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Effective prediction of aircraft failure rate has important guiding significance for formulating reasonable maintenance plans,
carrying out reliable maintenance activities, improving health management levels, and ensuring the safety of aircraft flight, etc.
Firstly, combining the advantages of time series model in eliminating random accidental factors interference, grey model in
dealing with poor information, and the characteristics of artificial neural network in dealing with nonlinear data, the failure rate of
aircraft equipment is predicted by ARIMA model, grey Verhulst model, and BP neural network model, and secondly, based on the
idea of variable weight, the method of sum of squares of errors is used to reciprocate. Shapley value method and IOWA operator
method determine the weighting coeflicient and establish three combined forecasting models for aircraft failure rate prediction, so
as to improve the accuracy of the algorithm. Finally, taking the data of actual aircraft failure rate as the research object, the
performance indexes of design prediction model are judged by Mean Absolute Percentage Error (MAPE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Index of Agreement (IA), Theil Inequality Coeflicient (TIC), Equal Coefficient (EC),
Nash-Sutcliffe Efficiency coefficient (NSE), Pearson test, and violin diagram of forecast error distribution. The experimental
results show that: The forecasting precision of the combination model is better than that of the single model, and the evaluation
index of combination forecasting model based on IOWA operator is better than that of other combination forecasting models,
thus improving the forecasting accuracy and reliability. Compared with other typical prediction models simultaneously, it is
verified that the proposed combined prediction model has strong applicability, high accuracy, and good stability, which provides a
practical and effective technical method for aircraft fault prediction and has good application value.

1. Introduction

Aircraft, as a typical complex equipment, plays an important
role in military and civil fields. Aircraft system is composed
of many subsystems and related equipment. If any sub-
system or equipment fails, it will seriously affect the flight
performance and normal flight state of the aircraft, and will
lead to corresponding safety accidents. Research on ab-
normal detection, fault diagnosis, and prediction technology
of the aircraft system becomes the key to ensure the safe
flight and efficient use of the aircraft. At this stage, most of
the fault diagnosis uses post-event maintenance treatment,
which has the disadvantages of poor real-time, long
maintenance cycle, and large losses. It cannot meet the
requirements of active prevention of aircraft failure and

efficient configuration and management of maintenance
resources. With the development of technology, the aircraft
integrated support system is gradually developing from post-
event maintenance to situation-based maintenance, fault
prediction, and health management, which can significantly
reduce the overall maintenance cost of aircraft, effectively
reduce the probability of failure, and significantly improve
the quality and efficiency of aircraft maintenance. The
forecasting technology developed in 1960s has been widely
used in many fields such as society, science and technology,
military, etc. Scientific forecasting is the precondition and
basis for correct decision-making and becomes an indis-
pensable part of management and decision-making. Fault
prediction involves key contents such as failure rate pre-
diction, failure time prediction, performance prediction, life
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tracking, health assessment, spare parts management and
maintenance decision, etc. Aircraft failure rate is one of the
most important indicators to characterize the health status
of aircraft, and is an important parameter for reliability-
maintainability-supportability of aviation equipment as well
as an important basis for guiding spare parts reserve.
Forecasting aircraft failure rate scientifically can make sci-
entific decision for aviation maintenance and is an indis-
pensable important condition for improving maintenance
support ability. It plays a very important role in improving the
foreseeability, countermeasure, and scientificalness of avia-
tion maintenance and guarantee work, as well as improving
the perfection and utilization level of aviation equipment.
Meanwhile, aircraft failure rate prediction technology has
strong application value and broad development prospect.
Therefore, failure rate prediction has become the focus of
attention of many researchers. Because of the complexity of
aircraft systems and the characteristics of randomicity, small
sample size, and nonlinearity of failure rate, it is a great
challenge to establish a predictive model of aircraft failure rate
with satisfactory accuracy in the field of aeronautics.

At present, many scholars have put forward various
methods and models for aircraft failure rate prediction and
applied them in practice. Some scholars point out that the
combination forecasting model has better forecasting effect
on aircraft failure rate than the single forecasting model.
However, the current research on portfolio forecasting
model still has the following shortcomings. Firstly, the
combination model formed by the single model is not
comprehensive and systematic enough to analyze its overall
impact during the construction process, and fails to fully
consider the respective advantages of the models, and cannot
fully exert the advantages of each model, resulting in the
poor forecast effect of the combination model. Secondly,
most of the weight coeflicients of the combined forecasting
model are solved by mean method, and the results are di-
rectly superimposed, ignoring the different effects and roles
of different individual forecasting models in the whole
combined model. Thirdly, the forecasting accuracy and ef-
ficiency of combined forecasting model are not high, and its
applicability is poor. However, problems still need to be
fixed. In order to improve the accuracy, efficiency, stability,
and reliability of fault rate prediction, this paper will carry
out corresponding research on the above deficiencies of
existing combined forecasting models. The rest of this paper
is as follows: Section 2 summarizes and analyzes the liter-
ature on aircraft failure rate prediction technology which has
become popular in recent years. Section 3 presents the
combined forecasting method for aircraft failure rate, which
is studied from the aspects of combined model modeling
process, single model analysis, multi-combination model
construction for solving variable weight coefficient, and
model evaluation indexes. Section 4 uses various models to
study the aircraft failure rate with specific examples. Section
5 compares and analyzes the forecast results of the model.
The sixth section analyzes and discusses various models, and
the seventh section gives a summary of this paper and
relevant suggestions.
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2. Literature Review of Aircraft Failure
Rate Prediction

At present, there are many aircraft failure rate prediction
models with different prediction effects, which can be
roughly divided into single prediction model and combined
prediction model. The aircraft failure rate prediction method
is shown in Table 1.

Single prediction model can be divided into four types,
including statistical model, grey model, machine learning
model, and deep learning model. The statistical model is
based on strict statistical theory and historical data infor-
mation, which is used to extract the correlation between
relevant variables or explanatory variables, and to establish
and predict the model by statistical methods. Statistical
models include regression analysis model [1], time series
model (ARMA [2], SARIMA [3]), mathematical statistics
model [4], Weibull statistical distribution model [5],
Bayesian model [6], etc. The statistical model is characterized
by a physical model to find the mapping relationship be-
tween the current state and future faults. The regression
model has simple structure, wide calculation and applica-
tion, but the accuracy is not high. Although the time series
model has some related problems, such as the difficulty in
parameter estimation of the high-order model and the low-
order prediction accuracy, it has certain advantages in
convenient calculation, providing linear smooth prediction,
and excluding the interference of random accidental factors.
The mathematical statistics model is affected by many other
factors, and the overall forecast fluctuates greatly. The
Weibull statistical distribution model has greater applica-
bility than the logarithmic normal distribution, but the
analytical estimation of Weibull distribution parameters is
complex and the interval estimation is too long, thus re-
ducing the prediction accuracy. Bayesian model has a good
performance in predicting small-scale data, which is not
sensitive to missing data and the algorithm is relatively
simple. However, the prediction effect is not good due to the
uncertainty of the prior model. At the same time, the above
statistical model assumes that there is a linear relationship
between aircraft failure rate and external influencing factors,
which cannot be effectively applied to the complex nonlinear
process of aircraft failure rate prediction. Therefore, there
will be some poor performance of prediction results, which
cannot achieve the ideal prediction effect.

Grey model includes grey GM (1, 1) model [7, 8], GM (1,
1) improved model [9], grey Verhulst model [10], etc. The
grey model can be used to model and predict the aircraft
system failure by the method of grey failure rate according to
the characteristics of less source sample data. However, the
grey model cannot be applied to practical applications such
as large historical fault information data, large random
fluctuation, and long-term prediction. Grey Verhulst model
requires less data and convenient calculation. Since the
aircraft fault is generally a small sample event and the
amount of fault data is small, the grey Verhulst model has
certain advantages in predicting the failure rate.
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TABLE 1: Aircraft failure rate prediction method.

Statistical model

Grey model

Single model Machine learning model

Deep learning model

Model-based combination
forecasting

Failure rate
prediction method

Combined
model

Method-based combination
model

Integrated combination model
based on decomposition

Regression analysis [1], time series [2, 3], mathematical statistics
[4], Weibull distribution statistics [5], Bayesian [6]
GM (1, 1) [7-9], Verhulst [10]

Artificial neural network (ANN) [11], BP neural network [12-14],
generalized regression neural network (GRNN) [15], support
vector machine (SVM) [16], least squares support vector machine
(LS-SVM) [17], random forest [18]

Long short-term memory (LSTM) [19], convolutional neural
network (CNN) [20]

Grey neural network-fuzzy recognition [21], artificial neural
network and genetics [22], MLR-GM (1, N)-PLS-BP-SVM [23],
SVR- multiple regression-principal component analysis [24],
ARMA-BP [25], grey model combination [26, 27]
Holt-winters seasonal model [28], neural network residual
correction AR [29], artificial neural network Weibull regression
[30], Weibull-based generalized renewal process (WGRP) [31],
sparse direct support vector machine regression [32], generalized
weighting least-squares combination [33]

Empirical mode decomposition (EMD) and LS-SVM combination
[34], correlation vector EMD and GMDH combination [35], EMD
and RVM-GM combination [36], CEEMD and combined model
[37]

With the development of technology, artificial intelli-
gence models have been applied to aircraft failure rate
prediction, which usually includes machine learning and
deep learning modeling methods. Machine learning includes
artificial neural network (ANN) model [11], BP artificial
neural network model [12, 13], fuzzy BP neural network
[14], generalized regression neural network (GRNN) model
[15], and other intelligent models, which have been used for
accurate aircraft failure rate prediction. However, the neural
network model has some shortcomings, such as difficult in
scientifically determining the network structure, slow
learning speed, existence of local optimal value, and memory
instability, which makes the prediction accuracy difficult to
guarantee. At the same time, the neural network needs a
large number of sample data, which increases the calculation
and prediction time. According to statistics, most aircraft
failure rate data have nonlinear characteristics. BP neural
network is widely used in failure rate prediction because it
can deal with nonlinear data well and can effectively improve
prediction accuracy. At the same time, the support vector
machine (SVM) [16] model and least squares support vector
machine (LSSVM) [17] model are also applied to the pre-
diction of aircraft failure rate and achieved certain predic-
tion effects and accuracy. The advantages of the SVM model
and least squares support vector machine model are that
fewer samples are needed and nonlinear correlation data can
be processed. But they have shortcomings in that model
parameters are difficult to determine. Because the random
forest method [18] can deal with classification and regression
problems well, it is also applied to the field of aircraft failure
rate prediction. Machine learning method can effectively
improve the prediction accuracy of aircraft failure rate, so it
is widely used. However, there are also shortcomings. For
example, the learning speed is not ideal, and a large amount
of data is needed for training and learning. The complexity of

the algorithm is increased and the real-time performance of
the prediction model is affected.

In recent years, with the mature development and ap-
plication of deep learning methods such as Long short-term
memory (LSTM) neural network technology [19] and
convolution neural network (CNN) technology [20], some
researchers have conducted valuable research in the field of
aircraft failure rate prediction because of its advantages in
data feature extraction. However, the deep learning model
has theoretical limitations, resulting in many deficiencies in
practical applications, such as large training samples, time-
consuming, complex structure, difficult to determine its
structural parameters, and premature convergence. These
deficiencies will affect the use of deep learning model and
make it unable to achieve good prediction results. The effect
of deep learning model in small sample prediction is even
worse than that of traditional machine learning and grey
prediction model.

Although these single prediction models and methods
have achieved good results, they have their own short-
comings and limitations. These single prediction models
have their unique information characteristics and applicable
conditions, which can only reflect the future situation of
failure rate from different aspects. Since the fault of aircraft
system has certain randomness, complexity, and uncer-
tainty, the prediction results of single prediction model often
cannot fully reflect the failure rate and some prediction
accuracy is not high. Single prediction model usually only
contains part of the information of the prediction object.
However, combining various single models by using certain
rules, it can contain more comprehensive prediction in-
formation to improve the prediction accuracy. Therefore,
some scholars have proposed a combination model. Com-
bination forecasting is an important research branch in the
field of forecasting. Since Bates and Granger first proposed



the combination forecasting theory system in 1969, this
method has been widely concerned by scholars at home and
abroad. Effective combination of different prediction models
can be regarded as an effective supplement to the generation
process of infinitely approaching real data. Combination
forecasting method is complementary to the advantages of
single model, which can combine the advantages of various
single models, so as to effectively improve the prediction
accuracy of the model. It is a hot research topic in recent
years.

Combination forecasting models can generally be di-
vided into model-based combination, method-based com-
bination, and decomposition-based combination models.
Model-based combination model refers to a new model
composed of multiple single models, forming a combination
model, generally composed of 2-6 single models, or more
models, but the prediction effect of the combination model
will not improve obviously with the increase of the number
of models. Model-based combinatorial models have been
studied in recent years, and there are many combinatorial
models and methods. For example, the [21] grey neural
network and fuzzy recognition model are proposed to realize
the fault prediction of avionics system, and the accuracy of
the algorithm is improved by this method. Combining ar-
tificial neural network with genetic algorithm [22], it pro-
posed constructing a combined prediction model of hybrid
single model by analyzing the factors affecting the failure
rate of airborne equipment based on [23] optimal combi-
nation forecast model, and the prediction performance of
the combined model is verified by experiments. A combined
model of [24] support vector regression (SVR), multiple
regression, and principal component analysis is proposed.
Establishing a mathematical relationship between aircraft
failure rate and its complex influencing factors and testing
the proposed method by using the statistical data of aviation
equipment quality control, the prediction results show the
effectiveness of the proposed method [25]. ARMA-BP
combination model [26], grey model and neural network
combination model [27], grey multiple linear regression
fusion model, and many combination forecasting models are
proposed. The above combined prediction method has
achieved a certain prediction effect on aircraft failure rate
prediction and improved the accuracy of some predictions.
However, due to the complexity of the combined model, it is
difficult to optimize the parameters of the single model,
cannot give full play to the advantages of each single model,
and the weight is difficult to determine, which needs to be
further studied to gradually improve the prediction effect.

Method-based combination model is to combine certain
methods into single model to predict aircraft failure rate and
improve the prediction performance of the model. Applying
this optimization method to aircraft failure rate prediction
can improve the prediction performance of the original
model. It includes Holt-Winters seasonal model [28], AR
model of neural network residual correction [29], Weibull
regression model of artificial neural network [30], Weibull-
based Generalized Renewal Process (WGRP) [31], Sparse
direct support vector regression machine [32], Generalized
weighting least-squares combination prediction [33], and
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other models to predict the failure rate, which has certain
prediction effect. However, the structure and parameters of
the combined model are uncertain in the prediction, and
different parameters and structures will have a great impact
on the prediction structure. It needs to be further verified by
optimized and selected parameters and structures, and the
optimal parameters and structures are used for prediction to
improve the prediction performance of the model.

The combination model based on decomposition en-
semble method generates different characteristic compo-
nents and lets them be predicted by the same or different
models by decomposing the original data. Finally, the
predicted values of each component are superimposed and
integrated to form the final predicted values. These de-
composition ensemble methods include empirical mode
decomposition and LS-SVM combination [34], correlation
vector EMD and GMDH reconstruction combination [35],
EMD and RVM-GM model [36], CEEMD and combina-
torial model [37], and other prediction models. These
methods can decompose the original aircraft failure rate data
into many components with different characteristics, and
then use the appropriate prediction model to predict each
component. Finally, the final prediction value is obtained by
reconstruction and integration, which reduces the aircraft
failure rate data including noise, random fluctuation, and
other factors. Many scholars have carried out various studies
in this area, and this method was used to conduct experi-
ments and applications in the failure rate prediction field.
The above combined models make full use of the advantages
of various methods and models, and have achieved good
prediction results. The combined prediction method has
become a mainstream direction of aircraft failure rate
prediction in recent years. But, through the analysis of the
combination forecasting model, the current combination
forecasting still has the following problems.

(1) The selection of methods and quantities of single
forecasting model participating in combination:
Since each single forecasting model has its ap-
plicable conditions, it is generally necessary to give
tull play to the advantages of single models and
avoid their shortcomings when selecting single
models to establish the combination models.
However, there is no suitable selection principle on
how to select suitable single models for prediction
objects. At the same time, there is also uncertainty
in the selection of the number of single forecasting
models. It is generally believed that the prediction
performance of the combined prediction is im-
proved with the increase of the number of single
forecasting models. However, too many models
will increase the complexity, and the actual pre-
diction accuracy will decrease. Therefore, how to
select the appropriate number of single forecasting
models needs further research.

(2) The selection of weighting methods: most of the
current combined forecasting models use the time-
invariant weighting model, that is, the weight co-
efficients of the same single forecasting method in
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each period are the same. But actually, the prediction
accuracy of the same single forecasting method in
different periods is different, which is manifested in
the high prediction accuracy in a certain period, and
the low prediction accuracy in another period.
Solving weights by different methods has a great
influence on the accuracy and prediction perfor-
mance of the combined forecasting model.

(3) Applicability of Combination Forecasting Model:
Each prediction model should have certain
adaptability. However, when establishing the
combined prediction model, most of the models
are constructed under given assumptions, and
there is no corresponding limitation on the so-
lution method of the mathematical model. Dif-
ferent models are suitable for different occasions,
so the different application occasions of the
combined model also have a great impact on the
prediction accuracy.

The problems existing in the abovementioned com-
bined models are the difficult problems in the current
research on combined prediction. Because the aircraft
system has the characteristics of small batch, multi-
varieties, complex system cross-linking, and random
faults. In addition, the failure rate information sample
data source is less, the lack of effective fault character-
istics, fault diversification, and the failure rate infor-
mation has the characteristics of nonlinear change.
Besides, the aircraft failure rate is also affected by random
interference factors such as weather conditions, sudden
state, technology, and management level. Therefore, the
selection of high-precision and efficient failure rate
prediction models and modeling methods are still a hot
research topic. Given this, this paper will study the
aircraft failure rate prediction method, and put forward
the combination model to predict the aircraft failure rate
to improve the accuracy and quality of aircraft failure
rate prediction. In the combined model developed in this
study, first of all, three models in statistical model, grey
model, and machine learning method, namely, ARIMA
model, grey Verhulst model, and BP neural network
model, are used to effectively predict the failure rate of an
aircraft. It gives to play the advantages of combining the
time series model to eliminate the interference of ran-
dom accidental factors, the grey model to deal with poor
information, and the artificial neural network to deal
with nonlinear data, so as to give full play to the ad-
vantages of each model. Secondly, on the basis of not
increasing the complexity, three combination forecasting
models are constructed based on the variable weight idea
by solving the weight coefficient with error sum of
squares reciprocal method, Shapley value method, and
IOWA operator method. Finally, the effectiveness and
applicability of the proposed combination forecasting
model in aircraft failure rate prediction are verified by
examples, which provide an effective basis and foun-
dation for aircraft fault diagnosis and health
management.

3. Combination Forecast Model of Aircraft
Failure Rate

The electromechanical system is one of the core key systems
of the aircraft. Ensuring the stable operation of the system
can effectively improve the safety and reliability of the
aircraft. The electromechanical system mainly consists of
fuel subsystem, hydraulic subsystem, landing rack system,
life-saving subsystem, and other subsystems, as shown in
Figure 1. As the mechanical, electrical, hydraulic, and
control circuit components involved in the electrome-
chanical system of the aircraft are organically combined, the
composition structure is relatively complex. With the in-
crease of service time, it is prone to failure, which will lead to
the failure of the aircraft to complete the specified functions,
thus causing serious damage to the aircraft. Moreover,
because of resource interweaving, system resource sharing,
and high functional coupling, the fault propagation path of
electromechanical system presents multidimensional and
complex characteristics, which brings great difficulties to
fault rate diagnosis and prediction. Considering the strong
disturbance from random accidental factors, the lack of
information, and the nonlinear relationship between his-
torical data of aircraft electromechanical system. In this
paper, the time series method with strong resistance to
accidental factors, the grey theory applicable to small
samples, and the neural network algorithm with strong
nonlinear mapping ability are combined, and a combined
prediction model is proposed and applied to the prediction
of aircraft failure rate. It is of great significance and value to
improve the health state estimation performance of the
aircraft electromechanical system through the research on
the failure rate prediction of the aircraft electromechanical
system, so as to promote the technical development in the
field of flight mission support, condition-based mainte-
nance, and health management of the aircraft electrome-
chanical system. This paper will take the failure rate of
aircraft electromechanical system as an example to study the
system. The failure rate of aircraft described in this paper
refers to the failure rate of aircraft electromechanical system.

3.1. Process of Combined Model Modeling. In order to study
the aircraft failure rate prediction model, the aircraft failure
rate is predicted based on the single time series ARIMA
model, grey Verhulst model, and BP artificial neural network
model. On this basis, the weight coefficient is solved by the
inverse of error square sum method, Shapley value method,
and IOWA operator method, so as to form different com-
bined prediction models, analyze and study them, and
compare and evaluate the performance of different models.
The modeling process of the combined model is shown in
Figure 2, which specifically includes the following four parts:
first, collect aircraft fault information and calculate the fault
rate, analyze the fault situation of an aircraft from 2012 to
2018, collect fault data from the historical fault database and
fault maintenance records of the maintenance management
system, and complete the collection of historical fault data.
The data obtained from the two aspects are used for analysis
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FIGure 1: Composition of aircraft electromechanical system.
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FIGURE 2: Flow chart of composite model modeling.

and screening, and then the failure rate of the aircraft is
calculated, and the average failure rate is taken as the overall
failure rate. Secondly, three single models are used to model
and simulate the failure rate. Based on the failure rate data
obtained in the previous step, three single models and re-
lated parameters based on time series ARIMA model, grey
Verhulst model, and BP neural network model are

constructed. The historical data of the aircraft failure rate of
the three single prediction models are used as training input,
and the subsequent predicted failure rate value is used as the
dependent output variable of the single model for research.
Thirdly, combined model construction and research are
carried out. In this stage, based on the predicted value of
single model failure rate, three combined prediction models
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are built based on the inverse of error square sum method,
Shapley value method, and Iowa algorithm method to solve
the weighting coefficient, which provides a variety of more
effective models for accurate prediction of aircraft failure
rate. Finally, the accuracy of different models is analyzed and
compared, and the results of single model and the three
combined prediction models are compared. A variety of
indicators are used as evaluation criteria to analyze, discuss
their advantages and evaluate the performance of various
models.

3.2. Single Model

3.2.1. ARIMA Model. In 1970, the American scholar box
first proposed the classical analysis theory, modeling, and
prediction method of time series [38]. The integrated
moving average autoregressive model (ARIMA) is one of the
commonly used time series and has been widely used in the
prediction fields of aviation, aerospace, and engineering:

O(L)(1-L)%y, =e+0 (L), (1)

In which, ®(L)=1-A,L-AL—---—A,L" is the
polynomial of P-order autoregressive coefficient,
O(L)=1+6,L+06,L+---+A,L7 is the polynomial of
P-order moving average coefficient, L is the lag operator, A
and 0 are estimated values of each independent variable,
respectively, y, = ¢+ y,_; + 4, is D-order monointeger se-
quence, ¢ is constant, pu, is stationary sequence,
t=1,2,...,T; ¢ is the white noise order with mean value of
0 and variance of ¢°.

The prediction steps of ARIMA model are: Step 1: sta-
tionarity and testing; Step 2: smoothing processing; Step 3:
model identification and order determination; Step 4: model
parameter estimation; Step 5: model test; Step 6: model
prediction.

The modeling process is shown in Figure 3:

3.2.2. Grey Verhulst Model. The grey system theory was first
proposed by Deng et al. to deal with the system of “small
samples and poor information.” The grey system theory
takes small samples with known and unknown information,
poor information, and uncertain systems as the research
object, which makes up for the inadequacy of statistical
analysis methods. The grey Verhulst model is a component
of the grey system theory, which has been widely used in
prediction [39]. The prediction steps of grey Verhulst model
are as follows: Step 1: Carry out accumulation generation
operation; Step 2: Generate a sequence of immediate mean
values; Step 3: Establish approximate time response se-
quence; Step 4: Prediction model of progressive reduction.

The grey Verhulst modeling flow chart is shown in
Figure 4.

3.2.3. BP Artificial Neural Network Model. In 1985,
Rumelhart proposed the BP algorithm. As the most
widely used artificial neural network, BP neural network is a
multi-layer feedforward neural network. This model is

widely used in the prediction field [40]. The training process
of BP neural network includes the following seven steps: Step
1: network initialization; determining the number of nodes n
of the input layer, the number of nodes / of the hidden layer,
and the number of nodes m of the output layer according to
the input and output sequences of the system; initializing the
connection weights between the neurons of the input layer,
the hidden layer, and the output layer; initializing the
threshold of the hidden layer and the threshold of the output
layer; and giving the learning rate and the neuron excitation
function; Step 2: hidden layer output calculation; Step 3:
output calculation of output layer: calculate the predicted
output of BP neural network according to the output of
hidden layer, connecting the weight and threshold. Step 4:
error calculation. Step 5: weight update; Step 6: threshold
update; Step 7: judge whether the algorithm iteration is
finished. If not, return to Step 2 and perform calculation.

The algorithm flow of BP neural network is shown in
Figure 5.

3.3. Combination Forecasting Model Based on Variable
Weight. In most cases, the single model will have some
shortcomings. Only by extracting the advantages of each
single model and combining them can the advantages of
each single model be brought into play to form an optimal
combined prediction model.

3.3.1. The Combined Forecasting Model Based on the Re-
ciprocal of Error Sum of Squares. The inverse of the square
sum of prediction error method first needs to calculate the
square sum of the error between the predicted value and the
real value. The smaller the calculated value indicates, the
higher the accuracy of the prediction, the greater the weight
of the model in the combined model, and vice versa. Let w,
be weight coefficient, i = 1,2, ... n; calculate the sum of error
squares of each single prediction model e;,i=1,2,...n;
then, give a larger weight to the model with a smaller sum of
squares of errors, and give a smaller weight to the model with
a larger sum of squares of errors. Through calculation, the
weight coefficient is w; = ¢;'/ Y e;', so as to obtain the
final combined forecasting model.

3.3.2. Combined Forecasting Model Based on Shapley
Value. It is assumed that there are n kinds of predic-
tion methods for combined prediction, which is denoted as
I ={1,2,...n}. For any subset s of I, E(s) represents the error
of each combination. Let the absolute mean of the prediction
errors of the i prediction methods be E;, and the total error of
the combined prediction be E.

1 m
E;=— Zl|e”" i=1,2...m
=
(2)

E= E;

i

S|
M=

]
—_

i
Shapley value error distribution formula is:
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Ejl = Y w(s)* [E{s} - E({s} ~{i}),

(3)

i=1,23,...m wm”%'

In which, i represents the ith prediction model in the
combination, E;/ represents the Shapley value of the ith

prediction model, that is, the allocated error, s represents the
combination including the prediction model, |s| represents
the number of prediction models in the combination, and
W (Is|) can be regarded as a weight, which is the weighting
factor of the combination prediction. The weight calculation
formula: w; =1/n—-1E-E;//E,i=1,2,...,n can be ob-
tained from the above, and the corresponding combination
prediction model can be obtained.

3.3.3. Combination Forecasting Model Based on IOWA
Operator. Suppose there are n kinds of forecasting methods
for forecasting. Let y, denote the actual observation value at
time ¢, y;, represents the predicted value of method i at time
t, e;, represents the prediction error of method i at time ¢,

(e =y —yipi=12,...,mt=12,...,T), w; represents
the weight of method i in the combined prediction model,
(i=1,2,--+,m; )", w; = 1), Then the calculation formulas

of prediction value and error in sample period are
¥, = Y, w; ¥, The prediction accuracy is used as the inducing
factor. If the inducing factor o, (i = 1,2,...,mt = 1,2,...,T)
select the prediction accuracy which used the i-th prediction
method in the #-th period. Then, the expression of «;, is:
yt_j)it| Ve = Vit
Ve i Ve
o = (4)
Vi = Vi
Ve

1—I <1

>

>1.

The n two-dimensional arrays generated by the induc-
ing factors (&, ¥ > <0 Vor S5 - - o> <Oy, Vyp»)  are
arranged in descending order of the inducing factors.
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According to the minimum error square sum criterion, the T " 2
weight coefficient ve%tor of each precision is obtained as Q= Z ¥, - Z @Yo in dex (it
W= (w,w,,...,0,) and satisfies ()}, w; =102 t=1 i=1
0,i=1,2,...,n). The ¥, ¥ s Vpu(t=12,...,T) is )
generated by prediction accuracy ay,, &y, . . ., o, then the Ly (6)
induced prediction error predicted by IOWA operator = Z Z Wi€qinde x (it)
combination  prediction model is e, iy dex(ir) = Vi— ELAE
yleindex(it) (?T= 1,2,...,n;t= 1,2,...,T). Let an n o n — ]
(1,1,...,1)" be the m-dimensional unit vector, and the = Z w;w;E;; is the polynomial o f P.
constraint condition of the weight vector W = i=1 j=1
(W), Wy, ..., ;)" be RTW =1, W >0. Therefore, the pre-

diction error of IOWA combined prediction model at time ¢
is:

Ve~ yt =V~ Z W; Y a-index(it)
i=1
(5)

w;e y(t=1,2,...T).

a—index (it

Il
AM:

Il
—_

1

The sum of squares of the total prediction errors of the
model is:

In  which: E;=E;= ZtT=1 €a-index(it)a-index(jt)> b | =
1,2,...,n. Let E = (E;;),, be the prediction error informa-
tion matrix of the n-order IOWA, then Q = WTEW. There-
fore, the IOWA combination prediction model based on the
optimization criterion for minimum error sum of squares is:

min,Q = WLE,W,,

RIw =1, (7)
Set,

W=0.

3.4. Evaluation Index of Model. In order to more accurately
evaluate the effectiveness of the prediction model and
comprehensively display the performance indicators of
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the proposed model, seven evaluation indicators are
adopted, including Mean Absolute Percentage Error
(MAPE), Root Mean Square Error (RMSE) [41], Mean
Absolute Error (MAE), Index of Agreement (IA), Theil
Inequality Coeflicient (TIC), Equal Coefficient (EC), and
Nash-Sutcliffe Efficiency coeflicient (NSE). The effec-
tiveness of each prediction method is evaluated by using
the above indexes.

Yi— )i

x 100%,

MAPE = Z

nia

Vi

1 &
MAE = ; Z|yl - yi|>
i=1

n -~ 2
IA=1- . i i) - ®
it (l}’i -7 +|yi —7|)
\/1/”2111 (yi— 3
TIC = 5 =
\/1/” Y yit \/1/” i1 Vi
n _ 5 2
EC=1-— Zz:lz(yz yz) 2)
\/Z?:l Vi + \/Z?:l Vi
n -5 2
NSE = 1 - 2 Ui =9
i (=)
It is assumed that the predicted value is
¥ =1{9192...,¥;}, the real value is y ={y,, ¥5,...,¥;}

the average value of the real value is ¥, and the average
value of the predicted value is 3. According to the defi-
nition of the above indicators, MAPE represents the av-
erage error of multiple prediction results. The smaller the
value, the higher the prediction accuracy. Generally, when
MAPE < 10, the prediction accuracy is considered to be
better. It is used to check the deviation and fluctuation
between the actual value and the predicted value. The
closer the RMSE is to 0, the higher the accuracy of the
prediction model. At the same time, the Mean Absolute
Error (MAE) is small when the predicted value is in good
agreement with the real value. The closer the value of 1A
(index of agreement) is to 1, the higher the change trend,
consistency, and consistency between the predicted value
and the actual value. The value of Theil Inequality Co-
efficient (TIC) is between [0, 1]. The closer to 0, the
smaller the fitting error. The larger the value of EC (equal
coefficient), the better the prediction effect of the model.
Generally, 0.9 or more is considered as a good fit. The
value range of Nash efficiency coefficient is (-00, 1), and
the closer it is to 1, the better the prediction quality and
the higher the reliability.
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4. Case Study of Each Model

Taking a certain type of aircraft electromechanical system as
the research object, the fault data of this electromechanical
system are collected in various ways, and the corresponding
failure rate is calculated, so as to carry out the research of
single and combined prediction models. Different use en-
vironments, use methods, maintenance quality, random
interference and other factors will affect the failure rate.
However, some influencing factors are difficult to obtain in
practice, and the quantification is not accurate, which affects
the prediction accuracy. Therefore, this paper only considers
the overall failure rate, without considering other influ-
encing factors, and takes the average failure rate as the failure
rate in the research. The average failure rate is the ratio of the
total number of failures n ¢ (t) of the system in a specified
period of time to the cumulative working time T. The
formula for calculating the failure rate is A = n ¢ (OIT. Take
the fault data of each quarter as one observation value, that
is, take one quarter as the statistical interval every year to
form four observation values, collect the fault data from 2012
to 2018, calculate the fault rate of these seven years, form a
set of time series data, including 28 observation values, and
then take 28 groups of basic data samples as examples for
research. In order to measure the accuracy of different
models and prevent overfitting, the collected data are di-
vided into two sub sets: the test input data set (including 70%
of the data) and the test data set (including 30% of the data).
The sample data are shown in Figure 6. Select 1-20 samples
of 20 quarters from 2012 to 2016, i.e., the first 20 groups of
data, as the input of the model, and select 21-28 samples of
working time distribution from 2017 to 2018, i.e., the last 8
groups of data, to test the prediction model. ARIMA model,
grey Verhulst model, and BP neural network model are
established, respectively. On the basis of single prediction
model, variable weight combined prediction model based on
the reciprocal of error square sum method, Shapley value
method, and IOWA operator are established. Relevant
models are established and studied. From the figure, it can be
seen that the fault rate data have strong randomness,
nonstationary characteristics, small number of samples, and
certain nonlinear characteristics.

4.1. Analysis of ARIMA Model. The time series composed of
the first 20 groups of data of samples 1-20 is used for data
processing and programming. The stationarity of the data is
tested by kPSS function and ADF function. When kSPP =0
and ADF =1, it indicates that the tested sequence is a stable
sequence. The results after operation show that the original
sequence needs to undergo the third-order difference before
it can be converted into a stationary sequence. Therefore, the
model is initially determined as ARIMA (p, 3, q) model.
Autocorrelation function and partial autocorrelation func-
tion are trailed according to the AIC criterion and BIC
criterion; when p=2 and q=2, the AIC and BIC values are
relatively minimum, so the time series model is ARIMA (2,
3, 2). Thus, the prediction equation of ARIMA model is
obtained, and then the last 8 groups of data are predicted to
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FiGURE 6: Data set of aircraft failure rate.

obtain the predicted values of the corresponding 8 groups of
test data.

4.2. Analysis of Grey Verhulst Model. The first 20 sets of data
of failure rate sample 1-20 are selected as independent
variable time series to form original data series
XW ={xW(1),xD(2),...,X1V(20)}, and generate X
by one-time progressive subtraction (1-iAGO). Conduct
modeling according to the steps described in section 3.2.2,
and obtain the corresponding prediction model data
a=0.06, B=0.01 by using the grey system modeling software
(v7.0) of China Southern Airlines. The corresponding grey
Verhulst model is: dxV/dt + 0.06x™ = 0.01 (x™)?, and its
time response is ’71&)1 = axVbx® + (a - bx)e* =
0.36/0.01 + 0.05¢*°°k. Establishing the corresponding pre-
diction model, so as to obtain the approximate time response
formula, and the grey Verhulst prediction model is obtained
through inverse accumulated generating operation (IAGO).
Then, the last 8 groups of inspection data prediction values
are obtained on this basis.

4.3. Analysis of BP Model. Aircraft failure rate samples have
strong randomness, which will greatly affect the learning
speed and prediction accuracy of the neural network. In
order to speed up the learning speed of the neural network
and improve the prediction accuracy of the neural network,
it is necessary to preprocess the failure rate data sequence
before processing the aircraft failure rate data with the neural
network, and to normalize the input and output variables
with the maximum-minimum method. Make it fall com-
pletely within the interval [-1, 1]. According to the relevant
principle of BP neural network algorithm, under the con-
dition of reasonable structure of BP neural network and
proper weights of neural nodes, 3-layer neural network can
approximate any continuous function, and all nonlinear
mapping from input to output can be realized by fully
learning 3-layer BP neural network. The data samples are
fitted by 3-layer BP neural network model. Since the
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statistical failure rate sample is a single value, the 1-20 sets of
data (20 quarters in 2012-2016) constitute a one-dimen-
sional sequence, but the input data of BP neural network
algorithm needs to be learned from a multi-dimensional
sequence. Based on the four-quarter aircraft failure rate data
as the prediction basis, the current four-quarter data are
taken as the input value of the neural network in turn, and
the last four quarters data as the target data of the network
data. Rolling arrangement is carried out in this way to form
training samples of neural network, so the input layer node
is determined to be 5. If the aircraft failure rate is taken as
the only output of BP neural network model, then the
number of output nodes is 1. BP neural network model
with 5 input nodes, 3 network layers, and 1 output node is
constructed. 2K+ 1 hidden layer node is determined
according to the number of hidden layer nodes of [42]
neural network. K is the number of inputs and 11 hidden
layer nodes are selected. The fitting error of BP neural
network process is set as 107>, and 1-20 groups of training
data are input into the network for training. After 65 it-
erations, the output error is less than the convergence error.
Based on this algorithm, the predicted values of the last 8
groups of test data are obtained.

4.4. Solution of Algorithm Coefficients and Construction of
Model. The solution and construction process of the
combined algorithm coefficients are shown in Figure 7.

ARIMA model, grey Verhulst model, and BP neural
network model are used for single model prediction, and
three groups of corresponding failure rate prediction values
are obtained, respectively. Assuming that the predicted
aircraft failure rate obtained by ARIMA model is 7y,, the
predicted aircraft failure rate obtained by grey Verhulst
model is ¥,,, the predicted aircraft failure rate obtained
by BP neural network model is 75, the predicted value of
aircraft failure rate obtained by the combined predic-
tion model is ¥,, and t represents the corresponding time
series from 1 to the forecast period. w;, w,, and w;
are obtained by different weight coefficient solutions.
Therefore, the expression of the combination model is: ¥, =
W, Y1y + Wy V5 + w3 V5. By substituting the data obtained
from the single model into the formula, the predicted values
of 8 groups of inspection data of the combined model solved
by different weight coefficients are obtained.

4.4.1. Combined Forecasting Model Based on the Error Sum of
Squares Reciprocal Method. Based on the prediction data of
ARIMA model, grey Verhulst model, and BP neural net-
work model, the corresponding coeflicients were solved
according to the error sum of squares reciprocal (ESSR)
method, and the corresponding weight coefficient values
were obtained. Then, substituting the data obtained by the
single models, the prediction values of 8 groups of aircraft
failure rate inspection data of the combined prediction
model based on the error sum of squares reciprocal method
are obtained.
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FIGURE 7: Graph of combination algorithm coefficient solution and construction.

4.4.2. Combination Forecasting Model Based on Shapley
Value Method. According to the prediction results of three
single prediction model methods, the total error ratio of
Shapley combination prediction is calculated as E =
1/3(E, + E, + E3). According to Shapley value combination
forecasting method, the error ratios of all subsets of the three
forecasting methods are E{1}, E{2}, E{3}, E{1,2}, E{1,3},
E{2,3}, E{1, 2, 3}, respectively, and their numerical values are
the average values of vector error ratios included in the subsets.
According to the Shapley value error distribution formula, the
Shapley values of the three forecasting methods are E,/E,/, and
E,/, respectively. Then, according to Shapley weight calculation
formula, the corresponding weight is obtained.

4.4.3. Combined Forecasting Model Based on IOWA
Operator. According to the prediction accuracy of the
ARIMA model, grey Verhulst model, and BP neural network
model in each period, obtain the prediction error infor-
mation matrix of third-order-induced ordered weighted
arithmetic average, and the optimal combination weight can
be obtained by solving it. Substituting the prediction error
information matrix into the combination prediction model
based on IOWA operator, the combination prediction
model based on IOWA operator for aircraft failure rate
prediction is constructed.

The weight coefficients of the three combined prediction
models solved by LINGO software are shown in Table 2.

5. Comparison and Analysis of Prediction
Results of Each Models

Due to the randomness and strong nonlinearity of aircraft
failure rate, the evaluation of its prediction effect is different
from the traditional methods adopted by other objects.

TasLE 2: Weight coefficient of combined forecasting model.

) . Weight coefficient
Combined forecasting model

! W, w3
ESSR combined model 0.39 0.48 0.13
Shapley value combined model 0.31 0.35 0.34
IOWA operator combined model 0.43 0.22 0.35

The evaluation of aircraft failure rate prediction model can
not only be conducted from one aspect or one index but also
needs to be combined with multiple aspects. The constructed
prediction model is used to systematically predict the
training input of 1-20 groups of samples, and the prediction
comparison of the input samples is shown in Figure 8. At the
same time, the model accuracy and performance of various
predicted failure rates are analyzed and evaluated by 7
evaluation indexes. Calculate the corresponding Mean
Absolute Percentage Error (MAPE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Index of
Agreement (IA), Theil Inequality Coeflicient (TIC), Equal
Coefficient (EC), and Nash-Sutcliffe Efficiency coefficient
(NSE), and obtain the input data model and error, as shown
in Table 3.

From Figure 8, it can be seen that the predicted value of
combined forecasting model of IOWA operator is in good
agreement with the actual value of fault rate. At the same
time, by comparing the data of each index in Table 3, it can
be seen that the values of MAPE, MAE, TIC, and EC of
ARIMA model are smaller in the three monomial models,
while the values of RMSE of grey Verhulst model are the
smallest, NSE deviates greatly from positive number 1, and
the maximum values of IA, EC of the decision system using
BP model, and the distribution of index comparison is ir-
regular. In addition, from Table 3, it can be seen that each
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TaBLE 3: Input data model and error data table.
Model MAPE RMSE MAE 1A TIC EC NSE
ARIMA 17.34 1.223 0.235 0.224 0.223 0.109 -1.335
Verhuls 22.31 0.908 1.118 0.206 0.312 0.625 -2.109
BP 24.54 1.221 1.223 0.403 0.156 0.798 -1.478
ESSR method 10.23 0.712 0.233 0.732 0.213 0.831 0.255
Combined Shapley value method 9.43 0.109 0.156 0.897 0.132 0.912 0.836
IOWA operator method 5.42 0.101 0.089 0.987 0.134 0.981 0.934

index of the combination model is better than that of the
single model. At the same time, the combination fore-
casting model based on IOWA operator is the best one,
followed by the combination forecasting model based on
Shapley and ESSR method. The first three indexes of
combination forecasting method based on IOWA oper-
ator are significantly lower than those of other methods,
while IA, EC, and NSE are larger. Although the TIC value
of combination forecasting method based on IOWA
operator is not the minimum, it is close to the TIC of
combination forecasting method based on Shale combi-
nation and ESSR method. Therefore, the combined
forecasting model based on IOWA operator has the best
effect than other models.

In order to verify the validity of further model opti-
mization, three single model prediction models (ARIMA
model, grey Verhulst model, and BP neural network model)
and three combination prediction models (combination
forecast model of ESSR method, combination forecast model
of Shapley value, and combination forecast model of IOWA
operator) are used to verify the aircraft failure rate pre-
diction for the last eight groups. The trend of the predicted
value of actual failure rate corresponding to each model is
shown in Figure 9.

From Figure 9, it can be seen that in various single
prediction models, the deviation between the 21 and 28
sample points of ARIMA model and the actual failure rate
value is large, and the grey Verhulst model also has certain
deviation, and the fitting effect is unstable. At the same time,
the deviation of prediction results of BP neural network
model is larger, which is due to the defects of BP neural
network model. The smaller the proportion of training
samples is, the worse the generalization ability is. Among the
three single models, ARIMA and Verhulst model’s pre-
diction effect is generally better than BP model’s, but the
overall prediction effect is average, which can only roughly
predict the aircraft failure rates. The predicted values of
aircraft failure rate obtained by three different combination
models are similar to the actual values. Overall, the com-
bination model has a high degree of fitting, and the deviation
between the actual values and the predicted values is the
smaller, which is better than the single model. The combined
forecasting model can reduce the sensitivity to the poor
single forecasting model. Although not every combined
forecasting value is better than the best forecasting result of
the single forecasting model, it must be better than the worst
forecasting result. This shows that the combined forecasting
model can effectively reduce the occurrence of large errors
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Ficure 9: Comparison of predicted and actual failure rates of different models. (a) ARIMA model. (b) Verhulst model. (c) BP model. (d)
ESSR combined model. (e) Shapley value combined model. (f) IOWA operator combined model.

and improve the forecasting accuracy as a whole. The
prediction result of the combined prediction model of the
error sum of squares reciprocal method is inferior to that of
the Shapley value method, and the prediction accuracy is not
obviously improved compared with the single model, but it
is even lower than its prediction accuracy. The combination
forecasting model of IOWA operator method has a higher
fitting degree than the combination forecasting model of the
error sum of squares reciprocal method and the Shapley
value method, and is closer to the actual failure rate. At the
same time, the combination forecasting model of the IOWA
operator method is better than the three single forecasting
models.

Due to the randomness and strong nonlinearity of
aircraft failure rate, its prediction effect evaluation is dif-
ferent from the traditional methods adopted by other ob-
jects. The prediction model of aircraft failure rate cannot be
evaluated only from one aspect or one index but needs to be
evaluated in combination with many aspects. Using the
constructed prediction model, samples 1-20 are input into
the system for prediction, and the accuracy and performance
of various prediction failure rate models are analyzed and
evaluated by seven evaluation indexes. Calculate the

corresponding mean absolute percentage error (MAPE),
root mean square error (RMSE), mean absolute error
(MAE), index of agreement (IA), Theil inequality coefficient
(TIC), equalization coeflicient (EC), Nash-Sutcliffe efficiency
coefficient (NSE), and get the input data model and error as
shown in Table 3.

According to the comparison of the index data in Ta-
ble 3, among the three single models, the MAPE, MAE, TIC,
and EC values of the ARIMA model are smaller than those of
grey Verhulst model, the RMSE value of grey Verhulst
model is the smallest, but NSE deviates greatly from positive
number 1, and the IA and EC values of BP model are the
largest. Therefore, the distribution of each index is irregular.
In addition, it can be seen from Table 3 that all indexes of the
combined model are better than those of the single model.
Meanwhile, the combined forecasting model based on the
IOWA operator method is the best model, followed by the
combined forecasting model based on the Shapley method
and the error sum of squares reciprocal method. The first
three indexes of combination forecasting model based on the
IOWA operator method are obviously lower than other
models, and its IA, EC and NSE are larger. Although the TIC
value of the combination forecasting model based on IOWA
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operator is not the smallest, it is very close to the TIC value of
the combination forecasting model based on the Shapley
value method and the error sum of squares reciprocal
method. Therefore, the combination forecasting model
based on IOWA operator has the best effect compared with
other models.

In order to better evaluate the prediction models, we
compared the error indices of the inspection data in different
models. We selected the last 8 groups of inspection data
samples to calculate the errors by using the single model and
combined model, and obtained the corresponding
MAPERMSE, MAE, IA, TIC, EC, and NSE when different
models were adopted. The comparison results are shown in
Figures 10-12.

The comparison of MAPE between the combined model
and the single model in Figure 10 shows that the MAPE
index of IOWA combined model is 2.68%, less than 10%,
which is the smallest compared with other models, with a
decrease of 44.8% (compared with Shapley combined
model) to 94.9% (compared with BP model), indicating that
IOWA combined model has stronger prediction ability. It
can be seen from Figure 11 that the EC value and IA value of
IOWA combined model for inspection data are 0.985 and
0.99, respectively, which are higher than those of other
models, while TIC, MAE, and RMSE of IOWA combined
model are relatively smaller than those of other models, with
TIC=0.015, MAE=0.075 and RMSE=0.86, respectively.
The lower the values of these indexes, the higher the accuracy
of the model. It can be seen from Figure 12 that the NSE
index of BP model is —8.486, which deviates greatly from 1,
while the NSE index of IOWA combination model for in-
spection data is 0.975, which is close to 1, which also in-
dicates that the effect of IOWA combination model is better.
Therefore, IOWA combination model among the three
combination models proposed in this paper improves the
performance and accuracy of aircraft failure rate prediction.

The above indicators only show part of the results of the
prediction model performance. In order to evaluate the
model more effectively, we analyze and study the compre-
hensive evaluation indicators of aircraft failure rate of
prediction model in the inspection stage. By normalizing the
above seven indicators, we get the expression C of the
comprehensive evaluation index as shown below.

0o
Ci =l Z mln(EJ)) (9)
nia K

C; is the comprehensive evaluation index of the i-th pre-
diction method, i =1,2,..., M, E;; is the j-th indicator of
the i-th method, j=1,2,...,n, and min(Ej) is the mini-
mum value of the j-th indicator in the m-th method. The
higher the value of C, the better the prediction effect of the
corresponding combined prediction model [43]. The seven
indicator values for the eight sets of data after prediction
were substituted into equation (9) to obtain the indicator C
values for each method, as shown in Figure 13.

It can be seen from Figure 13 that the comprehensive
evaluation index of each combined forecasting model is
obviously higher than that of the three single forecasting
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models, indicating that the combined forecasting model can
improve the forecasting accuracy of aircraft failure rate.
Furthermore, the C of the combination forecasting model
based on IOWA operator is 90.3%, which is obviously higher
than other combination forecasting models. Through
comparison, it can be seen that the IOWA operator model is
better than the Shapley combination model as a whole, the
Shapley combination model is better than the combination
prediction model of the error sum of squares reciprocal
method, and it is better than the single models, with higher
performance, accuracy, and reliability. All analyses show
that the combination forecasting model based on the IOWA
operator is the best model, followed by the combination
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FIGURE 13: Comparison of comprehensive indexes between single
and combined models.

forecasting model based on the Shapley value and the
combination forecasting model based on the error sum of
squares reciprocal method.

At the same time, in order to verify the accuracy of the
Iowa operator combination model, GM (1, 1) model [44],
SVM model [45, 46] (Parameters Optimization of SVM
Using RBF Kernel Function, setting parameter
y = 10.023,C = 32.121), entropy weight method combina-
tion model [47], and XGBoost model [48] (Determination of
parameters by grid search method learning rate=0.05,
max_depth=4, subsample=0.9, min_child_weight =2,
gamma =0.5, colsample_bytree=0.6) are used for com-
parison and analysis. The accuracy indexes of different
models are shown in Table 4.

Table 4 provides a comprehensive comparison of the
prediction accuracy indexes between the proposed model
and the GM (1, 1) model, SVM model, entropy weight
combined model, and XGBoost model. From Table 4, it can
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be seen that the accuracy of the IOWA operator combi-
nation model is better in seven prediction accuracy indexes,
and the comprehensive evaluation index C is larger than
other models, which can verify that the proposed IOWA
model is better than other models. Obviously, the proposed
combination model based on IOWA operator has good
prediction performance. In addition, Pearson test is intro-
duced to determine the fitting degree between the predicted
model and the actual model. Pearson test can show the
correlation between the actual value and the predicted value.
The closer the correlation coefficient is to 1, the more linear
the relationship between actual value and predicted value is.
The closer the correlation coefficient is to 0, the smaller the
correlation between the actual value and the predicted value
[49]. Table 5 showed Pearson test values of the above models.

It can be concluded from Table 5 that the proposed
combined prediction model method of Iowa operator has
relatively high Pearson test correlation coefficient compared
with the GM (1, 1) model, SVM model, entropy weight
combination model, and XGBoost model. Therefore, it can
be shown that the data correlation between the predicted
value and the actual value of the proposed prediction
method is stronger. The prediction accuracy of the proposed
prediction method is higher than that of other models, and
the predicted data value is closer to the actual value.

Violin diagrams are a collection of boxplots and nuclear
density maps, which show percentiles of data through box-
line thinking, while nuclear density maps are also used to
show contour effects of data distribution. Larger contours
mean more data are concentrated there, or vice versa, less
data are available there. It is very suitable for judging and
analyzing forecast error. Figure 14 shows the violin diagram
of forecast error of each prediction model. It can be clearly
seen that the combined forecasting model of IOWA operator
proposed has advantages in forecasting error, followed by
XGBoost combined forecasting model. Compared with
other models, the forecasting error is smaller and the
forecasting accuracy is higher. It can effectively reduce the
forecast error and is a stable and reasonable forecast method
for aircraft failure rate.

To describe the predictive results of different prediction
models, Taylor charts are introduced. As shown in Figure 15,
horizontal and vertical coordinates represent standard de-
viations, sector curves represent correlation coeflicients, and
dashed lines represent root mean square deviation (RMSD).
As can be seen from Figure 15, Point B is closer to Point A, so
the correlation coefficient of the IOWA operator combi-
nation model is larger than that of other contrast models,
and the predicted value of the prediction model fits the
observed (actual) value better. In addition, the combined
model prediction model of IOWA operator has smaller
RMSD and has similar standard deviation with the observed
(actual) value. Overall, the combined model of IOWA op-
erator has better performance.

To further verify the uncertainty of different models,
coeflicient of variance is used to verify. The coeflicient of
variation is a statistical indicator to measure the degree of
dispersion and variation of each observed value. The ratio of
standard deviation to mean is taken as the coefficient of
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TABLE 4: Accuracy data table of different models.

Accuracy indexes

Models compared

GM (1, 1) SVM Entropy weight method combination XGBoost IOWA operator combination
MAPE 15.25 12.13 10.91 8.92 2.68
RMSE 1.32 3.24 1.12 0.86
MAE 2112 1.097 1.009 0.976 0.075
IA 0.65 0.88 0.94 0.99
TIC 0.509 0.399 1.023 0.856 0.015
EC 0.786 0.887 0.901 0.809 0.985
NSE 0.245 0.876 0.793 0.853 0.975
C (comprehensive) 56.9 87.6 88.9 90.3

TABLE 5: Pearson correlation coefficient.

. Pearson correlation
Forecasting model

coefficient
IOWA operator combination 0.972
GM (1, 1) 0.686
SVM 0.823
Entrqpy Weight method 0.908
combination
XGBoost 0.932
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FIGURE 14: Forecasting errors of different models.

variation (CoV) [50], and the statistical significance of
prediction model is tested. The Wilcoxon Sign-Rank test [51]
is introduced. The Wilcoxon Sign-Rank test results between
the predicted value and the actual value of each prediction
model are obtained. The CoV and Wilcoxon Sign-Rank tests
of different models are shown in Figure 16.

From Figure 16, it can be seen that the combined
forecasting model method of IOWA operator has smaller
coefficient of variation than the GM (1, 1) model, SVM
model, Entropy Weight Combination model, XGBoost
model, combination forecasting model of ESSR method, and
Shapley value combination forecasting model. In terms of
uncertainty quantification, the combined forecasting model
of IOWA operator provides more satisfactory CoV than

Standard Deviation

1.5

FiGure 15: Taylor diagram of forecast results (A: actual value; B:
IOWA operator combination model; C: GM (1, 1) model; D: SVM
model; E: Combination model of entropy weight method; F:
XGBoost model).

other six model methods, indicating that the influence of
uncertainty of this model is smaller. It can also be seen
that the Wilcoxon Sign-Rank test value of the combined
forecasting model of IOWA operator is larger than that of
other comparative forecasting models. Compared with
other forecasting models, the median difference between
the forecasting value and the actual value is small, which
can meet the actual needs of aircraft failure rate
forecasting.

The program execution time is one of the indexes in
modeling and calculation processing, which determines the
training and prediction time of the model. The execution
time of IOWA operator combination model is 0.35 s, which
compares with 0.72 s for the GM (1, 1) model, 1.89 s for SVM
model, 0.63 s for Entropy Weight Combination model, 1.25s
for XGBoost model, 0.98s for combination forecasting
model of ESSR method, and 0.56 s for Shapley value com-
bination forecasting model, and the time taken is shorter. It
shows that IOWA operator combination model has a low
computational time complexity, can achieve a faster learning
process and a satisfactory and acceptable prediction effect.
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FiGure 16: Comparison of CoV and ign-rank test for different
models.

6. Discussion

Compared with the single prediction model, the combina-
tion prediction model has obvious advantages, which can
effectively improve the prediction accuracy of aircraft failure
rate. The three combination prediction models proposed in
this paper can ensure the accuracy of aircraft failure rate
prediction, so the combination model is more practical in
the field of aircraft failure rate prediction. At the same time,
the evaluation indexes include MAPE, RMSE, MAE, and
TIC. The combined prediction model based on IOWA
operator are smaller than those of ARIMA, grey Verhuls,
and BP models. The error sum of squares reciprocal com-
bined model and Shapley combined model are smaller. At
the same time, its IA, EC and NSE indexes are improved. It
shows that the increase in the prediction accuracy is related
to the weight coefficient of the combined model, and the
selection of appropriate weights can effectively improve the
prediction accuracy of the model. Because the aircraft failure
rate has the characteristics of strong random accidental
interference, poor information, and nonlinear data, ARIMA,
grey Verhulst, BP model, and IOWA operator combination
model are ideal.

The ARIMA forecasting single model is simple and
suitable for endogenous variables. However, it also has the
shortcomings of requiring the time series data to be stable
and unable to capture the nonlinear relationship. The grey
Verhulst single model is not a kind of strict method, which
avoids the analysis of the system structure, and directly
builds the saturation growth model of load by cumulating
the original data. Its prediction requires less original in-
formation, and the calculation process is simple. It is suitable
for the prediction of saturated load with the lack of original
data and the load changing according to the S-shaped curve,
and it is suitable for the prediction of the failure rate of small
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sample aircraft. When the number of samples is small, the
prediction results of BP single forecasting model will be
inaccurate, which directly affects the generalization ability of
neural network, so it is more suitable for occasions with large
amount of data. Solving the weight coefficient by the error
sum of squares reciprocal method has the advantages of
simple calculation, satisfying the nonnegative requirement
of fusion degree, and determining the fusion degree of a
single model in the combined model according to the error
sum of squares. However, its prediction accuracy is not high,
so it is only suitable for forecasting occasions with low
accuracy. The Shapley value method can allocate the fusion
degree of each model according to the contribution of the
error sum of squares of the combined model according to
each single forecasting model, which effectively reduces the
error of the model and improves its accuracy. It is also
suitable for the prediction occasions with low accuracy. The
IOWA operator method obtains the weight coefficients of
each model according to the minimum criterion for sum of
squares of error, which effectively reduces the influence of
errors, and has high prediction accuracy. The proposed
combination forecasting model based on IOWA operator
can reduce MAPE, RMSE, MAE, and TIC indexes of GM (1,
1) model, SVM model and combination model of Entropy
Weight Method, XGBoost model, 8.23% of MAPE, 0.74% of
TIC, 2.38% of RMSE and 2.03 of MAE compared with
XGBoost model and GM (1, 1) model. The IA, EC, NSE, and
C composite indices of the combined forecasting model are
improved compared with other models. Compared with the
GM (1, 1) model, the IA and EC of the combined forecasting
model are increased by 0.34 and 0.2, respectively, while the
NSE and C composite indices are increased by 0.73 and
33.4%, respectively. At the same time, the combination
forecasting Pearson correlation coefficient based on HOWA
operator reaches 0.972, which is also at a high level with
other models, indicating that the model is more effective and
stable and reliable.

The prediction errors of IOWA operator with the GM (1,
1) model, SVM model, entropy weight method combined
model, and XGBoost model are shown by violin plots, and
their prediction errors are smaller. The combined model of
IOWA operator is also known to have smaller RMSD by
comparing Taylor plots, but the correlation coefficient is
larger than other comparative models. Therefore, the
established prediction model has high prediction accuracy
and can correctly reflect the prediction of failure rate.
Meanwhile, the GM (1, 1) model, SVM model, entropy
weight combination model, XGBoost model, ESSR combi-
nation prediction model, and Shapley value combination
prediction model have smaller coefficient of variation and
good certainty, which is 0.47 lower than that of the SVM
model. Meanwhile, the Sign-Rank test value of the IOWA
operator combination model is also larger than that of other
comparative prediction models, and the ESSR method. The
combined prediction model has higher indicator and
Shapley values. The Sign-Rank test value of the IOWA
operator combination model is 0.15 higher than the GM (1,
1) model, which is a better prediction model. Statistically, the
effectiveness of the combined model was verified.



Computational Intelligence and Neuroscience

By comparing the results obtained in this paper, it can be
concluded that the combination model can improve the
prediction accuracy, but the improvement range of the
estimation accuracy of different combination models is
different. This is mainly due to the influence of several as-
pects, such as the selection of the single model, the deter-
mination of the weighting coefficient of the combination
model, and the practical application of the model.

7. Conclusion

The ARIMA model, grey Verhulst model, and BP neural
network model are selected as single models, and three
combined prediction models are constructed based on them,
which improves the prediction accuracy and optimizes the
prediction effect. The combination model can comprehen-
sively utilize the information of each single model, and
comprehensively consider the advantages of each single
prediction model. The prediction error of the single pre-
diction model is dispersed to reduce the occurrence of large
errors. Therefore, compared with the single prediction
model, the prediction accuracy of the combination pre-
diction model is significantly improved. At the same time,
the combined model based on IOWA operator has high
prediction accuracy, higher stability, and stronger applica-
bility, which can meet the demand of aircraft failure rate
prediction and provide some ideas for aircraft failure rate
prediction.

The combined model prediction model proposed in this
paper fully demonstrates the excellent performance of the
combined prediction model through performance indica-
tors, error analysis, Pearson test, violin chart, Taylor chart,
and other aspects, and verifies the prediction effect. The
combined model is not only suitable for the prediction of
aircraft failure rate but also for other equipment indicators
or parameters with time series characteristics, such as avi-
ation material consumption, flight safety accident rate,
aviation equipment integrity rate, etc. It provides a scientific
method and means for equipment support prediction. At the
same time, it also helps to improve the performance of
online health state estimation methods for other key
functional systems and core key components of aircraft, and
supports the breakthrough of key prediction technologies in
aerospace, weapons and ships, intelligent equipment, and
other fields, which has practical reference significance and
reference value.

The combined model proposed in this paper also has
some shortcomings. It only uses historical data to predict the
future aircraft failure rate. However, in fact, the aircraft
system is a complex system, and the failure rate is affected by
many other external input factors, such as ambient tem-
perature, ambient humidity, flight hours, and support ca-
pability, which lead to high nonlinearity and uncertainty of
the aircraft failure rate. Therefore, all these factors should be
considered when establishing a multi-input prediction
model, and carrying out multi-source data mining and
considering the influence of multi-state interleaving to
further improve the prediction accuracy of aircraft failure
rate. At the same time, in the future, we will further explore
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the new application of combination model and develop
complex combination forecasting model to improve the
overall forecasting quality and effect.
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