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e aim of this research article is to derive a new relation between rough sets and soft sets with an algebraic structure quantale by
using soft binary relations. e aftersets and foresets are utilized to de�ne lower approximation and upper approximation of soft
subsets of quantales. As a consequence of this new relation, di�erent characterization of rough soft substructures of quantales is
obtained. To emphasize and make a clear understanding, soft compatible and soft complete relations are focused, and these are
interpreted by aftersets and foresets. Particularly, in our work, soft compatible and soft complete relations play an important role.
Moreover, this concept generalizes the concept of rough soft substructures of other structures. Furthermore, the algebraic
relations between the upper (lower) approximation of soft substructures of quantales and the upper (lower) approximation of
their homomorphic images with the help of soft quantales homomorphism are examined. In comparison with the di�erent type of
approximations in di�erent type of algebraic structures, it is concluded that this new study is much better.

1. Introduction

Quantale theory was proposed by Mulvey[1]. It is based on
de�ning an algebraic structure on a complete lattice. Since
quantale was de�ned on a complete lattice, there must be a
correlation between linear logic and quantale theory which
was studied by Yetter, in his study. He presented a new class
of models for linear intuitionistic logic [2]. In recent years,
quantale is applied in vast research areas, such as algebraic
theory [3], rough set theory [4–7], topological theory [8],
theoretical computer science [9], and linear logic [10].

In 1982, Pawlak developed the famous rough set theory
[11], which is a mathematization of inadequate knowledge.
e rough set deals with the categorization and investigation
of inadequate information and knowledge. After Pawlak’s
work, Zhu [12] provided some new views on the rough set
theory. In [13], Ali et al. studied some properties of gen-
eralized rough sets. Nowadays, rough sets are applied in

many di�erent areas, such as cognitive sciences, machine
learning, pattern recognition, and process control.

ere are many problems that arise in di�erent �elds
such as engineering, economics, and social sciences in which
data have some sort of uncertainty. Well-known mathe-
matical tools have so many limitations because these tools
are introduced for particular circumstances. ere are many
theories to overcome uncertainty such as fuzzy set theory,
probability theory, rough sets, and vague sets, but these are
limited due to its design.

In 1998, Molodtsov present the idea of soft set theory,
which is a mathematical tool to overcome the adversities
a�ecting the above theories [14]. Many authors like Maji
et al. present di�erent operations on soft sets and try to
consolidate the algebraic aspects of soft sets [15]. A new and
di�erent idea of operations was presented by Ali et al. [16].
Many soft algebraic structures such as soft modules [17], soft
groups [18], soft rings [19], and soft ordered semigroups [20]
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were studied. -e basic theme and purpose of soft sets are to
create the idea of parametrization, and this idea has been
utilized to find soft binary relation (SBR) which is a pa-
rameterized collection of binary relations on a universe
under consideration.-is puts forward the consideration for
complicated objects that may be perceived from different
points of view. In [21–23], Feng et al. presented the rela-
tionship between soft, rough, and fuzzy sets and produced
rough soft sets, soft rough sets, and soft-rough fuzzy sets.

By using aftersets and foresets notions associated with
SBR, a new approximation space is widely utilized these
days. By using generalized approximation space based on
SBR, different soft substructures in semigroups were ap-
proximated by Kanawal and Shabir [24]. Motivated by the
idea in [24], soft substructures in quantales are defined, and
the aftersets and foresets are employed to construct the lower
approximation and upper approximation of soft substruc-
tures. Since we are dealing with the approximation of soft
subsets of quantale, further soft substructures are employed
for further characterization.

-ere are several authors who introduced rough sets
theory in algebraic structures and soft algebraic structures.
Iwinski analyzes algebraic properties of rough sets [25].
Qurashi and Shabir present the idea of roughness in Q-
module [5]. Idea of the generalized rough quantales (sub-
quantales) was presented by Xiao and Li [6]. Rough prime
(semiprime and primary) ideals in quantales were investi-
gated by Yang and Xu [7]. Fuzzy ideals (prime, semiprime,
and primary) in quantales were introduced by Luo and
Wang [4]. Generalized roughness of fuzzy substructures in
quantale is studied by Qurashi et al. [26]. In [27], Yamak
et al. proposed the idea of set-valuedmappings as the basis of
the generalized upper (lower) approximations of a ring with
the help of ideals. Rough prime bi Γ-hyper ideals of
Γ-semihypergroups were proposed by Yaqoob et al. [28, 29].
Rough substructures of semigroups were studied by Kuroki
[30].

-e following scheme is designed for the rest of the
paper. Some essential explanations related to quantales, its
substructures, soft substructures, and their corresponding
sequels are connected in Section 2. Notion of approxima-
tions of soft sets over quantale generated by soft binary
relations is discussed in Section 3. In Section 4, by using
these ideas, generalized soft substructures are defined and
investigated further fundamental algebraic characteristics of
these phenomena. Additionally, we extend this study to
define the relationship between homomorphic images and
their approximation by soft binary relation in Section 5.

2. Preliminaries

Let Θ be a nonempty finite set called the universe set and Ψ
be an E.R (equivalence relation) overΘ. Let [q]Ψ denotes the
equivalence class of the relation containing q. Any definable
set in Θ would be written as finite union of equivalence
classes ofΘ. Let R⊆Θ in general R is not a definable set inΘ.
However, the set R can be approximated by two definable
sets in Θ. -e first one is called Ψ-lower approximation

(Ψ − Lappr) of R, and the second is called Ψ-upper ap-
proximation (Ψ − Uappr). -ey are defined as follows:

Ψ(R) � q ∈ Θ: [q]Ψ ⊆R . (1)

Ψ(R) � q ∈ Θ: [q]Ψ ∩R≠∅ . (2)

-e Ψ − Lappr of R in Θ is the greatest definable in Θ
contained in R. -e Ψ − Uappr of R in Θ is the least definable
set in Θ containing R. For any nonempty subset R in Θ,
Ψ(R) � (Ψ (R),ΨR) is called rough set with respect to Ψ or
simply a Ψ-rough subset of P(Θ) × P(Θ) if Ψ(R)≠Ψ(R),
where P(Θ) denotes the set of all subsets of Θ.

Definition 1 (see [31]). LetΘ be a complete lattice. Define an
associative binary relation ∘ on Θ satisfying

l ∘ ∨i∈Iwi(  � ∨i∈I l ∘wi(  and ∨i∈Ili(  ∘w � ∨i∈I li ∘w( , (3)

∀ l, w, li, wi ∈ Θ. -en, (Θ, ∘ ) is called quantale.
Let T1, T2, TI ⊂ Θ, i ∈ I. We define some notions as

follows:

T1°T2 � t1°t2: t1 ∈ T1, t2 ∈ T2 ;

T1∨T2 � t1∨t2: t1 ∈ T1, t2 ∈ T2 ;

∨i∈ITi � ∨i∈Iti: ti ∈ Ti .

(4)

-roughout the paper, quantales are denoted by Θ1 and
Θ2.

Let∅≠W⊆Θ.-en,W is called a subquantale ofΘ if the
following holds:

(1) w1°w2 ∈W, ∀w1, w2 ∈W.
(2) ∨i∈Iwi, ∈W, ∀wi, ∈W.

-at is, Θ closed under ∘ and arbitrary supremum.

Definition 2 (see [32]). Let Θ be a quantale, ∅≠ I⊆Θ is
called left (right) ideal if the following satisfied:

(1) u, v ∈ I implies u∨v ∈ 1
(2) p ∈ Θ, u ∈ I such that p≤ u implies p ∈ I

(3) q ∈ Θ and u ∈ I implies q°u ∈ I(u°q ∈ I)

A nonempty subset I⊆Θ is called ideal of Θ if it is left as
well as right ideal.

Example 1. Let Θ � 0, p, q, r, 1  complete lattices are
shown in Figure 1. We define ∘ be the associative binary
operation on Θ as shown in Table 1.

-en,Θ is a quantale.-en, 0{ }, 0, p , 0, q , 0, p, q, r ,
and Θ are all I of quantale Θ.

Definition 3 (see [32]). Let ∅≠ I⊆Θ be an ideal. I is called
prime ideal if, ∀u, v ∈ Θ, u°v ∈ I⇒u ∈ I or v ∈ I. I is called
semiprime I if, ∀ u ∈ Θ, u°u ∈ I⇒u ∈ II is called primary I

if, ∀u, v ∈ Θ, u°v ∈ I and u ∉ I implies vn ∈ I for some
n ∈ Ν.
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Definition 4 (see [14]). A pair (Ψ, C) is called a soft set over
Θ if Ψ: C⟶ P(Θ) where C is a subset of E (the set of
parameters).

Definition 5 (see [16]). Let (F, C1) and (H, C2) be two soft
sets overΘ. -en, (F, C1) soft subset (H, C2) if the following
conditions are fulfilled:

(1) C1 ⊆C2

(2) F(c)⊆H(c), ∀ c ∈ C1

Definition 6 (see [33]). Let (Ψ, C) be a soft set over Θ × Θ,
that is, Ψ: C⟶ P(Θ × Θ). -en, (Ψ, C) is called a soft
binary relation (SBR) over Θ × Θ. A SBR over Θ1 × Θ2 is a
soft set (Ψ, C) over Θ1 × Θ2. -at is, Ψ: C⟶ P(Θ1 × Θ2).

Definition 7. Let (Ψ, C) be a soft set over quantale Θ. -en,

(1) (Ψ, C) is called soft subquantale over Θ iff Ψ(c) is a
subquantale of Θ, ∀ c ∈ C

(2) (Ψ, C) is called soft ideal overΘ iffΨ(c) is an ideal of
Θ, ∀ c ∈ C

(3) (Ψ, C) is called soft prime ideal over Θ iff Ψ(c) is a
prime ideal of Θ, ∀ c ∈ C

(4) (Ψ, C) is called soft semiprime ideal overΘ iffΨ(c) is
a semiprime ideal of Θ, ∀ c ∈ C

(5) (Ψ, C) is called soft primary ideal over Θ iff Ψ(c) is a
primary ideal of Θ, ∀ c ∈ C

3. Approximation of Soft Sets over Quantale by
Soft Binary Relation

In this section, we present some important aspects regarding
to the approximation of soft sets in quantale Θ by SBR. We
utilized aftersets and foresets to approximate soft sets.

Definition 8 (see [34]). Let (Ψ, C) be a SBR over Θ1 × Θ2,
where C⊆E (parametric set). -en, Ψ: C⟶ P(Θ1 × Θ2).
For a soft set (F, C) over Θ2, the Lappr(ΨF, C) and
Uappr(Ψ

F
, C) of (F, C) w.r.t the afterset are essentially two

soft sets over Θ1, which is defined as

Ψ
F

(c) � q1 ∈ Θ1: ∅≠ q1Ψ(c)⊆F(c) , (5)

ΨF
(c) � q1 ∈ Θ1: q1Ψ(c)∩F(c)≠∅ , ∀, c ∈ C. (6)

And for a soft set (H, C) over Θ1, the Lappr(
HΨ, C) and

Uappr(
HΨ, C) of (H, C) w.r.t the foreset are actually two soft

sets over Θ2, which is defined as
HΨ(c) � q2 ∈ Θ2: ∅≠Ψ(c)q2 ⊆H(c) ,

HΨ(c) � q2 ∈ Θ2: Ψ(c)q2 ∩H(c)≠∅ .
(7)

For all c ∈ C, where q1Ψ(c) � q2 ∈ Θ2: (q1, q2) ∈ Ψ(c) 

is called the afterset of q1 and
Ψ(c)q2 � q1 ∈ Θ1: (q1, q2) ∈ Ψ(c)  is called the foreset of q2.

Remark 1

(1) For each soft set (F, C) over Θ2, ΨF: C⟶ P(Θ1)
and ΨF

: C⟶ P(Θ1)
(2) For each soft set (H, C) over Θ1, HΨ: C⟶ P(Θ2)

and HΨ: C⟶ P(Θ2)

Definition 9. Let (Ψ, C) be a SBR over Θ1 ×Θ2, that is,
Ψ: C⟶ P(Θ1 × Θ2). -en, (Ψ, C) is called soft compatible
relation (SCPR) if for all p, r, ji ∈ Θ1 and
q, s, ki ∈ Θ2(i ∈ I), we have

(1) (p, q), (r, s) ∈ Ψ(c)⇒(p ∘ 1r, q ∘ 2s)∈ Ψ(c)

(2) (ji, ki) ∈ Ψ(c)⇒(∨i∈Iji,∨i∈Iki)∈ Ψ(c)

for every c ∈ C.

Definition 10. A SCPR (Ψ, C) over Θ1 × Θ2 is called soft
complete relation (SCTR) with respect to the afterset if, for
all p, r, ∈ Θ1, we have

(1) pΨ(c)∨rΨ(c) � (p∨r)Ψ(c)

(2) pΨ(c) ∘ 2rΨ(c) � (p ∘ 1r)Ψ(c)

for all c ∈ C.
A SCPR (Ψ, C) is called ∨-complete w.r.t the aftersets if it

satisfies only condition (1). A SCPR (Ψ, C) is called
°-complete w.r.t the aftersets if it satisfies only condition (2).

A SCPR (Λ, C) over Θ1 × Θ2 is called soft complete
relation (SCTR) with respect to the foreset if for all q, s ∈ Θ2,
and we have

(1) Λ(c)q∨Λ(c)s � Λ(c)(q∨s)
(2) Λ(c)q ∘ 1Λ(c)s � Λ(c)(q ∘ 2s)

for all c ∈ C.
A SCPR (Λ, C) is called ∨-complete w.r.t the foresets if it

satisfies only condition (1).

Table 1: Binary operation subject to Θ

∘ 1 0 p q r 1

0 0 p q r 1
p 0 p q r 1
q 0 p q r 1
r 0 p q r 1
1 0 p q r 1

p q

r

1

0

Figure 1: Illustration of Θ.
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A SCPR (Λ, C) is called °-complete w.r.t the foresets if it
satisfies only condition (2).

Theorem 1. Let (Ψ , C) be a SCPR with respect to the afterset
over Θ1 × Θ2. :en, for any two soft sets (F1, C) and (F2, C)

over Θ2, we have

(1) (ΨF1 , C) ∘ 1(Ψ
F2 , C)⊆ (ΨF1 ∘ 2F2 , C)

(2) (ΨF1 , C)∨(ΨF2 , C)⊆ (ΨF1∨F2 , C)

Proof. For arbitrary c ∈ C, let x ∈ ΨF1(c) ∘ 1Ψ
F2(c). -en,

x � y1 ∘ 1y2 for some y1 ∈ Ψ
F1(c) and y2 ∈ Ψ

F2(c). -is
implies that y1Ψ(c)∩F1(c)≠∅ and y2Ψ(c)∩F2(c)≠∅, so
there exist elements l, m ∈ Θ2 such that l ∈ y1Ψ(c)∩F1(c)

and m ∈ y2Ψ(c)∩F2(c). -us, l ∈ y1Ψ(c), m ∈ y2
Ψ(c), l ∈ F1(c) and m ∈ F2(c). So (y1, l) ∈ Ψ(c) and
(y2, m) ∈ Ψ(c) imply (y1 ∘ 1y2, l ∘ 2m) ∈ Ψ(c); that is,
(l ∘ 2m) ∈ (y1 ∘ 1y2)Ψ(c). Also, l ∘ 2m ∈F1(c) ∘ 2F2(c);
therefore, l ∘ 2m ∈ y1 ∘ 1y2Ψ(c)∩F1(c) ∘ 2F2(c). -is shows
that x � y1 ∘ 1y2 ∈ Ψ

F1 ∘ 2F2(c).

Now, for arbitrary c ∈ C, let x ∈ ΨF1(c)∨ΨF2(c). -en,
x � y1∨y2 for some y1 ∈ Ψ

F1(c) and y2 ∈ Ψ
F2(c). -is

implies that y1Ψ(c)∩F1(c)≠∅ and y2Ψ(c)∩F2(c)≠∅, so
there exist elements l, m ∈ Θ2 such that l ∈ y1Ψ(c)∩F1(c)

and m ∈ y2Ψ(c)∩F2(c). -us, l ∈ y1Ψ(c), m ∈ y2Ψ(c),

l ∈ F1(c), and m ∈ F2(c). So (y1, l) ∈ Ψ(c) and
(y2, m) ∈ Ψ(c) imply (y1∨y2, l∨m) ∈ Ψ(c); that is,
(l∨m) ∈ (y1∨y2)Ψ(c). Also, l∨m ∈ F1(c)∨F2(c); therefore,
l∨m ∈ y1∨y2Ψ(c)∩F1(c)∨F2(c). -is shows that
x � y1∨y2 ∈ Ψ

F1∨F2(c). □

Theorem 2. Let (Ψ , C) be a SCPR with respect to the foreset
over Θ1 × Θ2. :en, for any two soft sets (L1, C) and (L2, C)

over Θ1, we have

(1) (L1Ψ , C) ∘ 2(L2Ψ , C)⊆ (L1 ∘ 1L2Ψ, C)

(2) (L1Ψ , C)∨(L2Ψ, C)⊆ (L1∨L2Ψ, C)

Proof. -e proof is simple. □

Theorem 3. Let (Ψ , C) be a SCTR w.r.t the afterset over
Θ1 × Θ2. :en, for any two soft sets (F1, C) and (F2, C) over
Θ2, we have

(1) (ΨF1 , C) ∘ 1(ΨF2 , C)⊆ (ΨF1 ∘ 2F2 , C)

(2) (ΨF1 , C)∨(ΨF2 , C)⊆ (ΨF1∨F2 , C)

Proof. For arbitrary c ∈ C, if at least one of ΨF1(c) and
ΨF2(c) is empty, then (1) is obvious. Now, for arbitrary
c ∈ C, consider that ΨF1(c)≠∅ and ΨF2(c)≠∅. -en,
ΨF1(c)°1ΨF2(c)≠∅. So, let x ∈ ΨF1(c)°1ΨF2(c). -en, x �

y1°1y2 for some y1 ∈ ΨF1(c) and y2 ∈ ΨF2(c). -is implies
that ∅≠y1Ψ(c)⊆F1(c) and ∅≠y2Ψ(c)⊆F2(c). As
(y1°1y2)Ψ(c) � y1Ψ(c)°2Ψ(c)⊆F1(c)°2F2(c). -is shows
that x � y1°1y2 ∈ ΨF1F2(c). Hence, (1) is proved.

For arbitrary c ∈ C, if at least one ofΨF1(c) andΨF2(c) is
empty, then (2) is obvious. Now, for arbitrary c ∈ C, con-
sider that ΨF1(c)≠∅ and ΨF2(c)≠∅. -en,

ΨF1(c)∨ΨF2(c)≠∅. So, let x ∈ ΨF1(c)∨ΨF2(c). -en, x �

y1∨y2 for some y1 ∈ ΨF1(c) and y2 ∈ ΨF2(c). -is implies
that ∅≠y1Ψ(c)⊆F1(c) and ∅≠y2Ψ(c)⊆F2(c). As
(y1∨y2)Ψ(c) � y1Ψ(c)∨y2Ψ(c)⊆F1(c)∨F2(c). -is shows
that x � y1∨y2 ∈ ΨF1∨F2(c). Hence, (2) is proved. □

Theorem 4. Let (Ψ , C) be a SCTR with respect to the foreset
over Θ1 × Θ2. :en, for any two soft sets (L1, C) and (L2, C)

over Θ1, we have

(1) (L1Ψ, C) ∘ 2(L2Ψ, C)⊆ (L1 ∘ 1L2Ψ, C)

(2) (L1Ψ, C)∨(L2Ψ , C)⊆ (L1∨L2Ψ, C)

Proof. -e proof is obvious. □

4. Approximation of Soft
Substructures in Quantales

In this section, we consider two quantales Θ1 and Θ2 and
approximate different soft substructures of quantales by using
different SBR over Θ1 × Θ2. We will show that Uappr of a soft
substructure of quantales by using SCPR is again a soft sub-
structure of quantales and provide counter examples to support
the argument that the converse is not true. Also, we will show
that Lappr of a soft substructure of quantales by using SCTR is
again a soft substructure of quantales and provide a counter
example to support the argument that the converse is not true.

-roughout this section, we consider (Ψ, C) to be the
SBR over Θ1 × Θ2 and xΨ(c)≠∅ for all x ∈ Θ1, c ∈ C, and
Ψ(c)y≠∅ for all y ∈ Θ2, c ∈ C unless otherwise specified.

Definition 11. Let (Ψ, C) be a SBR over Θ1 × Θ2 and (F, C)

be a soft set overΘ2. If Uappr. (ΨF
, C) is a soft subquantale of

Θ1, then (F, C) is called generalized upper soft (GUpS)
subquantale of Θ1 w.r.t the aftersets. If Uappr(Ψ

F
, C) is a soft

ideal (prime ideal, semiprime ideal, and primary ideal) ofΘ1,
then (F, C) is called GUpS ideal (prime ideal, semiprime
ideal, and primary ideal) of Θ1 w.r.t the aftersets.

Definition 12. Let (Ψ, C) be a SBR over Θ1 × Θ2 and (L, C)

be a soft set over Θ1. If Uappr(
LΨ, C) is a soft subquantale of

Θ2, then (L, C) is called generalized upper soft (GUpS)
subquantale of Θ2 w.r.t the foresets. If Uappr(

LΨ, C) is a soft
ideal (prime ideal, semiprime ideal, and primary ideal) ofΘ2,
then (L, C) is called GUpS ideal (prime ideal, semiprime
ideal, and primary ideal) of Θ2 w.r.t the foresets.

Theorem 5. Let (Ψ , C) be a SCPR over Θ1 × Θ2. If (F, C) is a
soft subquantale of Θ2, then (F, C) is a GUpS subquantale of
Θ1 w.r.t the aftersets.

Proof. Suppose that (F, C) is a soft subquantale, then
∅≠ΨF

(c) for any c ∈ C. Let pi ∈ Ψ
F
(c), i ∈ I. -en,

piΨ(c)∩F(c)≠∅. So, there exists qi ∈ piΨ(c)∩F(c). -us,
qi ∈ piΨ(c) and qi ∈ F(c) since (Ψ, C) is a SCPR. -erefore,
(pi, qi) ∈ Ψ(c), i ∈ I implies (∨i∈Ipi,∨i∈Iqi) ∈ Ψ(c). -is
implies that ∨i∈Iqi ∈ ∨i∈IpiΨ(c). Also, ∨i∈Iqi ∈ F(c) (as
(F, C) is a soft subquantale). So, ∨i∈Iqi ∈
∨i∈Ipi ∈ Ψ(c)∩F(c). Hence, ∨i∈Ipi ∈ Ψ

F
(c).
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Let p1, p2 ∈ Ψ
F
(c). -en, p1Ψ(c)∩F(c)≠∅ and

p2Ψ(c)∩F(c)≠∅. So, there exists q1 ∈ p1Ψ(c)∩F(c) and
q2 ∈ p2Ψ(c)∩F(c). -us, q1 ∈ p1Ψ(c), q1 ∈ F(c),
q2 ∈ p2Ψ(c), and q2 ∈ F(c) since (Ψ, C) is a SCPR. -ere-
fore, (p1, q1), (p2, q2) ∈ Ψ(c) implies (p1°1q1), (p2°2q2)
∈ Ψ(c). -is implies that q1°2q2 ∈ p1°p2Ψ(c). Also,

q1°2q2 ∈ (c) (as (F, C) is a soft subquantale). So,
q1°2q2 ∈ p1°p2Ψ(c)∩ F(c). Hence, (p1°1q1) ∈ Ψ

F
(c). -is

completes the proof.
With the same arguments, the next -eorem 6 can be

achieved. □

Theorem 6. Let (Ψ , C) be a SCPR over Θ1 × Θ2. If (L, C) is a
soft subquantale of Θ1, then (L, C) is a GUpS subquantale of
Θ2 w.r.t the foresets.

Theorem 7. Let (Ψ , C) be a soft ∨-complete relation over
Θ1 × Θ2 w.r.t the aftersets. If (F, C) is a soft left (right) ideal of
Θ2, then (F, C) is a GUpS left (right) ideal of Θ1 w.r.t the
aftersets.

Proof. Suppose that (F, C) is a soft left ideal of Θ2, then
∅≠ΨF

(c) for any c ∈ C. Let u1, u2 ∈ Ψ
F
(c). -en,

u1Ψ(c)∩F(c)≠∅ and u2Ψ(c)∩F(c)≠∅. So, there exists
v1 ∈ u1Ψ(c)∩F(c) and v2 ∈ u2Ψ(c)∩F(c). -us,
v1 ∈ u1Ψ(c), v1 ∈ F(c), v2 ∈ u2Ψ(c), and v2 ∈ F(c) since
(Ψ, C) is a SCPR. -erefore, (u1∨u2, v1∨v2) ∈ Ψ(c); that is,
v1∨v2 ∈ (u1∨u2)Ψ(c). Also, v1∨v2 ∈ F(c) (as (F, C) is a soft
left ideal). So, v1∨v2 ∈ (u1∨u2)Ψ(c)∩F(c). Hence,
u1∨u2 ∈ Ψ

F
(c).

Now, let u1, u2 ∈ Θ1 such that u1 ≤ u2 and u2 ∈ Ψ
F
(c).

So, u1∨u2 � u2 ∈ Ψ
F
(c). Since u2 ∈ Ψ

F
(c), so there exist

v2 ∈ u2Ψ(c)∩F(c). -us, v2 ∈ u2Ψ(c) and v2 ∈ F(c). Since
(Ψ, C) is a soft ∨-complete relation, therefore,
v2 ∈ u2Ψ(c) �u1∨u2Ψ(c)� u1Ψ(c)∨u2Ψ(c). -is implies
that v2 � s∨t, for some s ∈ u1Ψ(c) and t ∈ u2Ψ(c). -us,
s≤ v2 and v2 ∈ F(c) imply s ∈ F(c) (as F(c) is ideal). So,
s ∈ u1Ψ(c)∩F(c). Hence, u1 ∈ Ψ

F
(c).

Let p, x ∈ Θ1 and x ∈ ΨF
(c). -en, xΨ(c)∩F(c)≠∅.

So, there exist q ∈ xΨ(c)∩F(c). -us, q ∈ xΨ(c) and
q ∈ F(c). Since (F, C) is a soft left ideal so, y ∘ 2q ∈ F(c) for
any y ∈ pΨ(c)⊆Θ2. -is implies that (p, y) ∈ Ψ(c). So,
(p ∘ 1x, y ∘ 2q) ∈ Ψ(c); that is, y ∘ 2q ∈ p ∘ 1xΨ(c). So,
y ∘ 2q ∈ p ∘ 1xΨ(c)∩F(c). Hence, p ∘ 1x ∈ Ψ

F
(c). Similarly,

we can show that x ∘ 1p ∈ Ψ
F
(c). □

Theorem 8. Let (Ψ , C) be a SCTR over Θ1 × Θ2 w.r.t the
aftersets. If (F, C) is a soft prime ideal of Θ2, then (F, C) is a
GUpS prime ideal of Θ1 w.r.t the aftersets.

Proof. Assume that (F, C) is a soft prime ideal of Θ2, then
∅≠ΨF

(c) for any c ∈ C. -en, by -eorem 5, (F, C) is
generalized upper soft ideal of Θ1. Let p1, p2 ∈ Θ1 such that
p1 ∘ 1p2 ∈ Ψ

F
(c). -en, (p1 ∘ 1p2)Ψ(c)∩F(c)≠∅. So, there

exist q ∈ (p1 ∘ 1p2)Ψ(c)∩F(c). -is implies that
q ∈ (p1 ∘ 1p2)Ψ(c) and q ∈ F(c). Since (Ψ, C) is a SCTR,
q ∈ (p1 ∘ 1p2)Ψ(c)� p1Ψ(c) ∘ 2p2Ψ(c). -us, q � c ∘ 2d for
some c ∈ p1Ψ(c) and d ∈ p2Ψ(c). -us, c ∘ 2d ∈ F(c) and
(F, C) is a soft prime ideal of Θ2 so, c ∈ F(c) or d ∈ F(c).

-us, c ∈ p1Ψ(c)∩F(c) or d ∈ p2Ψ(c)∩F(c). Hence,
p1 ∈ Ψ

F
(c) or p2 ∈ Ψ

F
(c). □

Theorem 9. Let (Ψ , C) be a SCTR over Θ1 × Θ2 w.r.t the
aftersets. If (F, C) is a soft semiprime ideal of Θ2, then (F, C)

is a GUpS semiprime ideal of Θ1 w.r.t the aftersets.

Proof. Assume that (F, C) is a soft semiprime ideal of Θ2,
then∅≠ΨF

(c) for any c ∈ C. -en, by -eorem 5, (F, C) is
generalized upper soft ideal of Θ1. Let p1 ∈ Θ1 such that
p1 ∘ 1p1 ∈ Ψ

F
(c). -en, (p1 ∘ 1p1)Ψ(c)∩F(c)≠∅. So, there

exist q ∈ (p1 ∘ 1p1)Ψ(c)∩F(c). -is implies that
q ∈ (p1 ∘ 1p1)Ψ(c) and q ∈ F(c). Since (Ψ, C) is a SCTR,
q ∈ (p1 ∘ 1p1)Ψ(c) �p1Ψ(c) ∘ 2 p1Ψ(c). -us, q � c ∘ 2 c for
some c ∈ p1Ψ(c). -us, c ∘ 2c ∈ F(c) and (F, C) is a soft
semiprime ideal of Θ2 so, c ∈ F(c). -us, c ∈ p1Ψ(c)∩F(c).
Hence, p1 ∈ Ψ

F
(c). □

Theorem 10. Let (Ψ , C) be a SCTR over Θ1 × Θ2 w.r.t the
aftersets. If (F, C) is a soft primary ideal of Θ2, then (F, C) is a
GUpS primary ideal of Θ1 w.r.t the aftersets.

Proof. Assume that (F, C) is a soft primary ideal of Θ2, then
∅≠ΨF

(c) for any c ∈ C. -en, by -eorem 5, (F, C) is
generalized upper soft ideal of Θ1. Let p1, p2 ∈ Θ1 such that
p1 ∘ 1p2 ∈Ψ

F
(c) and p1 ∉ Ψ

F
(c). -en,

(p1 ∘ 1p2)Ψ(c)∩F(c)≠∅. So, there exist
q ∈ (p1 ∘ 1p2)Ψ(c)∩F(c). -is implies that
q ∈ (p1 ∘ 1p2)Ψ(c) and q ∈ F(c). Since (Ψ, C) is a SCTR,
q ∈ (p1 ∘ 1p2)Ψ(c) � p1Ψ(c) ∘ 2p2Ψ(c). -us, q � c ∘ 2d for
some c ∈ p1Ψ(c) and d ∈ p2Ψ(c). -us, c ∘ 2d ∈ F(c) and
(F, C) is a soft primary ideal of Θ2 so dn ∈ F(c) for some
n ∈ N. Also, dn ∈ pn

2Ψ(c) for n ∈ N. -us,
dn ∈ pn

2Ψ(c)∩F(c). Hence, pn
2 ∈ Ψ

F
(c). □

Remark 2. In general, the converse of the above theorem is
not true. We will present examples to justify our claim as
follows.

Example 2. Let Θ1 � 0, p, q, 1  and
Θ2 � 0′, s′, q′, p′, 1′, r′  be two complete lattices described
in Figures 2 and 3, respectively.

We define ∘ 1 and ∘ 2 the associative binary operation on
Θ1 and Θ2, respectively, as shown in Tables 2 and 3. -en,
and are quantales.

(1) Let C � c1, c2  and define SBR (Ψ, C) over Θ1 × Θ2
by the rule

Ψ c1(  �

0, q′( , 0, 0′( , p, s′( , 0, s′( , q, p′( ,

p, r′( , 0, 1′( , 0, p′( , p, 1′( , q, s′( ,

q, 1′( , p, q′( , q, r′( , 1, r′( , 1, s′( ,

1, 1′( , 0, r′( 

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

Ψ c2(  �
0, r′( , 0, 0′( , 0, p′( , 0, 1′( , 0, s′( ,

p, r′( , 0, q′( , p, s′( , p, 1′( , p, q′( 

⎧⎨

⎩

⎫⎬

⎭.

(8)
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-en, (Ψ, C) is SCPR. -e aftersets with respect to
Ψ(c1) and Ψ(c2) are given as follows:

0Ψ c1(  � 0′, s′, p′, q′, r′, 1′ ,

0Ψ c2(  � 0′, s′, p′, r′, 1′, q′ ,

pΨ c1(  � r′, s′, 1′, q′ ,

pΨ c2(  � r′, s′, 1′, q′ ,

qΨ c2(  � ∅,

1Ψ c1(  � r′, s′, 1′ 

1Ψ c2(  � ∅.

(9)

Define soft set (F, C) over Θ2 by the rule

F c1(  � r′, s′ ,

F c2(  � q′, r′ .
(10)

-en, (F, C) is not a soft subquantale of Θ2. But
ΨF

(c1) � 0, p, q, 1  and ΨF
(c2) � 0, p  are sub-

quantale of Θ1. So (F, C) is a GUpSSΘ of Θ1 w.r.t the
aftersets.
Foresets with respect toΨ(c1) andΨ(c2) are given as
follows:

Ψ c1( 0′ � 0{ },

Ψ c2( 0′ � 0{ },

Ψ c1( p′ � 0, q ,

Ψ c2( p′ � 0{ },

Ψ c1( q′ � 0, p ,

Ψ c2( q′ � 0, p ,

Ψ c1( r′ � 0, p, q, 1 ,

Ψ c2( r′ � 0, p ,

Ψ c1( s′ � 0, p, q, 1 ,

Ψ c2( s′ � 0, p ,

Ψ c1( 1′ � 0, p, q, 1 ,

Ψ c2( 1′ � 0, p .

(11)

Define soft set (L, C) over Θ1 by the rule

L c1(  � p, q ,

L c2(  � 0, p, q .
(12)

-en, (L, C) is not a soft subquantale of Θ1. But
LΨ(c1) � p′, q′, r′, s′, 1′  and LΨ(c2) � 0′, p′, q′,

r′, s′, 1′} are subquantale of Θ2. So, (L, C) is a GUpS

subquantale of Θ2 w.r.t the foresets.
(2) Now, let C � c1, c2  and define SBR (Ψ, C) over
Θ1 × Θ2 by the rule

Ψ c1(  � q, 0′( , p, 0′( , q, p′( , 0, p′( ,

1, 0′( , 1, p′( , p, p′( , 0, 0′( .
(13)

Ψ c2(  � p, q′( , 0, s′( , 0, q′( , q, s′( ,

1, s′( , 1, q′( , q, q′( , p, s′( .
(14)

Aftersets with respect to Ψ(c1) and Ψ(c2) are given as
follows:

0Ψ c1(  � 0′, p′ ,

0Ψ c2(  � s′, q′ ,

pΨ c1(  � 0′, p′ ,

pΨ c2(  � s′, q′ ,

qΨ c1(  � 0′, p′ ,

qΨ c2(  � s′, q′ ,

1Ψ c1(  � 0′, p′ ,

1Ψ c2(  � s′, q′ .

(15)

Table 2: Binary operation subject to Θ1.

O1 0 p q 1

0 0 0 0 0
p 0 p 0 p

q 0 0 q q

1 0 p q 1

Table 3: Binary operation subject to Θ2.

O2 0′ s′ p′ q′ r′ 1′

0′ 0′ s′ p′ q′ r′ 1′
s′ 0′ s′ p′ q′ r′ 1′
p′ 0′ s′ p′ q′ r′ 1′
q′ 0′ s′ p′ q′ r′ 1′
r′ 0′ s′ p′ q′ r′ 1′
1′ 0′ s′ p′ q′ r′ 1′

p q

1

0

Figure 2: Illustration of Θ1.

p'

r'q'

s'

0'

1'

Figure 3: Illustration of Θ2.
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-en, (Ψ, C) is ∨-complete relation over Θ1 ×Θ2 w.r.t
the aftersets. Define soft set (F, C) over Θ2 by the rule

F c1(  � s′, p′ ,

F c2(  � s′, r′ .
(16)

-en, (F, C) is not a soft ideal of Θ2. But Ψ
F
(c1) �

0, p, q, 1  andΨF
(c2) � 0, p, q, 1  are ideal ofΘ1. So, (F, C)

is a GUpS ideal of Θ1 w.r.t the aftersets.
Now, define SBR (Ψ, C) over Θ1 ×Θ2 by the rule

Ψ c1(  �

0, q′( , p, q′( , 0, 0′( , p, 0′( ,

p, s′( , p, r′( , 0, 1′( , 0, r′( ,

p, p′( , 0, s′( , p, 1′( , 0, p′( 

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

(17)

Ψ c2(  �

0, 0′( , q, r′( , q, q′( , 0, s′( ,

0, 1′( , q, 0′( , 0, r′( , q, p′( ,

0, p′( , q, s′( , q, 1′( , 0, q′( 

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
(18)

Foresets with respect to Ψ(c1) and Ψ(c2) are given as
follows:

Ψ c1( 0′ � p, 0 ,

Ψ c2( 0′ � q, 0 ,

Ψ c1( p′ � p, 0 ,

Ψ c2( p′ � 0, q ,

Ψ c1( q′ � p, 0 ,

Ψ c2( q′ � q, 0 ,

Ψ c1( r′ � 0, p ,

Ψ c2( r′ � q, 0 ,

Ψ c1( s′ � 0, p ,

Ψ c2( s′ � q, 0 ,

Ψ c1( 1′ � 0, p ,

Ψ c2( 1′ � 0, q .

(19)

-en, (Ψ, C) is soft ∨-complete relation over Θ1 × Θ2
w.r.t the foresets. Define soft set (L, C) over Θ1 by the rule

L c1(  � p, q ,

L c2(  � 0, p, q .
(20)

-en, (L, C) is not a soft ideal of Θ1. But LΨ(c1) �

0′, p′, q′, r′, s′, 1′  and LΨ(c2) � 0′, p′, q′, r′, s′, 1′  are
ideal ofΘ2. So, (L, C) is a GUpS ideal ofΘ2 w.r.t the foresets.

Similar examples can be presented to justify that con-
verse of -eorems 11 to 13 is not true.

Definition 13. Let (Ψ, C) be a SBR over Θ1 × Θ2. Consider
the soft set (M, C) over Θ2, if Lappr(ΨM, C) is a soft sub-
quantale of Θ1, then (M, C) is called generalized lower soft

(GLWS) subquantale ofΘ1 w.r.t the aftersets. If Lappr(ΨM, C)

is a soft ideal (prime ideal, semiprime ideal, and primary
ideal) of Θ1, then (M, C) is called GUpS ideal (prime ideal,
semiprime ideal, and primary ideal) of Θ1 w.r.t the aftersets.

Definition 14. Let (Ψ, C) be a SBR over Θ1 ×Θ2. Consider
the soft set (L, C) over Θ1, if Lappr(

LΨ, C) is a soft sub-
quantale ofΘ2, then (L, C) is called GLWS subquantale ofΘ2
w.r.t the foresets. If Lappr(

LΨ, C) is a soft ideal (prime ideal,
semiprime ideal, and primary ideal) of Θ2, then (L, C) is
called GUpS ideal (prime ideal, semiprime ideal, and pri-
mary ideal) of Θ2 w.r.t the foresets.

Theorem 11. Let (Ψ , C) be a SCTR over Θ1 × Θ2 w.r.t the
aftersets. If (M, C) is a soft subquantale of Θ2, then (M, C) is
a GLWS subquantale of Θ1 w.r.t the aftersets.

Proof. Suppose that (M, C) is a soft subquantale of Θ2 and
ΨM(c)≠∅ for any c ∈ C. Let ui ∈ ΨM(c), i ∈ I. -en,
uiΨ(c)⊆M(c). Since (Ψ, C) is a SCTR, therefore,
∨i∈I(uiΨ(c)) � (∨i∈Iui)Ψ(c)⊆M(c). Hence,
∨i∈Iui ∈ ΨM(c).

Now, let u1, u2 ∈ ΨM(c). -en, u1Ψ(c)⊆M(c) and
u2Ψ(c)⊆M(c). Since (Ψ, C) is a SCTR and (M, C) is a soft
subquantale, therefore, u1Ψ(c) ∘ 2u2Ψ(c)⊆M(c) ∘ 2M(c)

implies (u1 ∘ 1u2)Ψ(c)⊆M(c). Hence, u1 ∘ 1u2 ∈ ΨM(c).
With the same arguments, next -eorem 12 can be

achieved. □

Theorem 12. Let (Ψ , C) be a SCTR over Θ1 × Θ2 w.r.t the
foresets. If (L, C) is a soft subquantale of Θ1, then (L, C) is a
GLWS subquantale of Θ2 w.r.t the foresets.

Theorem 13. Let (Ψ , C) be a SCTR over Θ1 × Θ2 w.r.t the
aftersets. If (M, C) is a soft ideal of Θ2, then (M, C) is aGLWS

ideal of Θ1 w.r.t the aftersets.

Proof. Suppose that (M, C) is a soft ideal of Θ2 and
ΨM(c)≠∅ for any c ∈ C. Let u1, u2 ∈ ΨM(c). -en,
u1Ψ(c)⊆M(c) and u2Ψ(c)⊆M(c). Since (Ψ, C) is a SCTR
and (M, C) is a soft ideal of Θ2 so u1Ψ(c)

∨u2Ψ(c) � (u1∨u2)Ψ(c)⊆M(c)∨M(c); that is,
(u1∨u2)Ψ(c)⊆M(c) Hence, u1∨u2 ∈ ΨM(c).

Now, let u1, u2 ∈ Θ1 such that u1 ≤ u2 and u2 ∈ ΨM(c).
So, u1∨u2 � u2 ∈ ΨM(c). Let, v1 ∈ u1Ψ(c) and
v2 ∈ u2Ψ(c)⊆M(c). So, v1∨v2 ∈ (u1∨u2)Ψ(c), that is,
v1∨v2 ∈ u2Ψ(c)⊆M(c). Since M(c) is ideal so
v1 ≤ v1∨v2 ∈M(c) implies v1 ∈M(c). -us, u1Ψ(c)⊆M(c).
Hence, u1 ∈ ΨM(c).

Now, let u, y ∈ Θ1 and y ∈ ΨM(c). -en,
∅≠yΨ(c)⊆M(c). Consider v1 ∈(u ∘ 1y)Ψ(c) since (Ψ, C)

is a SCTR so v1 ∈ uΨ(c) ∘ 2yΨ(c). -us, v1 � c ∘ 2d for some
c ∈ uΨ(c) and d ∈ yΨ(c). But yΨ(c)⊆M(c) so d ∈M(c)

and (M, C) is a soft ideal ofΘ2; therefore, c ∘ 2d ∈M(c), that
is, v1 ∈M(c). -us, (u ∘ 1y)Ψ(c)⊆M(c). Hence, u ∘ 1y ∈
ΨM(c). Similarly, we can show that y ∘ 1u ∈ ΨM(c). □
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Theorem 14. Let (Ψ , C) be a SCTR over Θ1 × Θ2 w.r.t the
aftersets. If (M, C) is a soft prime ideal of Θ2, then (M, C) is a
GLWS prime ideal of Θ1 w.r.t the aftersets.

Proof. Assume that (M, C) is a soft prime ideal of Θ2 and
ΨM(c)≠∅ for any c ∈ C. -en, by -eorem 4.19, (M, C) is
GLWS ideal of Θ1. Let u1, u2 ∈ Θ1 such that
u1 ∘ 1u2 ∈ ΨM(c). -en, (u1 ∘ 1u2)Ψ(c)⊆M(c). Consider
v ∈ (u1 ∘ 1u2)Ψ(c)⊆M(c). Since (Ψ, C) is a SCTR,
v ∈ (u1 ∘ 1u2)Ψ(c) � u1Ψ(c) ∘ 2u2Ψ(c). -us, v � c ∘ 2d for
some c ∈ u1Ψ(c) and d ∈ u2Ψ(c). -is implies that
v � c ∘ 2d ∈M(c). As (M, C) is a soft prime ideal so,
c ∈M(c) or d ∈M(c). -us, c ∈ u1Ψ(c)⊆M(c) or
d ∈ u2Ψ(c)⊆M(c). Hence, u1 ∈ ΨM(c) or u2 ∈ ΨM(c). □

Theorem 15. Let (Ψ , C) be a SCTR over Θ1 × Θ2 w.r.t the
aftersets. If (M, C) is a soft semiprime ideal of Θ2, then
(M, C) is a GLWS semiprime ideal of Θ1 w.r.t the aftersets.

Proof. Assume that (M, C) is a soft semiprime ideal of Θ2
and ΨM(c)≠∅ for any c ∈ C. -en, by -eorem 14,(M, C)

is GLWS ideal of Θ1. Let u ∈ Θ1 such that u ∘ 1u ∈ ΨM(c).
-en, (u ∘ 1u)Ψ(c)⊆M(c). Let v ∈ uΨ(c). As (Ψ, C) is a
SCTR so v ∘ 2v ∈ (u ∘ 1u)Ψ(c)⊆M(c). Since (M, C) is a soft
semiprime ideal, v ∘ 2v ∈M(c) implies v ∈M(c). -us,
uΨ(c)⊆M(c). Hence, u ∈ ΨM(c). □

Theorem 16. Let (Ψ , C) be a SCTR over Θ1 × Θ2 w.r.t the
aftersets. If (M, C) is a soft primary ideal of Θ2, then (M, C)

is a GLWS primary ideal of Θ1 w.r.t the aftersets.

Proof. Suppose that (M, C) is a soft primary ideal of Θ2 and
∅≠ΨM(c) for any c ∈ C. -en, by -eorem 4.19., (M, C) is
a GLWS ideal of Θ1. Let u1, u2 ∈ Θ1 such that
u1 ∘ 1u2 ∈ ΨM(c) and u1 ∉ ΨM(c). -en, (u1 ∘ 1u2)Ψ(c)

⊆M(c). Let v ∈ (u1 ∘ 1u2)Ψ(c). Since (Ψ, C) is a SCTR,
v ∈ u1Ψ(c) ∘ 2u2Ψ(c). -us, v � c ∘ 2d for some c ∈ u1Ψ(c)

and d ∈ u2Ψ(c). -us, dn ∈ un
2Ψ(c) for some n ∈ N. Also,

c ∘ 2d ∈M(c). As (M, C) is a soft primary ideal, c ∉M(c)

and dn ∈M(c). -us, un
2Ψ(c)⊆M(c). Hence, un

2 ∈ Ψ
M(c)

for some n ∈ N. □

Remark 3. One can find examples like Example 2 to show
that converse of -eorems 11 to 16 is not true.

5. Relationship between Soft Quantale
Homomorphism and Their Approximation

In this section, we define soft weak quantale homomorphism
(SWQH), and then, we established the relationship between
homomorphic images and their approximation by SBR.

Definition 15 (see [4]). A function η: Θ1⟶Θ2 is called
weak quantale homomorphism (WQH) if
η(p ∘ 1q) �η(p) ∘ 2η(q) and η(p∨q) � η(p)∨η(q), where
(Θ1, ∘ 1) and (Θ2, ∘ 2) are quantales. If η is one-one, then η is
monomorphism. If η is onto, then η is called epimorphism,
and if η is bijective, then η is called isomorphism between
(Θ1, ∘ 1) and (Θ2, ∘ 2).

Definition 16. Let (H, C1) be a soft quantale over Θ1 and
(F, C2) be a soft quantale over Θ2. -en, (H, C1) is said to
soft weak homomorphic to (F, C2) if there exist ordered pair
of functions (η, ζ) satisfies the following

(1) η: Θ1⟶Θ2 is onto WQH, that is,
η(p ∘ 1q) � η(p) ∘ 2η(q) and η(p∨q) �η(p)∨η(q)

(2) ζ: C1⟶ C2 is surjective
(3) η(H(c1)) � F(ζ(c1)), ∀c1 ∈ C1

-e ordered pair (η, ζ) of functions is SWQH. If in
ordered pair (η, ζ) both η and ζ are one-to-one functions,
then (H, C1) is said to soft weak isomorphic to (F, C2) and
(η, ζ) is called SWQI.

Lemma 1. Let (H, C1) be soft weak homomorphic to (F, C2)

with SWQH (η, ζ). Let (Ψ2, C3) be a SBR over Θ2 and
(H1, C1′)⊆ (H, C1). Define
Ψ1(c3) �(x, y) ∈Θ1 × Θ1: (η(x), η(y)) ∈ Ψ2(c3) be a SBR
over Θ1. :en, the following holds:

(1) (Ψ1, C3) is SCPR if (Ψ2, C3) is SCPR
(2) If (η, ζ) is SWQI and (Ψ2, C3) is SCPR w.r.t the

aftersets (w.r.t the foresets), then (Ψ1, C3) is SCPR
w.r.t the aftersets (w.r.t the foresets)

(3) η(H1Ψ1(c3)) � Ψη(H1)

2 (c3)

(4) η(H1Ψ1(c3))⊆Ψ
η(H1)
2 (c3) and if (η, ζ) is SWQI, then

η(H1Ψ1(c3)) �Ψη(H1)
2 (c3)

(5) Let (η, ζ) be a SWQI. :en, η(x) ∈
η(H1Ψ1(c3))⇔x ∈ H1Ψ1(c3) and η(x) ∈ η(H1Ψ1
(c3))⇔x ∈ H1Ψ1(c3)

Proof

(1) and (2) are obvious
(3) Suppose (H1, C1′)⊆ (H, C1) and for any c3 ∈ C3,

z ∈ η(H1Ψ1(c3)) for some z ∈ Θ2. -en, there exist
a ∈ Θ1 such that a ∈ H1Ψ1(c3) and η(a) � z. -us,
x ∈ aΨ1(c3)∩H1(c1′). So, (a, x) ∈ Ψ1(c3) and
x ∈ H1(c1′). -us, (η(a), η(x)) ∈ Ψ2(c3), that is,
η(x) ∈ η(a)Ψ2(c3). Also, η(x) ∈ η(H1(c1′)). So,
η(a)Ψ2(c3)∩ η(H1(c1′))≠∅. -is implies that
η(a) ∈ Ψη(H1)

2 (c3). Hence, η(H1Ψ1(c3))⊆Ψ
η(H1)

2 (c3).
Now, let w ∈ Ψη(H1)

2 (c3). -en, wΨ2(c3)∩ η(H1
(c1′))≠∅. -is implies that y ∈ wΨ2(c3)∩ η(

H1(c1′)). -us, y ∈ wΨ2(c3) and y ∈ η(H1(c1′)). -is
implies that there exists x ∈ H1(c1′)⊆Θ1 and
x1 ∈ Θ1 such that η(x) � y and η(x1) � w. So,
(w, y) � (η(x1), η(x)) ∈Ψ2(c3). -is implies that
(x1, x) ∈ Ψ1(c3). So, x ∈ x1Ψ1(c3)∩H1(c1′). -us,
x1 ∈ H1Ψ1(c3). So, w � η(x1) ∈ η(H1Ψ1(c3)). Hence,
Ψη(H1)

2 (c3)⊆ η(H1Ψ1(c3)). Consequently, η(H1Ψ1
(c3)) �Ψη(H1)

2 (c3).
(4) Suppose (H1, C1′)⊆ (H, C1) and for any c3 ∈ C3,

z ∈ η(H1Ψ1(c3)) for some z ∈ Θ2. -en, there exist
a ∈ Θ1 such that a ∈ H1Ψ1(c3) and η(a) � z. -us,
aΨ1(c3)⊆H1(c1′). Let x ∈ zΨ2(c3). -en, there exist
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y ∈ Θ1 such that η(y) � x. So, η(y) ∈ η(a)Ψ2(c3),
that is, (η(a), η(y)) ∈ Ψ2(c3). So, (a, y) ∈ Ψ1(c3),
that is, y ∈ aΨ1(c3)⊆H1(c1′). -us, η(y) ∈η(H1
(c1′)). So, η(a)Ψ2(c3)⊆ η(H1(c1′)). -us, z � η(a)

∈ Ψη(H1)
2 (c3). Hence, η(H1Ψ1(c3))⊆Ψ

η(H1)
2 (c3).

Now, let z ∈ Ψη(H1)
2 (c3). -en, there exist unique

a ∈ Θ1 such that η(a) � z and η(a)Ψ2(c3)

⊆ η(H1(c1′)). Let x ∈ aΨ1(c3), that is, (a, x)

∈ Ψ1(c3). -en, (η(a), η(x)) ∈ Ψ2(c3). -en,
η(x) ∈ η(a)Ψ2(c3)⊆ η(H1(c1′)). So, η(x) ∈ η(H1
(c1′)). -is implies that x ∈ H1(c1′). So,
aΨ1(c3)⊆H1(c1′). -en, a ∈ H1Ψ1(c3). So, z � η(a)

∈ η(H1Ψ1(c3)). Hence, Ψη(H1)
2 (c3)⊆ η(H1Ψ1 (c3)).

Consequently, η(H1Ψ1(c3)) �Ψη(H1)
2 (c3).

(6) Let x ∈ H1Ψ1(c3) for any c3 ∈ C3. -en,
η(x) ∈ η(H1Ψ1(c3)). Conversely, suppose that
η(x) ∈ η(H1Ψ1(c3)). As η is bijection so
x ∈ H1Ψ1(c3). Similarly, we can show that
η(x) ∈ η(H1Ψ1(c3))⇔x ∈ H1Ψ1(c3). □

Remark 4. With a similar technique, Lemma 1 can be
proved but for the foresets.

Theorem 17. Let (H, C1) be soft weak isomorphic to (F, C2)

with SWQI (η, ζ). Let (Ψ2, C3) be a SCPR over Θ2 and
(H1, C1′)⊆ (H, C1). Define Ψ1(c3) �(x, y) ∈Θ1 × Θ1:

(η(x), η(y))∈Ψ2(c3) for any c3 ∈ C3. :en, the following
holds:

(1) H1Ψ1(c3) is an ideal of Θ1 iff Ψη(H1)

2 (c3) is an ideal of
Θ2 for all c3 ∈ C3

(2) H1Ψ1(c3) is a subquantale of Θ1 iff Ψη(H1)

2 (c3) is a
subquantale of Θ2 for all c3 ∈ C3

(3) H1Ψ1(c3) is a prime ideal of Θ1 iff Ψη(H1)

2 (c3) is a
prime ideal of Θ2 for all c3 ∈ C3

(4) H1Ψ1(c3) is a semiprime ideal of Θ1 iff Ψη(H1)

2 (c3) is a
semiprime ideal of Θ2 for all c3 ∈ C3

(5) H1Ψ1(c3) is a primary ideal of Θ1 iff Ψη(H1)

2 (c3) is a
primary ideal of Θ2 for all c3 ∈ C3

Proof

(1) Let H1Ψ1(c3) be an ideal of Θ1 for any c3 ∈ C3. We
will show thatΨη(H1)

2 (c3) is an ideal ofΘ2. By Lemma
1 (3), we have η(H1Ψ1(c3)) � Ψη(H1)

2 (c3).

Let p, q ∈ η(H1Ψ1(c3)). -en, there exist u, v ∈ H1Ψ1(c3)

such that η(u) � p and η(v)� q. Since H1Ψ1(c3) is ideal and
(η, ζ) is SWQI so p∨q � η(u)∨η(v) � η(u∨v) ∈η
(H1Ψ1(c3)).

Now, let p, q ∈ Θ2 such that p≤ q and q ∈ η(H1Ψ1(c3)).
-en, there exist u ∈ Θ1 and v ∈ H1Ψ1(c3) such that η(u) �

p and η(v) � q. So, η(u)≤ η(v) implies η(u∨v) � η
(u)∨η(v) � η(v) ∈ η(H1Ψ1(c3)). -is implies that
u∨v � v ∈ H1Ψ1(c3). -is implies that u≤ v and H1Ψ1(c3) are
ideal so u ∈ H1Ψ1(c3). -us, η(u) � p ∈ η(H1Ψ1(c3)).

Finally, let p ∈ Θ2 and q ∈ η(H1Ψ1(c3)).-en, there exist
u ∈ Θ1 and v ∈ H1Ψ1(c3) such that η(u) � p and η(v) � q.
Since H1Ψ1(c3) ideal, u ∘ 1v ∈ H1Ψ1(c3). -us, η(u ∘ 1v)�

η(u) ∘ 2η(v) � (p ∘ 2q) ∈ η(H1Ψ1(c3)). Similarly, q ∘ 2p ∈ η
(H1Ψ1(c3)). Hence, Ψη(H1)

2 (c3) is ideal of Θ2.
Conversely, suppose thatΨη(H1)

2 (c3) � η(H1Ψ1(c3)) be an
ideal of Θ2 for any c3 ∈ C3. We will show that H1Ψ1(c3) is
ideal of Θ1.

Let u, v ∈ H1Ψ1(c3). -en, η(u), η(v) ∈η(H1Ψ1(c3)).
Since η(H1Ψ1(c3)) is ideal so η(u∨v) � η(u)∨η
(v) ∈ η(H1Ψ1(c3)). -en, by Lemma 5.2(5), u∨v ∈ H1Ψ1(c3).

Now, let u, v ∈ Θ1 such that u≤ v and v ∈ H1Ψ1(c3).
-en, u∨v � v ∈ H1Ψ1(c3). -us,
η(u∨v) � η(u)∨η(v) �η(v)∈η(H1Ψ1(c3)). -is implies that
η(u)≤ η(v). Since η(H1Ψ1(c3)) is ideal η(u) ∈ η(H1Ψ1(c3)).
-en, by Lemma 5.2(5), u ∈ H1Ψ1(c3). Finally, let u ∈ Θ1 and
v ∈ H1Ψ1(c3). -en, η(u) ∈ Θ2 and η(v) ∈ η(H1Ψ1(c3)).
Since η(H1Ψ1(c3)) is ideal, η(u) ∘ 2η(v) ∈ η(H1Ψ1(c3)), that
is, η(u ∘ 1v) ∈ η(H1Ψ1(c3)). -us, u ∘ 1v ∈H1Ψ1(c3). In a
similar way, we can show that v ∘ 1u ∈ H1Ψ1(c3). -is
completes the proof.

-e proof of (2)–(5) is similar to the proof of (1). □
With the same arguments, the next -eorem 18 can be

achieved.

Theorem 18. Let (H, C1) be soft weak isomorphic to (F, C2)

with SWQI (η, ζ). Let (Ψ2, C3) be a SCTR over Θ2 and
(H1, C1′)⊆ (H, C1). Define Ψ1(c3) �(x, y)∈Θ1 × Θ1: η(x),

ηy∈Ψ2(c3) for any c3 ∈ C3. :en, the following holds:

(1) H1Ψ1(c3) is an ideal of Θ1 iff Ψη(H1)
2 (c3) is an ideal of

Θ2 for all c3 ∈ C3

(2) H1Ψ1(c3) is a subquantale of Θ1 iff Ψη(H1)
2 (c3) is a

subquantale of Θ2 for all c3 ∈ C3

(3) H1Ψ1(c3) is a prime ideal of Θ1 iff Ψη(H1)
2 (c3) is a

prime ideal of Θ2 for all c3 ∈ C3

(4) H1Ψ1(c3) is a semiprime ideal of Θ1 iff Ψη(H1)
2 (c3) is a

semiprime ideal of Θ2 for all c3 ∈ C3

(5) H1Ψ1(c3) is a primary ideal of Θ1 iff Ψη(H1)
2 (c3) is a

primary ideal of Θ2 for all c3 ∈ C3

6. Comparison

Yang and Xu [7] introduced rough approximations in
quantale which is a kind of partially ordered algebraic
structure with an associative binary operation. -e main
idea of work in [7] is based on equivalence relation
equipped with congruence relation in quantale. In fact, the
generalization of Pawlak’s space is discussed in [7]. Further
approximation of fuzzy substructures of quantale in crisp
atmospheric space was discussed in [4]. Sometimes, it is
difficult to find out an equivalence relation and then
congruence while finding rough substructures in quantale.
To remove this hurdle, soft binary relations are utilized in
this paper. Since suitable soft binary relations are easy to
find out, it is an easy approach to apply soft rough
properties to approach different characterizations of soft
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rough structures in quantale with the help of aftersets and
foresets.

7. Conclusion

-e new combined effect of an algebraic structure quantale
with rough and soft sets is presented by using soft binary
relation, in this paper. -e soft substructures of quantales
like soft subquantale and soft ideal are discussed. -e ap-
proximation w.r.t aftersets and foresets of these substruc-
tures by SBR which is an extended notion of Pawlak’s rough
approximation space are presented. -e more generalized
version of approximation space implied from SBR overΘ1 ×

Θ2 is employed.-is new relation overΘ1 × Θ2 enables us to
use the concept of aftersets and foresets to express the lower
and upper approximation. Important results regarding to
the approximation of soft substructures of quantales under
SBR with some essential algebraic conditions such as
compatible and complete relations are introduced. To em-
phasize andmake a clear understanding, soft compatible and
soft complete relations are focused, and these are interpreted
by aftersets and foresets. Particularly, in our work, soft
compatible and soft complete relations play an important
role. Crux of these results is that whenever we approximate a
soft algebraic structure of quantale, corresponding upper
and lower approximations, are again the same kind of soft
algebraic structure. Furthermore, we presented the soft
quantale homomorphism and established the relationship of
soft homomorphic images with their approximation under
SBR.

In future, one can use this work and generalize it to
different soft algebraic structures such as soft quantale
modules, soft hypergroups, soft hyperquantales, and soft
hyperrings. One can take motivation from our generalized
approximation space and define new approximation spaces.
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