of the
points O4, I, and H. Moreover, FO4y, FHy, and FIy are forces
which are acting at point O4, H, and I in the direction of y-
axis, respectively.

�e displacement value at point I is a combination of two
displacements including displacement due to hinges at O4
rotating around its axis ((l3+ l4) θ3) and displacement due to
drift (δ3).

Furthermore, the forces FO4y and FIy can be calculated as

FO4y � KO4xδ3, (48)

FIy � K3 l3 + l4( 􏼁θ3 + δ3􏼂 􏼃, (49)

MO4t � KO4tθ3, (50)

MIt � KItθ3, (51)

MHt � KHtθ3, (52)

where KO4x is the lateral bending stiffness by force FO4y, and
K3 is the I point’s output stiffness. KO4t is the O4 point’s
rotational stiffness, and KIt, and KHt are the rotational
stiffness of I and H, respectively.

Substituting (48) and (49) into (46), the results are
obtained as

FHy � K3 l3 + l4( 􏼁θ3 + δ3( 􏼁 + KO4xδ3, (53)

δ3 �
FHy − K3 l3 + l4( 􏼁θ3

KO4x + K3
. (54)

Substituting (49)–(52) into (47), the results are yielded as
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FHyl3 � K3 l3 + l4( 􏼁 l3 + l4( 􏼁θ3 + δ3( 􏼁

+ KO4tθ3 + KItθ3 + KHtθ3,
(55a)

FHyl3 � K3 l3 + l4( 􏼁δ3

+ K3
2

l3+l4( ) + KO4t + KIt + KHt􏼒 􏼓θ3.
(55b)

Substituting (54) into (55b) θ3 and δ3 can be derived as

FHyl3 � K3 l3 + l4( 􏼁
FHy − K3 l3 + l4( 􏼁θ3

KO4x + K3
+ K3

2
l3+l4( ) + KO4t + KIt + KHt􏼔 􏼕θ3, (56a)

FHyl3 KO4x + K3( 􏼁 − K3 l3 + l4( 􏼁FHy � KO4x + K3( 􏼁 K3 l3 + l4( 􏼁
2

+ KO4t + KIt + KHt􏽨 􏽩 − K
2
3 l3 + l4( 􏼁

2
􏽨 􏽩θ3, (56b)

θ3 �
l3 KO4x + K3( 􏼁 − K3 l3 + l4( 􏼁

KO4x + K3( 􏼁 K3 l3 + l4( 􏼁
2

+ KO4t + KIt + KHt􏽨 􏽩 − K3
2

l3 + l4( 􏼁
2FHy, (57)

δ3 �
FHy − K3 l3 + l4( 􏼁l3 KO4x + K3( 􏼁 − K3 l3 + l4( 􏼁/ KO4x + K3( 􏼁 K3 l3 + l4( 􏼁

2
+ KO4t + KIt + KHt􏽨 􏽩 − K

2
3 l3 + l4( 􏼁

2
FHy

KO4x + K3
,

(58a)

δ3 �
K3 l3 + l4( 􏼁

2
− K3l3 + KO4t + KIt + KHt

KO4x + K3( 􏼁 K3 l3 + l4( 􏼁
2

+ KO4t + KIt + KHt􏽨 􏽩 − K
2
3 l3 + l4( 􏼁

2FHy. (58b)

Considering beam 3, the ratio of the amplifier and the
input stiffness are expressed by

λ3 �
l3 + l4( 􏼁θ3 + δ3

l3θ3 + δ3
, (59)

Kin3 �
FHy

l3θ3 + δ3
. (60)

Substituting (57) and (58b) into (59) and (60), respec-
tively, the following formulas can be obtained:

λ3 �
l3 + l4( 􏼁 l3 KO4x + K3( 􏼁 − K3 l3 + l4( 􏼁􏼂 􏼃 + K3 l3 + l4( 􏼁

2
− K3l3 + KO4t + KIt + KHt

l3 l3 KO4x + K3( 􏼁 − K3 l3 + l4( 􏼁􏼂 􏼃 + K3 l3 + l4( 􏼁
2

− K3l3 + KO4t + KIt + KHt

, (61a)

λ3 �
l3 KO4x + K3( 􏼁 l3 + l4( 􏼁 − K3 l3 + l4( 􏼁

2
+ K3

2
l3+l4( ) − K3l3 + KO4t + KIt + KHt

l
2
3 KO4x + K3( 􏼁 − K3l3 l3 + l4( 􏼁 + K3 l3 + l4( 􏼁

2
− K3l3 + KO4t + KIt + KHt

, (61b)

λ3 �
l3 KO4x + K3( 􏼁 l3 + l4( 􏼁 − K3l3 + KO4t + KIt + KHt

l
2
3 KO4x + K3( 􏼁 − K3l3 l3 + l4( 􏼁 + K3 l3 + l4( 􏼁

2
− K3l3 + KO4t + KIt + KHt

, (61c)

Kin3 �
KO4x + K3( 􏼁 K3 l3 + l4( 􏼁

2
+ KO4t + KIt + KHt􏼐 􏼑 − K

2
3 l3 + l4( 􏼁

2

l
2
3 KO4x + K3( 􏼁 − K3l3 l3 + l4( 􏼁 + K3 l3 + l4( 􏼁

2
− K3l3 + KO4t + KIt + KHt

, (62)

K3 �
KO3yKin4

KO3y + Kin4
. (63)
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Figure 13 shows the force analysis diagram of beam 2.
In a similar calculation for beam 2, the forces and

moments are computed by

FO2y � FCy + FJy, (64)

FJyl1′ � FCyl2′ + MO2t + MJt + MCt, (65)

whereMO2t,MJt, andMCt are bending moments at the O2, J,
and C points, respectively. �e forces acting at points O2, C,
and J in the direction of y-axis are FO2y, FCy, and FJy,
respectively.

�e displacement value at point C is a combination of
two displacements including displacement due to hinges at
O2 rotating around its axis (l’2θ2) and displacement due to
drift (δ2).

Moreover, the forces FO2y and FCy are expressed as

FO2y � KO2xδ2, (66)

FCy � K2 l2′θ2 − δ2( 􏼁, (67)

MO2t � KO2tθ2, (68)

MCt � KCtθ2, (69)

MJt � KJtθ2, (70)

where KO2x is the lateral bending stiffness by force FO2y, and
K2 is the output stiffness of the E point. KO2t is the rotational
stiffness of the O2 point. KJt and KCt are the rotational
stiffnesses of J, and C points, respectively. Substituting (66)
and (67) into (64),

KO2xδ2 � FJy + K2 l2′θ2 − δ2( 􏼁, (71)

δ2 �
FJy + K2l2′θ2
KO2x + K2

. (72)

Substituting (67)–(70) into (65), the following equations
can be derived:

FJyl1′ � K2l2′ l2′θ2 − δ2( 􏼁 + KO2tθ2 + KCtθ2 + KJtθ2, (73a)

FJyl1′ + K2l2′δ2 � K2l
′2
2 + KO2t + KCt + KJt􏼒 􏼓θ2. (73b)

Substituting (72) into (73b), the value of δ2 can be de-
rived as

FJyl1′ + K2l2′
FJy + K2l2′θ2
KO2x + K2

� K2l
′2
2 + KO2t + KCt + KJt􏼒 􏼓θ2, (74a)

FJyl1′ KO2x + K2( 􏼁 + K2l2′ FJy + K2l2′θ2􏼐 􏼑 � KO2x + K2( 􏼁 K2l
′2
2 + KO2t + KCt + KJt􏼒 􏼓θ2, (74b)

θ2 �
l1′ KO2x + K2( 􏼁 + K2l2′

KO2x + K2( 􏼁 K2l
′2
2 + KO2t + KCt + KJt􏼒 􏼓 − K

2
2l
′2
2

FJy, (75)

δ2 �
FJy + K2l2′l1′ KO2x + K2( 􏼁 + K2l2′/ KO2x + K2( 􏼁 K2l

′2
2 + KO2t + KCt + KJt􏼒 􏼓 − K

2
2l
′2
2 FJy

KO2x + K2
, (76a)

δ2 �
KO2x + K2( 􏼁 K2l

′2
2 + KO2t + KCt + KJt􏼒 􏼓 − K

2
2l
′2
2 + K2l2′ l1′ KO2x + K2( 􏼁 + K2l2′􏼂 􏼃

KO2x + K2( 􏼁 KO2x + K2( 􏼁 K2l
′2
2 + KO2t + KCt + KJt􏼒 􏼓 − K

2
2l
′2
2􏼔 􏼕

FJy, (76b)

δ2 �
KO2x + K2( 􏼁 K2l

′2
2 + KO2t + KCt + KJt􏼒 􏼓 − K

2
2l
′2
2 + K

2
2l
′2
2 + K2l2′l1′ KO2x + K2( 􏼁

KO2x + K2( 􏼁 KO2x + K2( 􏼁 K2l
′2
2 + KO2t + KCt + KJt􏼒 􏼓 − K

2
2l
′2
2􏼔 􏼕

FJy, (76c)

Computational Intelligence and Neuroscience 13



δ2 �
K2l
′2
2 + KO2t + KCt + KJt + K2l2′l1′

KO2x + K2( 􏼁 K2l
′2
2 + KO2t + KCt + KJt􏼒 􏼓 − K

2
2l
′2
2

FJy. (76d)

Similarly, the ratio of the amplifier and the input stiffness
of beam 2 are determined by

λ2 �
l2′θ2 − δ2
l1′θ2 + δ2

, (77)

Kin2 �
FJy

l1′θ2 + δ2
. (78)

Substituting (75) and (76d) into (77) and (78), respec-
tively, the following formulas can be obtained:

λ2 �
l2′ l1′ KO2x + K2( 􏼁 + K2l2′􏼂 􏼃 − K2l

′2
2 + KO2t + KCt + KJt + K2l2′l1′􏼒 􏼓

l1′ l1′ KO2x + K2( 􏼁 + K2l2′􏼂 􏼃 + K2l
′2
2 + KO2t + KCt + KJt + K2l2′l1′

, (79a)

λ2 �
l1′l2′ KO2x + K2( 􏼁 − KO2t + KCt + KJt + K2l2′l1′􏼐 􏼑

l
′2
1 KO2x + K2( 􏼁 + 2K2l2′l1′ + K2l

′2
2 + KO2t + KCt + KJt

, (79b)

λ2 �
l1′l2′KO2x − KO2t + KCt + KJt􏼐 􏼑

l
′2
1 KO2x + K2( 􏼁 + 2K2l2′l1′ + K2l

′2
2 + KO2t + KCt + KJt

, (79c)

Kin2 �
KO2x + K2( 􏼁 K2l

′2
2 + KO2t + KCt + KJt􏼒 􏼓 − K

2
2l
′2
2

l
′2
1 KO2x + K2( 􏼁 + 2K2l2′l1′ + K2l

′2
2 + KO2t + KCt + KJt

, (80)

K2 �
KEyKin4

KEy + Kin4
. (81)

Figure 14 presents the force analysis diagram of beam 1.
By a similar consideration to the equilibrium state of the

beam 1, the following equations are achieved:

FO1y � FAy + FBy, (82)

FAyl1 � FByl2 + MO1t + MBt + MAt, (83)

where MO1t is the bending moments of the O1 point, while
MAt and MBt are the bending moments of the A and B
points, respectively. �e forces acting at points O1, A, and B
in the direction of y-axis are FO1y, FAy, and FBy, respectively.

�e displacement value at point B is a combination of
two displacements including displacement due to hinges at
O1 rotating around its axis (l2θ1) and displacement due to
drift (δ1).

Besides, the forces FO1y and FBy are expressed by

FBy � K1 l2θ1 − δ1( 􏼁, (84)

FO1y � KO1xδ1, (85)

MO1t � KO1tθ1, (86)

MBt � KBtθ1, (87)

MAt � KAtθ1, (88)

where KO1x is the lateral bending stiffness by force FO1y,
and K1 is the output stiffness of the B and A points, re-
spectively. KO1t is the rotational stiffness of the O1 point,
while KAt and KBt are the rotational stiffness of A and B
points, respectively.

Similarly, as beam 2, the θ1 and δ1 can be derived as

θ1 �
l1 KO1x + K1( 􏼁 + K1l2

KO1x + K1( 􏼁 K1l
2
2 + KO1t + KBt + KAt􏼐 􏼑 − K

2
1l
2
2
FAy, (89)

δ1 �
K1l1l2 + K1l

2
2 + KO1t + KBt + KAt

KO1x + K1( 􏼁 K1l
2
2 + KO1t + KBt + KAt􏼐 􏼑 − K

2
1l
2
2
FAy.

(90)
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Regarding beam 1, the ratio of the amplifier and the
input stiffness are expressed by

λ1 �
l2θ1 − δ1
l1θ1 + δ1

, (91)

kin1 �
FAy

l1θ1 + δ1
. (92)

Substituting (89) and (90) into (91) and (92), respec-
tively, the results are yielded ass

λ1 �
l1l2KO1x − KO1t + KBt + KAt( 􏼁

l
2
1 KO1x + K1( 􏼁 + 2K1l1l2 + K1l

2
2 + KO1t + KBt + KAt

, (93)

Kin1 �
KO1x + K1( 􏼁 K1l

2
2 + KO1t + KBt + KAt􏼐 􏼑 − K

2
1l
2
2

l
2
1 KO1x + K1( 􏼁 + 2K1l1l2 + K1l

2
2 + KO1t + KBt + KAt

, (94)

K1 � K12 + K13, (95)

K12 �
Ky12Kin2

Ky12 + Kin2
, (96)

Ky12 �
K

e
θyMy

2
+
2K

e
θyMy

5
�
9K

e
θyMy

10
, (97)

K13 �
Ky13Kin3

Ky13 + Kin3
, (98)

Ky13 �
2K

e
θyMy

5
, (99)

where K1 is the output stiffness that combines A and B
points, K12 is the output stiffness that combines beam 1 and
beam 2, and K13 is the output stiffness that combines beam 1
and beam 3. In addition, the intermediary stiffness between
beam 1 and beam 2, and the intermediary stiffness between
beam 1 and beam 3 are Ky12 and Ky13, respectively.

KO1t � KO2t � KO4t � KAt � K
e
θzMz, (100)

KBt � KCt � KDt � KIt � KO3t � KEt �
K

e
θzMz

2
, (101)

KHt � KJt � KMt � KNt �
2K

e
θzMz

5
, (102)

KGt � K
c
θzMz, (103)

KO3y � KEy � KCy �
K

e
θyMy

2
, (104)

KO1x � KO2x � KO4x � K
e
δxFx, (105)

KO3x �
K

e
δxFx

2
, (106)

Kb2 � K
l7
θzMz �

Eba
3

12l7
, (107)

K
l7
θyMy �

Eba

l7
, (108)

Kb1 � K
l8
θzMz �

Eba
3

12l8
, (109)

K
l9
θzMz �

Eba
3

12l9
, (110)

Kb3 �
2K

l9
θzMzK

c
θzMz

K
c
θzMz + 4K

l9
θzMz

, (111)

where Kl7
θzMz, Kl8

θzMz, and Kl9
θzMz are the stiffnesses which are

created via the torque of the leaf hinges l7, l8, and l9, re-
spectively. In addition, Kb1, Kb2, and Kb3 are stiffness
conversion of Kl7

θzMz, Kl8
θzMz, and Kl9

θzMz, the purpose of this
action is making the equations simpler. Finally, the linear
stiffness is created via the axial force of the leaf hinge l7, also
display by value Kl7

θyMy.
Finally, the total ratio of two-stage lever amplifier is

computed by

A � λ4 λ1 + λ3 + 1( 􏼁 + λ3 + 1. (112)

It is found that Fin � 2FAy, and considering the sym-
metric amplifier, the input stiffness is expressed by

Kin �
Fin

l1θ1 + δ1
�

2FAy

l1θ1 + δ1
� 2Kin1. (113)

A simplified stiffness diagram of the stage is given in
Figure 15 when the platform is driven in the direction of y-
axis. Figure 16 shows a simplified principle diagram of the 2-
dof stage.

Let dout be the output displacement of the stage and din
be the input displacement in the vertical direction. Besides,
the rotational angles of the prismatic beams are symbolled as
ωb1, ωb2, ωb3, α1, β1, c1, and ε1, which can be calculated by

ωb1 �
dout

l8
, (114)

ωb2 �
dout

l7
, (115)

ωb3 �
dout

l9
, (116)

α1 �
dout

l5
, (117)

β1 �
dout

l3 + l4( 􏼁

l6

l5
, (118)
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c1 �
dout

l2
,

l6

l5
, (119)

ε1 �
dout

l2

l6

l5
. (120)

�e potential energy inside the flexure hinges is
expressed by

Ep �
1
2

􏽘

B

i�A

Kiε
2
1 + 􏽘

D

i�J

Kic
2
1 + 􏽘

I

i�O4
Kiβ

2
1 + KGα

2
1

⎡⎢⎣ ⎤⎥⎦ +
1
2

􏽘

b3

j�b1
Kjω

2
j, (121a)

Ep �
1
2

􏼔KAtε1
2

+ KO1tε1
2

+ KBtε1
2

+ KJtc1
2

+ KO2tc1
2

+ KDtc1
2

+ KO4tβ1
2

+ KHtβ1
2

+ KItβ1
2

+ KGtα1
2
􏼕2 + 4Kb1ωb1

2
+ 6Kb2ωb2

2
+ 2Kb3ωb3

2
􏽨 􏽩.

(121b)

Substituting (114)–(120) into (121b), the stiffness KN can
be achieved by

K1

KM KM KN

Ka

Fout Kout

Fout
Ka

2FGy 2FGy
Fout

Positioning stage

y
xo

K
yMy

1

K
zMz

1
K

zMz

1

K
yMy

1

Figure 15: �e stiffness of the output mechanism.
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Figure 16: Simplified principle diagram of the 2-dof stage.
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KN � 2

l6

l2l5
􏼠 􏼡

2

KAt + KO1t + KBt( 􏼁 +
l6

l′2l5
􏼠 􏼡

2

KJt + KO2t + KDt􏼐 􏼑

+
l6

l4 + l3( 􏼁l5
􏼠 􏼡

2

KO4t + KHt + KIt( 􏼁 +
1
l5

􏼠 􏼡

2

KGt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 4
1
l8

􏼠 􏼡

2

Kb1 + 6
1
l7

􏼠 􏼡

2

Kb2 + 2
1
l9

􏼠 􏼡

2

Kb3⎡⎣ ⎤⎦.

(122)

Next, the output stiffness Kout and KGl of the stage are
determined by

Kout �
KNKa

KN + Ka

, (123)

in which Ka as shown in Figure 15 and calculated by

Ka �
3K

l7
θyMy

2
, (124)

KGl � 0.5Kout, (125)

where KN is the combines stiffness of the micromanipulator
in one direction, Ka is the stiffness of the beam Kl7

θyMy, and
Kout is the output stiffness of the micromanipulator.

For a simple calculation, the geometric parameters and
of the AL7075-T6 properties of the stage are provided in
Table 3.

4.1.2. Modeling of WorkingWorkspace. Assuming that the A
is the ratio of amplifier and S is the stroke of the PZT, the
workspace of the stage is calculated as AS x AS. I axial
tension and shearing effects are ignored. �ere is only the
bending stress is considered. To sum up, the stress (σr) is
computed by

Max σr( 􏼁 �
σy

s
, (126)

where σy is the yield strength of the material and s is the
safety factor.

�e maximal stress σMax
r is computed as

σMax
r �

4Er
2
Kc

f(β)t
2 θMax, (127)

where kc is concentration factor and f(β) is the compliance
factor [22].

β �
t

2r
, (128)

kc � (1 + β)

9
20,

(129)

f(β) �
1

2β + β2
3 + 4β + 2β2

(1 + β) 2β + β2􏼐 􏼑
+

6(1 + β)
������

2β + β2
􏽱

􏼒 􏼓
3tan

− 1

�����
2 + β
β

􏽳
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (130)

where β is the dimensionless geometry factor.
Let δMax

in is the maximal input displacement and δMax
in is

the output displacement of stage. �e maximal deformation
angle (θmax) is computed by

θMax �
AδMax

in

l5
+
λ3δ

Max
in

l3 + l4
. (131)

Substituting (126) and (131) into (127), the results are
yielded as

σy

s
≥
4Er

2
Kc

f(β)t
2

AδMax
in

l5
+
λ3δ

Max
in

l3 + l4
􏼠 􏼡, (132)

δMax
in ≤

l5 l3 + l4( 􏼁f(β)t
2σy

4Er
2
Kc s A l3 + l4( 􏼁 + λ3l5( 􏼁

. (133)

By using the values in Table 2, the (133) and let s of 1.8,
the maximal input displacement is expressed by

δMax
in ≤ 44.6286 μm, (134)
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To sum up, the output displacement of the stage may
achieve up to 1363.8 μm. �erefore, the workspace of the 2-
dof stage is 1363.8 μm× 1363.8 μm.

4.1.3. Modeling of Dynamics. �e natural frequencies can be
achieved by Lagrange’s method by calculating the kinetic
energy (T) and potential energy (V). Figures 12 and 17 show
the position of masses m in the proposed design. Based on
the position and motion trajectory of the components, a
motion classification step will be performed to assist the
calculation of the natural frequency of the design.

�e hingesm2,m3,m5,m6,m8,m9,m12,m13,mb1,mb2,mb3
represent the rotational and translational motions. �e hinges
m0, m1, m4, m7, m10, m11, m14, m15, m16 note the translations.
�e kinetic energy of the whole stage is computed as

T � Tη1 + Tη2, (135)

Tη1 � Tη2 � 􏽘

m16

i�m2

Ti + 􏽘

mb3

j�mb1

Tj, (136)

Tm0
�
1
2
m0(vA)

2
�
1
2
m0 η.

1A( 􏼁
2

�
m0A

2

2
η.2
1 , (137)

Tm1
�

m1

2
η.2
1 , (138)

Tm4
�
1
2
m4

vλ1
2

􏼠 􏼡

2

2 �
m4λ

2
1

4
η.2
1 , (139)

Tm7
�

m7λ
2
2

4
η.2
1 , (140)

Tm10
�

m10

4
η.2
1 , (141)

Tm11
�

m11

4
η.2
1 , (142)

Tm15
�

m15A
2

2
η.2
1 , (143)

Tm16
�

m16A
2

2
η.2
1 , (144)

Tm2
�
1
2
m2

v

2
􏼒 􏼓

2
2 +

1
2

m2l
2
1

3
v

l1
􏼠 􏼡

2

2 �
7m2

12
v
2

�
7m2

12
η.2
1 , (145)

Tm3
�
7m3λ

2
1

12
η.2
1 , (146)

Tm5
�
7m5λ

2
2

12
η.2
1 , (147)

Tm6
�
7m6

12
η.2
1 , (148)

Tm8
�
7m8A

2

12
η.2
1 , (149)

Tm9
�
7m9A

2

12
η.2
1 , (150)

Tm12
�
7m12

12
η.2
1 , (151)

Tm13
�
7m13λ

2
3

12
η.2
1 , (152)

Table 3: Geometric parameters and AL7075-T6 for the proposed stage.

l1 l2 l’1 l’2 l3 l4 l5 l6 l7 l8 l9
13.9 49.7 12 46 14 52 61.8 18 73 76.9 65.9
r t (circular) a (l8, l9) a (l7) ax ay t (elliptical) b l E (GPa) σ r (MPa)
4.5 0.6 0.6 0.8 4.5 2.5 0.65 16 9 71.7 503

Fixed

Fi
xe

d
Fi

xe
d
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Figure 17: Symmetrical structure with two 2-stage amplifiers.
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Tmb1
�
1
2
mb1(vA)

24 +
1
2

mb1l
2
8

3
vA

l8
􏼠 􏼡

2

4 �
8mb1A

2

3
v
2

�
8mb1A

2

3
η.2
1 ,

(153)

Tmb2
�
1
2
mb2(vA)

26 +
1
2

mb2l
2
7

3
vA

l7
􏼠 􏼡

2

6 � 4A
2
mb2η

.2
1 , (154)

Tmb3
�
1
2
mb3(vA)

22 +
1
2

mb3l
2
9

3
vA

l9
􏼠 􏼡

2

2 �
4A

2
mb3

3
η.2
1 . (155)

Potential energy:

V �
1
2
k1η

2
1 +

1
2
k2η

2
2. (156)

Lagrange’s equation: Lagrangian mechanics defines a
mechanical system to be a pair (M, L) of a configuration
space M and a smooth function L� L(q, v,t) called
Lagrangian.

L � T − V,

d

dt

zT

zμ∗i
−

zT

zμi

+
zV

zμi

� Fi,

Md
∗ ∗
i + Kdi � Fi,

(157)

where i� 1; 2 is the free vibration of horizontal and vertical
directions of the stage. Fi is a nonconservative generalized
force corresponding to the coordinate. Let the equivalent
mass M � diag M{ } and the stiffness K � diag k{ }, a con-
servative system is expressed by

Mη∗∗ + Kη � 0, (158)

d

dt

zT

zμ∗i
−

zT

zμi

+
zV

zμi

� 0. (159)

Substituting (136)–(155) into (135), the results are
yielded as

T �
m0A

2

2
+

m1

2
+
7m2

12
+
7m3λ

2
1

12
+

m4λ
2
1

4
+
7m5λ

2
2

12
+
7m6

12
+

m7λ
2
2

4
+
7m8A

2

12
􏼢

+
7m9A

2

12
+

m10

4
+

m11

4
+
7m12

12
+
7m13λ

2
3

12
+

m14λ
2
3

4
+

m15A
2

2
+

m16A
2

2
+
8mb1A

2

3
+4A

2
mb2 +

4A
2
mb3

3
􏼣 η∗21η

∗2
2􏽨 􏽩,

(160)

zT

zμ∗i
� m0A

2
+ m1 +

7m2

6
+
7m3λ

2
1

6
+

m4λ
2
1

2
+
7m5λ

2
2

6
+
7m6

6
+

m7λ
2
2

2
+
7m8A

2

6
􏼢

+
7m9A

2

6
+

m10

2
+

m11

2
+
7m12

6
+
7m13λ

2
3

6
+

m14λ
2
3

2
+ m15A

2
+ m16A

2
+
16mb1A

2

3

+8A
2
mb2 +

8A
2
mb3

3
􏼣 η∗1η

∗
2􏼂 􏼃,

(161)

d

dt

zT

zμ∗i
� m0A

2
+ m1 +

7m2

6
+
7m3λ

2
1

6
+

m4λ
2
1

2
+
7m5λ

2
2

6
+
7m6

6
+

m7λ
2
2

2
+
7m8A

2

6
􏼢

+
7m9A

2

6
+

m10

2
+

m11

2
+
7m12

6
+
7m13λ

2
3

6
+

m14λ
2
3

2
+ m15A

2
+ m16A

2
+
16mb1A

2

3

+8A
2
mb2 +

8A
2
mb3

3
􏼣 η∗∗1η

∗&lowast;
2􏽨 􏽩,

(162)

zT

zμi

� 0, (163)

zV

zμi

� k1 + k2􏼂 􏼃 η1η2􏼂 􏼃. (164)

Substituting (162)–(164) into (159), values M and K can
be expressed by the following formula:
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Table 4: Error between the theory and simulation result.

Response Analytical result FEA result Error (%)
f (Hz) 92.1219 87.381 5.426

Table 5: Improvement between optimal result and initial design result.

Response Optimal result Initial design result Improvement (%)
f (Hz) 112.0995 92.1219 21.69

Table 6: Error between optimal result and FEA result.

Response Optimal result FEA result Error (%)
f (Hz) 112.0995 106.98 4.785

A: Modal
Total Deformation
Type: Total Deformation
Frequency: 106.98 Hz
Unit: mm
4/15/2022 1:36 PM

63.022 Max
56.019
49.017
42.014
35.012
28.01
21.007
14.005
7.0024
0 Min

ANSYS
R19.2

Figure 18: �e first mode shape analysis of the resonant natural frequency of the optimal 2-dof stage.

Table 7: Comparison of the proposed 2-dof stage with the previous designs.

Design of the 2-dof stage Dimension Frequency (Hz)
Zhu et al. [23] NA 59.3
Lee et al. [24] NA 80
Present design 451mm× 451mm× 16mm 112.0995
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M � m0A
2

+ m1 +
7m2

6
+
7m3λ

2
1

6
+

m4λ
2
1

2

+
7m5λ

2
2

6
+
7m6

6
+

m7λ
2
2

2

+
7m8A

2

6
+
7m9A

2

6
+

m10

2
+

m11

2
+
7m12

6

+
7m13λ

2
3

6
+

m14λ
2
3

2
+ m15A

2

+ m16A
2

+
16mb1A

2

3
+ 8A

2
mb2 +

8A
2
mb3

3
,

(165)

K � Kin � 2Kin1. (166)

Solving (158), the natural frequency (f ) of the stage can
be obtained as

f �
1
2π

K

M
􏼒 􏼓

0.5
. (167)

4.2. Evaluation and Verifications of Mathematical Models.
Table 4 shows that an error between the theoretical result
and FEA result is about 5.426%. It means that the proposed
methodology based on the kinetostatic-based methods (i.e.,

defomable mechanic theory, elastic beam theory, and
Lagrange method) is reliable and effective in modeling the
statics and dynamics of the 2-dof stage.

4.3. Structural Optimization

4.3.1. Optimization Problem Description. To avoid the
resonance phenomena between the motors, PZT actua-
tors, and the compliant 2-dof stage, the first natural
frequency modes are either as small as possible or as large
as possible. In order to increase the rapid responsiveness
of the positioners, the first natural frequency should be
chosen as large as possible. In addition, the angular fre-
quency is proportional to the natural frequency of the
compliant stage. �erefore, the first natural frequency is
proposed to maximize in order to increase the response
speed as well as avoid the resonance phenomena of the 2-
dof stage. In this research, the optimization problem is
aimed to maximize the resonant frequency, which is
briefly expressed as follows.

Find design vector: x � [x1, x2, x3, x4, x5]Maximize

f(x), (168)

S.t:

f(x) > 100Hz, (169)

Design variables (unit: mm):

A: Model, Static Structural
Equivalent Stress
Type: Equivalent (von-Mises) Stress
Unit: MPa
Time: 1
6/3/2022 11:47 PM

270.81 Max
240.72
210.63
180.54
150.45
120.36
90.269
60.179
30.09
4.4875e − 6 Min

ANSYS
R19.2

7.5e + 04 2.25e + 05

1.5e + 05 3e + 05 (m)0

Figure 19: �e equivalent stress of the optimal 2-dof stage.
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0.7≤x1 ≤ 0.9

0.6≤x2 ≤ 0.8

0.6≤x3 ≤ 0.75

0.6≤x4 ≤ 0.7

0.6≤x5 ≤ 0.7

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(170)

where f(x) denotes the resonant frequency. In addition, x1,
x2, x3, x4, and x5 are the dimensions of A, B, C, D, and E,
respectively.

4.3.2. Optimal Results. Based on (1)–(170), MATLAB
R2017b was employed for developing the combination ap-
proach of the kinetostatic analysis-based method and the
neural network algorithm. As a result, the optimal param-
eters of the stage were found at A� 0.9mm, B� 0.8mm,
C� 0.7mm, D� 0.7mm, and E� 0.7mm, and the first
natural frequency was 112.0995Hz.

4.4. Verification and Comparisons. By using the optimal
parameters, a 3D stage is created. �e FEA result in
ANSYS software showed that the first natural frequency
was 106.98 Hz. Compared with the initial design, the
frequency of the 2-dof stage is improved by up to 21.69%,
as given in Table 5. In addition, the error among the
optimal value and FEA value is 4.785%, as given in Table 6.
Besides, the resonant frequency values of the six modes
from mode 1 to mode 6 are 106.98 Hz, 121.75 Hz,
328.69 Hz, 335.46 Hz, 602.42 Hz, and 603.88 Hz, respec-
tively. Figure 18 illustrates the first mode shape analysis of
the resonant natural frequency. So as to prevent the

damage of the optimal positioner due to resonances, the
positioner should avoid the abovementioned resonant
frequencies during operation.

Compared with the previous designs of the 2-dof stage,
the present design proposed a higher frequency, as given in
Table 7.

In addition, in order to evaluate the material strength of
the optimal stage, the FEA result in ANSYS software showed
that the equivalent stress was 270.81MPa, as illustrated in
Figure 19. �e output total deformation was 877.37 μm, as
depicted in Figure 20. Besides, the displacement amplifi-
cation ratio was 7.79, the output force was 3480.4N, and the
parasitic motion error, so-called as the cross-axis coupling
ratio between the two axes, was around 0.02%. Specifically,
the achieved working stroke of the XY stage was
787.63 μm× 794.5 μm. �e safety factor is found about 1.86
(i.e., the resulting stress is much smaller than the yield
strength of used material). �e achieved optimal results
satisfied the desirable technical specifications of the XY
stage.

5. Conclusions

�is study presented a new modeling and dimensional
optimization synthesis of the 2-dof stage. �e developed 2-
dof stage would be applied for positioning a biomaterial
sample in in situ nanoindentation. �e proposed effective
methodology was proposed according to the kinetostatic
analysis-based calculation method, the Lagrange approach,
and the neural network algorithm. First of all, the 2-dof stage
was designed using a hybrid integration of an eight-lever
displacement amplifier-integrated elliptical hinges and a

A: Model, Static Structural
Total Deformation
Type: Total Deformation
Unit: m
Time: 1
6/3/2022 11:48 PM

877.37 Max
779.89
682.4
584.91
487.43
389.94
292.46
194.97
97.486
0 Min

ANSYS
R19.2

7.5e + 04 2.25e + 05

1.5e + 05 3e + 05 (m)0

Figure 20: �e total deformation of the optimal 2-dof stage.
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symmetric parallelogram. �en, a chain of mathematical
equations of the 2-dof stage were formulated using a
kinetostatic analysis-based method in terms of the ratio of
displacement amplification and the input stiffness. Subse-
quently, the Lagrange method was employed to form the
dynamic equation of the 2-dof stage. Finally, the neural
network algorithm was adopted to maximize the natural first
frequency of the proposed stage. �e optimal results indi-
cated that the frequency of the stage achieved a high value of
112.0995Hz. Besides, the mathematical models were rela-
tively close to the simulation verifications. �e designed
stage has a faster response than that from a few previous
designs.

In the future study, a prototype of the 2-dof stage will be
manufactured, and the analytical results will be verified by
the experiments. In addition, the closed loop system will be
utilized for verifying the analytical results as well as en-
hancing position accuracy of the 2-dof stage.

Abbreviations

2-dof: Two degrees of freedom
MDLA: Modified displacement lever amplifier
LAM 1: Lever amplification mechanism of floor 1
LAM 2: Lever amplification mechanism of floor 2
LAM 3: Lever amplification mechanism of floor 3
l1: Length of segment AO1
l2: Length of segment O1B
l1 ’: Length of segment JO2
l2 ’: Length of segment O2C
l3: Length of segment O4 H
l4: Length of segment HI
l5: Length of segment EO3
l6: Length of segment O3G
A: �e amplification ratio
δin: Input displacement
δout: Output displacement
Kc

θzMz: �e torsion stiffness made via the torque of a
flexure circular notched hinge

Kc
θyMy: �e linear stiffness created via the axial force of a

flexure circular notched hinge
Kc

δxFx: �e bending stiffness generated via lateral force of a
flexure circular notched hinge

Kl
θzMz: �e torsion stiffness made via the torque of the leaf

hinge
Kl

θyMy: �e linear stiffness created via the axial force of the
leaf hinge

Δθ: �e variable angle created via the torque of the leaf
hinge

Ml
θzMz: �e bending moments of the leaf hinge

Ke
θzMz: �e torsion stiffness made via the torque of a

flexure elliptical notched hinge
Ke

θyMy: �e linear stiffness created via the axial force of a
flexure elliptical notched hinge

Ke
δXFX

: �e bending stiffness generated via lateral force of a
flexure elliptical notched hinge

E: �e elastic modulus of the manufacturing material
b: �e thickness of the flexure hinge
r: �e radius of the circular notched hinge

t: �e smallest width of the circular/elliptical hinge
l: �e length of the flexure hinge
a: �e width of the flexure hinge
ax: �e major axis of the elliptical flexure hinge
ay: �e minor axis of the elliptical flexure hinge
βX: �e dimensionless factor representing the hinges’

geometry ax
βy: �e dimensionless factor representing the hinges’

geometry ay
∈: �e multiplication factor of the ratio of the major

to minor axes
f(βy): �e dimensionless compliance factor according to

βy

f(βx): �e dimensionless compliance factor according to
βX

Kin: �e input stiffness of the micromanipulator
Fin: �e input force of the micromanipulator
FO3y: �e force acting at point O3 in the direction of y-

axis
FEy: �e force acting at point E in the direction of y-axis
FGy: �e force acting at point G in the direction of y-axis
MO3t: �e bending moments at points O3
MGt: �e bending moments at points G
MEt: �e bending moments at points E
KO3x: �e lateral bending stiffness by the force FO3y
δ4: �e displacement due to drift of beam 4
KGy: �e G point’s output stiffness of the MDLA
θ4: �e angle variable is created via the torque of beam

4
KO3t: �e rotational stiffness of points O3
KGt: �e rotational stiffness of points G
KEt: �e rotational stiffness of points E
λ4: �e amplification ratio amplifier of beam 4
Kin4: �e input stiffness of beam 4
FHy: �e force acting at point H in the direction of y-axis
FIy: �e force acting at a point I in the direction of y-

axis
FO4y: �e force acting at point O4 in the direction of y-

axis
MO4t: �e bending moments at point O4
MIt: �e bending moments at point I
MHt: �e bending moments at point H
δ3: �e displacement due to drift of beam 3
θ3: �e angle variable created via the torque of beam 3
KO4x: �e lateral bending stiffness by the force FO4y
K3: �e I point’s output stiffness
KO4t: �e rotational stiffnesses of point O4
KIt: �e rotational stiffnesses of point I
KHt: �e rotational stiffnesses of point H
λ3: �e amplification ratio of the amplifier of beam 3
Kin3: �e input stiffness of beam 3
FO2y: �e force acting at point O2 in the direction of y-

axis
FCy: �e force acting at point C in the direction of y-axis
FJy: �e force acting at point J in the direction of y-axis
MO2t: �e bending moments at point O2
MJt: �e bending moments at point J
MCt: �e bending moments at point C
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δ2: �e displacement due to drift of beam 2
θ2: �e variable angle created via the torque of beam 2
KO2x: �e lateral bending stiffness by the force FO2y
K2: E point’s output stiffness
KO2t: �e rotational stiffnesses of point O2
KCt: �e rotational stiffnesses of point C
KJt: �e rotational stiffnesses of point J
λ2: �e amplification ratio of the amplifier of beam 2
Kin2: �e input stiffness of beam 2
FO1y: �e force acting at point O1 in the direction of y-

axis
FAy: �e force acting at point A in the direction of y-axis
FBy: �e force acting at point B in the direction of y-axis
MO1t: �e bending moments at point O1
MBt: �e bending moments at point B
MAt: �e bending moments at point A
δ1: �e displacement due to drift of beam 1
θ1: �e angle variable created via the torque of beam 1
KO1x: �e lateral bending stiffness by the force FO1y
K1: �e output stiffness combines A and B points
K12: �e output stiffness combines beam 1 and beam 2
K13: �e output stiffness combines beam 1 and beam 3
Ky12: �e intermediary stiffness between beam 1 and 2
Ky13: �e intermediary stiffness between beam 1 and 3
KO1t: �e rotational stiffnesses of point O1
KBt: �e rotational stiffnesses of point B
KAt: �e rotational stiffnesses of point A
λ1: �e ratio of the amplifier of beam 1
kin1: �e input stiffness of beam 1
Kl7

θzMz: �e stiffness created via the torque of the leaf hinge
l7

Kl7
θyMy: �e linear stiffness created via the axial force of the

leaf hinge l7
Kl8

θzMz: �e stiffness created via the torque of the leaf hinge
l8

Kl9
θzMz: �e stiffness created via the torque of the leaf hinge

l9
Kb3: �e output stiffness combines Kl9

θzMz and double
Kc

θzMz

ω1: �e rotational angle of the leaf hinge l8
ω2: �e rotational angle of the leaf hinge l7
ω3: �e rotational angle of the leaf hinge l9
α1: �e rotational angle of flexible hinge of the

amplifier of beam 4
β1: �e rotational angle of the flexible hinge of the

amplifier of beam 3
c1: �e rotational angle of the flexible hinge of the

amplifier of beam 2
ε1: �e rotational angle of the flexible hinge of the

amplifier of beam 1
dout: �e output displacement
din: �e input displacement
Ep: �e potential energy inside the flexure hinges
Kout: �e output stiffness of the micromanipulator
KN: �e combine stiffness of the micromanipulator in

one direction
Ka: �e combine stiffness of Kl7

θyMy

σMax
r : �e maximal stress occurs when the angular

displacement θmax
σy: �e yield strength of the manufactural material
s: �e safety factor
kc: �e concentration factor of a flexure circular

notched hinge
f(β): �e compliance factor of a flexure circular notched

hinge
β: �e dimensionless geometry factor of a flexure

circular notched hinge
δMax

in : �e maximal input displacement
θmax: �e maximal deformation angle
T: �e kinetic energy of the whole stage
Tη1: �e kinetic energy of y-axis
Tη2: �e kinetic energy of x-axis
Ti: �e kinetic energy of the element in the

micromanipulator (i�m1 to mb3)
η.
1: �e coordinate used to describe the motions of y-

axis
η.
2: �e coordinate used to describe the motions of x-

axis.
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