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Metal-oxide arrester (MOA) has been widely used in electric power systems.�e leakage current monitoring of MOA can not only
detect the MOA’s running state continuously and intelligently but also reduce the unexpected outage of the equipment, which is
also bene�cial to the stability of the grid. �e MOA loses its protection function due to various faults caused by excessive leakage
current in actual running. �is article studies the monitoring method of MOA based on leakage current sensor and back
propagation (BP) neural network. At �rst, we design a novel leakage current sensor to acquire the leakage current of MOA.�en,
the leakage current measurement of MOA based on harmonic analysis is proposed. Finally, the strong training ability of the BP
neural network is used to train some key parameters that can re�ect the aging of MOA so as to monitor the MOA state. �e
experimental results show that the leakage current acquired from the simulation is close to the actual leakage current that needs to
be measured. It is also shown that the proposed method has good anti-interference and can e�ectively monitor the aging of MOA.
�rough the training of the BP neural network, the experiments prove that the training method in this article is superior to other
neural network training methods obviously.

1. Introduction

�e safety and stability of the electric power system have
been involved with the rapid advance of the economy. It can
be said that electrical equipment is important in society
today. �e world is committed to the development of the
electric power system. �e long-term stable running of the
electric power system cannot be separated from the normal
operation of such equipment. As a protective device to avoid
the in�uence of high voltage, such as lightning strike, the
MOA is close to the insulation state under the normal
running of the electric power system [1, 2]. When the electric
power system is overvoltage, the equivalent resistance of
MOA decreases rapidly, and the leakage current �owing
through theMOA increases instantly, which ensures that the
MOA is broken down before the protected equipment so as
to e�ectively suppress the overvoltage.

�e main reason for the faults of MOA is that the valve
plate is damp or aged. �e dampness of the valve plate of
MOA is mainly caused by some objective factors [3].
Moisture slowly seeps into the MOA and makes it damp for
a long time running.�erefore, the poor housedMOA is one

of the main reasons for its dampness [4]. �e aging of the
valve plate will be very di�erent due to the uniformity being
relatively poor. In this way, the potential distribution of the
valve plate of MOA will have slowly deviated. Eventually,
parts of the valve plates will deteriorate �rst, then the leakage
current and power consumption of MOA will increase for a
long time running. Another reason for the accelerated aging
of the valve plate of MOA is that the running voltage loaded
to both ends of the MOA is lower than the normal voltage.
When the MOA is running, especially single line-to-ground,
the loaded voltage of the MOA is increased, which results in
the fast aging of the valve plate of the MOA. �erefore, in
order to detect the drawbacks of the MOA in time and avoid
the accidents caused by the leakage current of MOA, we need
to monitor and evaluate the running state of the MOA
frequently to ensure the safe and stable running of the
electric power system.

Accordingly, the main contributions of this article are
summarized as follows. (i) We design a novel leakage
current sensor to acquire the leakage current of MOA. (ii)
�e leakage current measurement of MOA based on
harmonic analysis is proposed. (iii) BP neural network is
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used to train some key parameters that can reflect the aging
of MOA.

-e remaining of this article is organized as follows.
Section 2 reviews the related work. In Section 3, we study the
acquirement and measurement of MOA leakage current. In
Section 4, we propose themonitoringmethod ofMOA based
on the BP neural network. -e experimental results are
shown in Section 5. Section 6 concludes this article.

2. Related Work

-e first important step for monitoring MOA is the current
measurement using a sensor. -e current sensor is an im-
portant current measurement product, which measures the
magnetic field indirect current generated by the primary
current. After signal processing, the current sensor outputs a
low voltage or low current signal. -ere have been many
sensors studied for current measurement. In [5], a quasi-
digital flux gate sensor was designed based on the duty-ratio
model, and the mathematical model between the excitation
voltage period and the measured current, which exceeded
the measurement range, was built by analyzing the working
principles of the duty-ratio model digital sensor. In [6], the
authors presented an innovative common-mode current
sensor node for the insulation monitoring framework of
power distribution systems based on magnetic field analysis.
In [7], the authors proposed an advanced current sensor
with a dual-core topology based on differential-mode
measurement. An analytical model of the magnetic field of
the dual-core sensor was originally presented, which helped
clarify the significance of the inner core in filtering noises
and reducing the influence of system operation and cable
positioning. In [8], the authors described a high-current
sensor operating in a range up to 100 and 7.7 kA resolution.
-e system consisted of a self-integrating Rogowski
coil connected to the electret sensor by a coaxial cable. In [9],
the authors presented the design, fabrication, and charac-
terization of two compact fiber-optic current sensors based
on fiber Bragg gratings and the magnetostrictive alloy
Terfenol-D.

Many strategies of third-harmonic measurement have
been proposed. In [10], the authors presented the solution of
the third-harmonic generator model used for a stator-
ground fault study in terms of the mesh currents and used
the derived equations to develop a third-harmonic based
fault location method. In [11], the authors proposed a
method to estimate all electrical parameters of five-phase
induction motors based on a new concept of instantaneous
impedance. In [12], the authors performed power-depen-
dent third-harmonic generation measurements on gated
single-layer graphene and detected a significant deviation
from the cubic power law expected for a third-harmonic
generation process. In [13], the authors discussed the effects
of third-harmonic current injection on a five-phase per-
manent magnet synchronous machines with a conventional
magnet shape depending on the saturation. In [14], the
authors presented the first experimental validation of the
stability analysis based on the online measurement of har-
monic impedances exploiting the linear time-periodic

approach applied to ac networks of power converters. In
[15], the authors proposed an online monitoring technique
for the surge arrester under dry and pollution conditions
when measuring either the total leakage current or both the
internal and external leakage currents of three different types
of surge arresters. In [16], the authors designed a circuit
measuring resistive current based on leakage current stan-
dard waveform of the surge arrester. In [17], the authors
proposed the development of load signatures by a limited
number of harmonic current vectors. In [18], the authors
presented a harmonic model for metal-oxide surge arresters
that could be utilized to simulate their performances under
applied harmonic voltage. In [19], the authors proposed a
newly developed technique, referred to as a hybrid method,
to extract resistive leakage current without acquiring the
grid’s voltage. In [20], a new current decomposition method
based on multiple linear regression was presented.-e time-
domain equations of every current component on the ap-
plied voltage were deduced based on an improved equivalent
model of the MOA arrester.

Currently, there are many training methods for the
monitoring of MOA. In [21], a Kohonen neural network was
proposed for the MOA fault diagnosis. For the problem of
online monitoring parameters of MOA, that is, suffering
from the external environment interference in the power
system, in [22], a novel MOA parameters modified method
by eliminating external environmental factors interference
was proposed.

In recent times, there have been a lot of studies on the
current sensor and third-harmonic leakage current, but the
neural network is seldom used to monitor the running state
of MOA. Based on this, we study the monitoring method of
MOA based on leakage current sensor and neural network.

3. The Leakage Current Acquirement and
Measurement of MOA

3.1. A Novel Leakage Current Sensor. -e acquisition of
leakage current is a key step in MOA monitoring. -e
leakage current only with mA-level of MOA is very small
under normal voltage. -e interference is very strong in the
acquisition process, so the leakage current extraction is very
important. -e leakage current acquisition methods include
direct coupling (end shield disconnection) and magnetic
coupling (cross-core sensor). -e current acquisition ac-
curacy of direct coupling is relatively high, but it is rarely
used now because the related running is unfavorable for the
safety and stability of the electric power system, while the
magnetic coupling is usedmuchmore in practice. According
to the characteristics of MOA, we propose a resistance
sensing method to acquire the leakage current of MOA
without peeling the end shield so that there is no effect on the
high-side voltage. -e lower end of MOA is connected with
counters that record MOA running times, and its resistance
is usually hundreds of ohms. -e leakage current can be
inferred from detecting the pressure drop of the leakage
current on MOA. -ere is a relationship between coun-
terresistance and counterparameters, and the value of
counterresistance is not constant, so it must be monitored.
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Let R1, R2, . . ., Rn be the resistance used for measurement
in monitoring. Since the resistance Rc and R1, R2, . . ., Rn of
the counter are far less than the resistance value of MOA
(usually above MΩ), the influence of R1, R2, . . ., Rn on the
leakage current Ilc of MOA can be ignored. -e resistance
value Rc is too high, which leads to the fault of the counter,
and it will also affect the detection. R1 is usually connected to
both ends of the counter in parallel first, and the voltage of R1
is measured as U1. Similarly, the voltage measured after
parallel connection of Rn through relays is Un. -e number
of parallel connections depends on the required accuracy. A
novel leakage current sensor designed in this article can
calculate Rc by connecting two resistances in parallel but can
calculate the resistance value of multiple counters by con-
necting more resistances, which makes the errors decline.
-e leakage current Ilc and the resistance value of the counter
Rc are defined as follows:

Ilc �
1
Ri

+
1
Rc

  × Ui �
1
Ri

+ Rj + Rc  × Uj, (1)

Rc �
RiRj × Ui − Uj 

Ri × Uj − Rj × Ui − Uj  
. (2)

After the counterresistance is calculated, the leakage
current Ilc of MOA can be acquired by measuring the voltage
at both ends of MOA with equation (1) and equation (2). As
a result, the leakage current is calculated by the pressure
drop between the sampling resistances and the counter-
resistance. -ere is a high demand for accuracy and stability
for sampling resistances R1, R2, . . ., Rn, so we use standard
resistance with minimal temperature drift which can
completely remove the phase-shifted current in themagnetic
ring sensor measurement.

3.2. )e Leakage Current Measurement of MOA Based on
Harmonic Analysis. -e internal MOA can be equivalent to
a parallel circuit with good nonlinear resistance and surface-
to-ground capacitance. -erefore, the leakage current is
resistive-capacitive, and the resistive current only accounts
for 10%–20%. Because of the nonlinear characteristics of the
valve plate of MOA, there are a lot of high harmonic
components in the resistive leakage current. During the
long-term running of MOA, the main reason for the decline
of its insulation performance is the internal moisture and
aging of the valve plate, which is mainly reflected in the
significant increase of resistive fundamental current and
resistive third-harmonic components ofMOA under normal
working voltage, while its capacitive current components are
relatively stable. At present, the monitoring method of MOA
is usually used to detect the running state of theMOA, which
has been put into running by monitoring the change of the
leakage current so as to detect the fault of MOA in time. -e
common leakage current measurement methods of MOA
include the capacitive current compensation method, fun-
damental wave method, and third-harmonic method.

-e newmethod of leakage current harmonic analysis is
based on compensation technology, which eliminates the

influence of the third-harmonic current components
caused by the harmonic voltage of the electric power system
on the leakage current measurement so that the third-
harmonic current components can be acquired by MOA
alone. Moreover, the relationship between the resistive
third-harmonic current and the total resistive current is
established. -e circuit of MOA and sensor is shown in
Figure 1.

Let I(k)
h denote the kth harmonic of the current I and the

third-harmonic of the voltage produces a capacitive current
component with the same frequency, which contributes
greatly to the total third-harmonic current I

(3)
t . However, the

total third-harmonic current I
(3)
t minus capacitive third-

harmonic current I(3)
c and then the resistive third-harmonic

current I
(3)
rh are generated by the MOA nonlinear resistance:

I
(3)
rh � I

(3)
t − I

(3)
c . (3)

On the one hand, I
(3)
rh refers to the resistive third-har-

monic current.-e amplitude and phase angle of the current
I

(3)
t are measured by the total leakage current It at the
grounding terminal of the MOA. On the other hand, I(3)

c can
be indirectly determined through the measurement of the
electric field.

3.2.1. Capacitive Harmonic Current. -e capacitive third-
harmonic current I(3)

c can be determined by measuring the
probe current Ip located in the MOA electric field, and the
third-harmonic probe current I(3)

p can be acquired by the
Fourier transform of Ip. If the amplitude and phase angle of
are related to I(3)

c , the resistive third-harmonic current I
(3)
rh

can be acquired according to equation (3). I(3)
c mainly de-

pends on the third-harmonic voltage of the phase where the
MOA is located. To some extent, the influence of stray
capacitance is also related to the voltage of the adjacent
phase, while the probe current I(3)

p is only related to the stray
capacitance, which indicates that I(3)

p is more affected by the
adjacent phase.

It is reasonable to assume that the third harmonic of the
phase voltage has the same phase angle as the fundamental
frequency of each phase, if only the fundamental frequency
and third harmonic are considered, which can be defined as
follows:

U
(k)
h � ln cos 2πfft +

2nπ
3

 

+ U
(3)
h cos(3 × 2πfft + 2πn),

(4)

where n� 0, 1, and 2 express three phases and f is the
fundamental frequency.

It can be seen from equation (4) that the main advantage
of the leakage current third-harmonic analysis is that the
phase angle difference of all the third-harmonic voltage U

(3)
h

is a multiple of 2π. -erefore, U
(3)
h can be regarded as the

zero-sequence voltage with three times the frequency of the
fundamental frequency of the system. Accordingly, I(3)

p and
I(3)

c have the same phase angle, which are unrelated to the
position of the field probe.
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A calibration process for I(3)
p must be introduced before

the amplitude of I(3)
c can be determined because the ca-

pacitance of the field probe is usually unknown. -e cali-
bration is based on a comparison of the fundamental
frequency components I

(1)
t and I(1)

p . Since I
(1)
t is mainly

capacitive and its amplitude is not sensitive to the growth of
the resistive current components, so it can be considered
reasonable. -e fundamental current increases by only a few
percentages over the actual range of resistive current.
-erefore, in fact, I

(1)
t can be considered as equal to I(1)

c , and
the relationship between the amplitude of fundamental
frequency components I

(1)
t and I(1)

p can be defined as
follows:

AMP1 �
I

(1)
t

I
(1)
p

. (5)

According to equation (6), the capacitive third-harmonic
current can be determined as follows:

I
(3)
c � AMP3 × I

(3)
p . (6)

Generally, AMP3 is not equal to AMP1, so AMP3 needs
to be introduced. According to equation (5) and equation
(6), assuming that I

(1)
t is equal to I(1)

c , then I(1)
c can be

defined as follows:

AMP3 �
AMP1 · I

(3)
p

I
(3)
b

×
I

(3)
c

I
(3)
p

. (7)

For each frequency, the current is proportional to the field
strength, so equation (7) can also be expressed as follows:

AMP3 �
AMP1 · E

(1)
p

E
(1)
p

×
E

(3)
c

E
(3)
p

. (8)

-e relationship between the fundamental frequency
and the electric field components of the third-harmonic is
constant and irrelevant to its spatial position in single-phase
application, which means that AMP3 and AMP1 are equal.
As discussed above, there is a corresponding phase shift for
the third-harmonic components, so that AMP3 and AMP1
are not equal in three-phase applications in general.

3.2.2.)e Calculation of Electric Field. In order to determine
the relationship between AMP3 and AMP1 at the field probe,
the field strength of two typical three-phase MOA at their
base is calculated. -e field strength is calculated at two
system voltages, which are 145 kV (single-phase MOA) and

420 kV (three-phase MOA), with a wide range of phase
spacing.

Table 1 shows the structure of MOA. Assuming that the
MOA is adjacent to the wall, which simulates a large
grounded object such as a transformer. We should notice
that the effect of the wall on the electric field strength is small
compared with that of the adjacent phase.

-e electric field strength at the base of MOA is cal-
culated by the boundary element method [23], which is
developed for the three-phase application. -e normal
voltage of MOA for calculation is shown in Table 2.

Field strength E(1)
c and field strength E(3)

c are distributed
at the base of MOA, while field probes E(1)

p and E(3)
p are

located 10 cm below and 5 cm away from the base of MOA.
-e electric fields of the two types of MOA are given in the
form of AMP3/AMP1 in Table 3. Although there are sig-
nificant differences between MOA configurations such as
phase spacing, single-phase, or three-phase, as can be seen
from Table 3, AMP3/AMP1 is basically a constant. A single
ratio of the single-phase or three-phase configuration can be
used for all system voltage levels in real use.

3.2.3. Determination of Resistive )ird-Harmonic Leakage
Current. According to equation (3), equation (5), and
equation (6), the resistive third-harmonic leakage current of
MOA can be determined from the following equation:

I
(3)
rhl � I

(3)
t − 0.75 ×

I
(1)
t

I
(1)
p

× I
(3)
p . (9)

As mentioned above, the resistive third-harmonic
leakage current can be used to determine the condition of
MOA during running. However, it can only be limited to
comparative measurement since we do not usually know the
resistance third-harmonic current target value of MOA.

-e accurate measurement of resistive current compo-
nents in MOA leakage current plays an important role in
monitoring the faults of MOA. -e leakage current of the
third harmonic of MOA is defined as follows. -e resistive
third-harmonic current I

(3)
rh � εUα, while U is the normal

working voltage applied to both ends of MOA.

I
(3)
hl �

U
(3)
h

dt
+ εUα

h − I
(3)
t + 0.75 ×

I
(3)
t

I
(3)
p

× I
(3)
p + φ3, (10)

where ε and α are the coefficients determined by the non-
linear characteristics of MOA. U

(n)
h is the amplitude of

harmonic voltage and φn is the phase of harmonic voltage.

4. The Monitoring of MOA Based on BP
Neural Network

MOA directly withstands the effect of electric power system
operating voltage for a long time without externally gapped
line arrester. It is probably not housed well due to the poor
structure of MOA, which makes the resistance plate easy to
be affected by moisture in running. When the resistance
plate is affected by moisture, the leakage current increases

R
U1

U2

Leakage current sensor

Figure 1: -e circuit of MOA and sensor.
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and the deterioration will be aggravated; thereby, the leakage
current increases further.

-e resistive current components of the leakage current
increase the temperature of the resistance plate, resulting in
wattful loss, which will also lead to MOA damage or ex-
plosion in severe cases, and then a large area of a power
outage is generated. As MOA is an important device to limit
the overvoltage of electric power systems, it is particularly
important to monitor the performance of MOA in running
to ensure the safe and stable operation of the grid. In this
article, the BP neural network is used to train some key
parameters, which can reflect the aging condition of MOA,
so as to monitor the MOA state.

4.1. BPNeural Network. -e neural network is widely used in
pattern recognition, control optimization, intelligent infor-
mation processing, and fault diagnosis because of its charac-
teristics of distributed parallel processing, nonlinear mapping,
adaptive learning, and robust-fault tolerance. Currently, BP
neural network is the most widely used prediction model [24].
-e weight and threshold of the BP neural network are usually
adjusted along the negative gradient direction of the network
error change, and finally, the network error reaches the
minimum. -ere are three layers in BP neural network, in-
cluding input layer, hidden layer, and output layer.

-e common fault types and fault causes during MOA
running are shown in Table 4 [25, 26], where 0 indicates that
the phenomenon does not happen and 1 indicates that the
phenomenon happens.

In Table 4, I is the critical operating voltage U1mA at 1mA
direct current with a change of more than ±5% or the leakage
current greater than 50 μA under 0.75U1mA. II is the
doubling of the resistance current. III is the increasing of
alternating current leakage current under operating voltage.
IV is the insulation resistance lower than 1000MΩ. V is the
surface flashover. VI is an explosion. VII is raising

temperature. Fault type 1 is the resistance plate with
moisture; 2 is the initial aging; 3 is the surface pollution; 4 is
the poor fastening of the terminal; 5 is the aging of parallel
resistance; 6 is the poor manufacturing quality of the re-
sistance plate.

We use the newff() function to build a trainable BP neural
network, which uses seven fault causes as its inputs and six
fault types as its outputs. For the first sample, the input vector
V1� (1011010), and the expected output value E1� (100000).

4.2. Training for BP Neural Network. -e adaptive modified
learning rate algorithm (traingda) is used as the learning al-
gorithm. Traingda is a network training function that updates
weight and bias values according to gradient descent with an
adaptive learning rate. -e initial value of the learning rate is
0.85. -e learning rate descent factor and the learning rate
ascent factor are taken as the default values. -e number of
training time is 50.-emomentum factor is 0.9.-emaximum
number of iterations is l000. -e learning objective is 0.00001.

It is assumed that an input vector (0100101) is acquired
through a novel leakage current sensor and the resistive
third-harmonic leakage current measurement method
designed in this article, and then it is input into the BP neural
network. -e output is the membership degree of the fault
cause relative to each fault.

-e following uses the fuzzy information processing-
related theory to verify the accuracy of the BP neural net-
work. Let the fault domain d� (P1, P2, ..., P7) constitute
fuzzy power set F(d). For any fault A ∈ F(d), the relative
Euclidian distance of fault A to six typical faults can be
defined as follows:

rem(P) �

�������������

1
7



7

n�1
Pn − Pm( 

2




, m � 1, 2, . . . , 6. (11)

In equation (11), m is set from one to six according
to reference [27]. In order to compare the membership
function mfm(P) � cos rem(P), according to the maximum
membership degree principle, the fault of MOA can be
acquired, which is similarly to the bias balanced by the
orthogonal design decision mechanism [28], and the results
are shown in Table 5.

As can be seen from Table 5, when the threshold is 0.1,
BP neural network diagnoses the MOA fault as No. 2 (initial
aging) and No. 4 (poor fastening of the terminal). -e
conclusion is in accordance with the diagnostic conclusion
when the threshold value is 0.8 in the membership function.

Table 4: Fault types and fault causes during MOA operation.

Fault type
Fault cause

I II III IV V VI VII
1 1 0 1 1 0 1 0
2 0 1 0 1 0 0 1
3 0 0 1 0 1 0 0
4 0 0 0 0 1 0 0
5 0 0 0 0 0 1 0
6 1 0 1 1 1 1 1

Table 1: -e structure of MOA.

Size 145 kV 420 kV
Phase spacing (m) 1.6 5.1
-e height of MOA (m) 3.4 6.5
-e distance from the wall (m) 1.2 3.1

Table 2: Normal voltage of electric field calculation.

Frequency components
Phase

1 2 3
Fundamental frequency −50 100 −50
-ird harmonic 100 100 100

Table 3: AMP3/AMP1.

Voltage (kV)
Phase

1 2 3
145 0.71 0.7 0.71
420 0.83 0.81 0.83

Computational Intelligence and Neuroscience 5



5. Experiment and Results Analysis

5.1. Leakage Current Measurement. In order to verify that
the MOA leakage current measurement based on the third
harmonic proposed in this article has a good anti-inter-
ference performance to harmonic voltage. We use MATLAB
to simulate the voltage containing harmonic voltage. -e
steps are summarized as follows:

Step 1. Simulating the operating voltage with different
harmonic voltage and replacing the operating voltage ap-
plied at both ends of MOA in real.

Step 2. Setting the initial value (α, ε, c) of equation (10).
Taking the calculated leakage current as the actual leakage
current. In this article, α� 15, ε� 0.1, and c� 10−10 pF.

Step 3. -e calculated leakage current is fitted to approxi-
mate the actually measured leakage current.

According to the simulation of different harmonic
voltages in Step 1, we propose four operating voltages with
different harmonics.

Case 1. U
(3)
h � 0.

Case 2. U
(3)
h � 2%, φ3 � 0°.

Case 3. U
(3)
h � 3%, φ3 � 90°.

Case 4. U
(3)
h � 5%, φ3 �180°.

In the above four different cases, U
(n)
h is the amplitude of

harmonic voltage and φn is the initial phase of harmonic
voltage.

We use equation (10) to calculate the leakage current as
the actual measured leakage current, and the leakage
current calculated by the method proposed in this article is
fitted with the actual measured leakage current. -e
measurement results under four different cases are shown
in Figure 2.

As seen from Figure 2, there are harmonics in the
current that the leakage current I actually measured and the
leakage current Il calculated are almost coincide. -e
method with high stability used in this article is almost little
affected by harmonic voltage content and initial phase in
the grid so that it can eliminate the influence of harmonics
on the leakage current measurement. In addition, it also
can be seen from Figure 2 that the resistive harmonic

current Irh will increase with the voltage harmonic content
increasing, which indicates that the harmonic content of
operating voltage is an important factor in promoting the
aging of MOA. -e proposed method has good anti-in-
terference to harmonic voltage content and the initial phase
of grid voltage, and it also can be applied to MOA
monitoring.

5.2. Comparison Analysis. Evaluation indicators in BP
neural network-based MOA monitoring method include
precision ratio (P), recall ratio (R), and F1. -e purpose of
the experiment is to verify that the BP neural network
training used in the monitoring method of MOA is superior
to other neural network training methods. We choose the
guided anchoring method of faster region-based convolu-
tional neural network (GA_Faster R–CNN) [29], yielding
multifold training deep neural network (YMufT-DNN) [30],
domain phrase attention-based hierarchical recurrent neural
network (DPA-HNN) [31], and online monitoring method
of MOA based on passive RFID (OM_MOA-pRFID) [2] for
comparison.

-e experimental results are shown in Table 6 and
Figure 3.

It can be seen from Table 6 and Figure 3 that the
proposed method in this article has good performance in P,
R, and F1. -e BP neural network can automatically extract
reasonable solution rules by learning the instance set with
correct answers; that is, it has the ability of self-learning.
One of the most remarkable things about this experiment is
that the F1 of YMufT-DNN and OM_MOA-pRFID is close
to that of the proposed method in this article. It is because
the OM_MOA-pRFID monitoring algorithm can accu-
rately calculate the relevant parameters reflecting the state
of MOA. Since the pooling layer of CNN loses a lot of
valuable information and ignores the partial and whole
correlations, the P, R, and F1 of GA_Faster R–CNN do not
exceed 0.8.

In addition, the response time is a very important metric
for the monitoring of MOA. In Figure 4, we compare the
response time of the proposed method in this article with the
other four baselines. It can be seen that the proposed method
in this article required less total response time and training
response time to train the monitoring of MOA than the
other four baselines. Significantly, the YMufT-DNN has a
good performance in training response time that the yielding
multifold training (YMufT) strategy helps the deep neural
network model to converge faster.

Table 5: MOA fault diagnosis result.

Fault no. BP neural network diagnosis result -e membership
degree

1 0.0000 0.5516
2 0.1728 0.9274
3 0.0001 0.7923
4 0.3536 0.8617
5 0.0005 0.6621
6 0.0395 0.6621
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Figure 2: Comparison of calculation results.

Table 6: -e performance of neural network training.

Precision ratio Recall ratio F1
GA_Faster R–CNN 0.701 0.727 0.713
YMufT-DNN 0.736 0.756 0.849
DPA-HNN 0.742 0.759 0.765
OM_MOA-pRFID 0.766 0.791 0.884
-is article 0.822 0.838 0.898
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6. Conclusions

-is article proposes the monitoring method of MOA
based on leakage current sensor and BP neural network
for the aging of MOA, which needs to be detected. We
design a novel leakage current sensor to acquire the
leakage current of MOA, and a new method of MOA
leakage current measurement based on harmonic analysis

is proposed, which eliminates the influence of third-
harmonic current components caused by the harmonic
voltage of the electric power system on the leakage current
measurement. -en, we use BP neural network to train
key parameters that can reflect the aging of MOA. -e
experimental results show that the proposed method in
this article has good performance in monitoring the MOA
state.

Training response time

Total response time

5 10 15 20 25 30 35 40 45 500
Seconds

This paper
OM_MOA-pRFID
DPA-HNN

YMufT-DNN
GA_Faster R-CNN

Figure 4: -e comparison of response time.

Accuracy Rate

Recall Rate

F1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

This paper
OM_MOA-pRFID
DPA-HNN

YMufT-DNN
GA_Faster R-CNN

Figure 3: -e comparison of training methods using neural network.
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As the running state of MOA changes with time and
working conditions, and the way of describing the fault types
and fault causes after the fault varies considerably from
person to person, the fault sets should be refined and
supplemented in the future work in order to meet the needs
of the project.

Data Availability

All data used to support the findings of the study are in-
cluded within the article.
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