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�e lattice-valued intuitionistic fuzzy set was introduced by Gerstenkorn and Tepavcevi as a generalization of both the fuzzy set
and the L-fuzzy set by incorporating membership functions, nonmembership functions from a nonempty set X to any lattice L,
and lattice homomorphism from L to the interval [0, 1]. In this article, lattice-valued intuitionistic fuzzy subgroup type-3 (LIFSG-
3) is introduced. Lattice-valued intuitionistic fuzzy type-3 normal subgroups, cosets, and quotient groups are de�ned, and their
group theocratic properties are compared with the concepts in classical group theory. LIFSG-3 homomorphism is established and
examined in relation to group homomorphism. �e research �ndings are supported by provided examples in each section.

1. Introduction

In the sixteenth century, Gerolamo Cardano laid the notion
of probability theory to analyze games of chance. In the early
nineteenth century, Pierre Laplace complied with the clas-
sical interpretation of probability that was assumed to be the
best tool to deal with uncertainties in the experimental data.
But there are several situations where uncertainty occurs as a
vagueness more than a statistical variation. In 1965, Zadeh
[1] presented a new concept of the fuzzy subset to carter the
situation where probability fails to answer. �e fuzzy subset
of a nonempty set U as described by Zadeh is based on the
formulation of a function μ from U to the closed interval
[0, 1].�e function is called amembership function, whereas
the images of elements of U under this function are called
membership grades. For instance, let U be a collection of
�nite groups, p(x) be the total number of subgroups in
x ∈ U. If q(x) is the total number of normal subgroups
computed by a student in x, then μ(x) � q(x)/p(x) de�nes
a fuzzy membership grade to the normal subgroups in x. But

there is a chance that if the group order is large and the
student is unable to compute all the normal subgroups, then
μ(x) will be greater than the one reported by the student.
�is leads us toward the concept of nonmembership grades
�rst introduced by Atanassov [2], and the fuzzy set that
incorporates membership and non-membership grades is
termed an intuitionistic fuzzy set (IFS). Atanassov [3]
presented basic models, properties, arithmetic operations,
algebraic operators, and relations over the intuitionistic
fuzzy set.

Over the years, several other generalizations of fuzzy sets
have been introduced depending upon various parameters of
uncertainty, vagueness, and imprecision by employing
membership, nonmembership, hesitancy, and indetermi-
nacy grades. In all these generalizations, the grades are real
numbers ranging between 0 and 1. �e interval [0, 1] in-
herits the natural partial order from the set of real numbers
and constitutes a lattice. Partial ordering and fuzzy uncer-
tainties are key features of real-life problems with in�nite
solutions or no solution at all. So it is quite obvious to think
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about the replacement of [0, 1] by any suitable lattice.
Goguen [4] introduced the concept of L-fuzzy subsets of S

where the interval [0, 1] is replaced by a partially ordered set
L. Atanassov [5] presented the concept of the lattice-valued
intuitionistic fuzzy set (LIFS-1) by using a complete lattice L,
an involutive order reversing unary operation N: L⟶ L

two functions μ, ]: S⟶ L. Due to the compulsion of the
operator N, the definition of LIFS-1 is not applicable to a
larger collection of lattices. Gerstenkorn and Tepa �v cev i

�

[6]
refined the concept introduced by Atanassov. )ey replaced
lattice with complete lattice and unary operator N with a
linearization function ℓ: L⟶ [0, 1]; and termed their
finding lattice-valued intuitionistic fuzzy set of a second type
(LIFS-2). Different properties, such as the decomposition
theorem and synthesis, were established for these fuzzy sets.
However, the choice of a linearization map makes LIFS-2
less capable of dealing with basic set operations. For in-
stance, the union of two LIFS-2s need not be a LIFS-2. )us,
the map was replaced with lattice homomorphism
α: L⟶ [0, 1], and the refinement is called a lattice-valued
intuitionistic fuzzy set type-3 and abbreviated as LIFS-3.

)e term group was first used by Évariste Galois in the
1830s for the set of roots of polynomial equations. However,
the modern-day definition of the group was established in
1870. Since then, significant research has been carried out in
this area, and now the group is one of the most important
algebraic structures providing a basic structure for several
mathematical branches including analysis, game theory,
coding theory, and algebraic geometry. Groups have strong
applications in different scientific fields, especially sym-
metric groups, which play a vital role in theocratical physics
and quantum mechanics. In genetics, the four-codon basis
constitutes a group isomorphic to the Klein four-group.
Gene mutation can be identified by establishing group
homomorphism on copies of the sixty-four codon system.
)e coset diagram depicting group action has a close link
with the crystal structure in chemistry. After Zadeh’s in-
vention, many researchers attempted to use and replace the
ordinary set with the fuzzy set in various theocratical and
experimental areas.

In 1970, Rosenfeld [7] attempted to combine fuzzy
concepts in group theory and termed the findings as a fuzzy
subgroup. Rosenfeld investigated fundamental group
theocratic properties for the newly established algebra. In
later years, algebraists examined the structural properties of
fuzzy subgroups. Anthony [8, 9] modified the definition of
Rosenfeld by strengthening the condition for images of
elements and their inverses. In fuzzy groups, it is observed
that level sets and proved that a fuzzy subset of a group G is a
fuzzy subgroup if and only if all the level sets are subgroups
of G [10, 11]. In 1982, Liu [12] suggested fuzzy invariant
subgroups and fuzzy ideals. Ajmal and Prajapati [13] and
Mukherjee et al. [14, 15] connected fuzzy normal subgroups
and fuzzy cosets and group-theoretic analogs. Kumar et al.
[16] resolved fuzzy normal subgroups and fuzzy quotients.
Moreover, Tarnauceanu [17] presented the concept of fuzzy
normal subgroups for the class of finite groups. Choudhary
et al. [18] and Addis [19] investigated structure-preserving
maps and fundamental isomorphism theorems. Malik et al.

[20] and Mishref [21] introduced the fuzzy normal series to
generalize the concept of nilpotancy and solubility of groups
to fuzzy subgroups. Zhan and Zhisong [22] defined the
intuitionistic fuzzy subgroup as a generalization of Rose-
nfeld’s fuzzy subgroup. By starting with a given classical
group, they define a intuitionistic fuzzy subgroup using the
classical binary operation defined over the given classical
group. Li and Gui [23] extended Zhan and Zhisong’s work
on intuitionistic fuzzy groups. Tarsuslu et al. [24] generalized
the action of a group on a set to intuitionistic fuzzy action.
Bal et al. [25] investigated the kernel subgroup of intui-
tionistic fuzzy subgroups.

)e employment of lattice order turns the L-fuzzy set
into an important generalization of the fuzzy set widely
applicable in decision language [4], system analysis [26], and
coding theory [27]. Group theory is essential not only for
mathematical advancements, but also for other scientific
fields such as physics [28–30] and chemistry [31, 32]. Since
1970, several mathematicians have been extensively inves-
tigated group structure in fuzzy and generalized fuzzy en-
vironments. )e importance of LIFS-3 and group on their
own motivates to combine these two concepts. )e main
objective of this article is to introduce the notion of lattice-
valued intuitionistic fuzzy subgroup type-3 and analyze its
algebraic properties.

2. Preliminaries

)is section is introductory in nature and contains all the
essential definitions and fundamental properties that are
necessary to understand the newly established structure of
LIFSG-3.

2.1. L-Fuzzy Subset. To understand a L-fuzzy subset [4], first
we will define the order relation and lattice. For a nonempty
set P, a reflexive, antisymmetric, and transitive relation is
termed as a partial order on P, commonly denoted by the
notation “less L than or equal,” that is, ≤ .)e set P is termed
as a partially ordered set. If P is a partially ordered set, then
the partial order gives an instinct to the concept of the
greatest and smallest element in the set. If a, b ∈ P are related
in such a way that a≤ b, then we can pronounce it as b is
greater than a or another way round a is smaller than b.

Now if∅≠Q is any subset of P, then a member ϱ of P is
called an upper (lower) bound of Qif ϱ is greater (smaller)
than all the elements in Q. Perhaps Q has more than one
upper (lower) bounds, the smallest (greatest) of these upper
(lower) bounds is termed to be supremum or meet (infimum
or join) of Q, denoted by ∨(∧). A set L together with partial
order in which join (∧) and meet (∨) exist for every pair of
elements is called a lattice, denoted by (L, ≤ ,∨,∧). A lattice
L is said to be complete if ∨ and ∧ exits for every nonempty
subset of L. A lattice L is titled to be distributive if ∨ and ∧ are
distributive over each other.

Definition 1. Let S be a nonempty set and L � (L, ≤ ,∨,∧)
be a complete distributive lattice which has least (bottom)
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and greatest (top) elements say B and T, respectively. )en,
an L-fuzzy subset ζ􏽥

S
�
of S is narrated as follows:

ζ􏽥
S
�
: S⟶ L. (1)

Definition 2. If S is a group and the L-fuzzy subset satisfy
the following conditions for all s1, s2 ∈ S,

ζ􏽥
S
�

s1s2( 􏼁≥∧ ζ􏽥
S
�

s1( 􏼁, ζ􏽥
S
�

s2( 􏼁􏼨 􏼩,

ζ􏽥

S
�
�

s
−1

􏼐 􏼑 � ζ􏽥

S
�
�
(s) ∀s ∈ G.

(2)

)en, it is termed as a L- fuzzy subgroup [33] of S.

2.2. L-Intutionistic Fuzzy Subset. Gerstenkorn and Tepa �v

cev i
�

[6] refined the concept introduced by Atanassov. )ey
replaced lattice by complete lattice; unary operator N by
lattice homomorphism ℘: L⟶ [0, 1] and refinement is
abbreviated as (LIFS-3).

Definition 3. A LIFS-3 is the set (S, L, ζIL
, ξIL

,℘), with S a
nonempty set, L is a complete lattice with top and bottom
elements T and B, respectively, ζIL

: X⟶ L and
ξIL

: S⟶ L are membership and nonmemberships func-
tions. )e map ℘: L⟶ [0, 1] is a lattice homomorphism
with ℘(T) � 1, ℘(B) � 0 (that is, for all ℓ1, ℓ2 ∈ L,

℘ ℓ1∧ℓ2( 􏼁 � ℘ ℓ1( 􏼁∧℘ ℓ2( 􏼁

℘ ℓ1∨ℓ2( 􏼁 � ℘ ℓ1( 􏼁∨℘ ℓ2( 􏼁
􏼡. (3)

Such that for every s ∈ S, ℘(ζIL
(s)) + ℘(ξIL

(s))≤ 1.

Example 1. Consider S � a, b, c, d, e, f􏼈 􏼉 and the lattice
L � B, r, s, t, τ{ } w.r.t partial order

B≤B,

B≤ r,

B≤ s,

B≤ t,

B≤ τ

τ ≤ τ,

B≤ τ,

r≤ τ,

s≤ τ,

t≤ τ,

r≤ s.

(4)

Define ℘: L⟶ [0, 1], ζIL
: S⟶ L and ξIL

: S⟶ L

℘(τ) � 1,

℘(B) � 0,

℘(r) � 0.2,

℘(s) � 0.5,

℘(t) � 0.3,

ζIL
(a) � τ,

ζIL
(b) � ζIL

(c) � s,

ζIL
(d) � ζIL

(e) � ζIL
(f) � r,

ζIL
(a) � τ,

ζIL
(b) � ζIL

(c) � s,

ζIL
(d) � ζIL

(e) � ζIL
(f) � r.

(5)

)en, for every s ∈ S, ℘(ζIL
(s)) + ℘(ξIL

(s))≤ 1 imply
that (S, L, ζIL

, ξIL
,℘) is a LIFS-3 of S.

3. Lattice-Valued Intuitionistic Fuzzy
Subgroup Type-3

We will define lattice-valued intuitionistic fuzzy subgroups
(LIFSG) by using a group G, membership ζIL

: G⟶ L,
nonmembership ξIL

: G⟶ L, and a lattice homomor-
phism ℘ : L⟶ L. )e combination of LIFS − 3 and group
will provide us a new refined algebraic structure which we
can use effectively in real world problems.

Definition 4. For a group G, lattice L with top and bottom
elements T and B, respectively, and lattice homomorphism
℘: L⟶ [0, 1]. A LIFS-3 of G, that is, IL � (G, L, ζIL

, ξIL
,℘)

formulates a LIFSG-3 of G provided that for every x, y ∈ G,

(1) ζIL
(xy)≥ζIL

(x)∧ζIL
(y)andξIL

(xy) ≤ ξIL
(x)∨ξIL

(y)

(2) ζIL
(x) � ζIL

(x−1) and ξIL
(x) � ξIL

(x−1)

Proposition 1. Let L be a lattice (with top and bottom el-
ements T and B, respectively) and G be a group. Let IL �

(G, L, ζIL
, ξIL

,℘) be a LIFSG-3 of G. For t1 ∈ ImζIL
and

t2 ∈ ImξIL
, the (t1, t2)-cut set (or level set) is a subgroup of G,

called (t1, t2)-cut subgroup (or level subgroup).

Proof. Recall the definition of cut sets in IFS where these
sets are defined as follows:

I
t1 ,t2( )

L � x ∈ G: ζIL
(x)≥ t1 and ξIL

(x)≤ t2􏽮 􏽯. (6)

Let e be the identity element in G. )en, for any
u ∈ G e ∈ uu−1

⇒ζIL
(e) � ζIL

uu
−1

􏼐 􏼑≥ ζIL
(u)∧ζIL

u
−1

􏼐 􏼑. (7)

By the property of LIFSG, we have

ζIL
(e) � ζIL

uu
−1

􏼐 􏼑≥ ζIL
(u)∧ζIL

(u),

⇒ζIL
(e)≥ ζIL

(u)∀u ∈ G.
(8)

⇒ ζIL
(e) is an upper bound for ImζIL

.
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Similarly, ξIL
(e)≤ ξIL

(u)∀u ∈ G, this implies that ξIL
(e)

is an lower bound for Im ξIL
. We get that e ∈ I

(t1 ,t2)
L . Let

u, v ∈ I
(t1 ,t2)
L . )en,

ζIL
(u), ζIL

(v)≥ t1,

ξIL
(u), ξIL

(v)≤ t2,

ζIL
uv

−1
􏼐 􏼑≥ ζIL

(u)∧ξIL
v

−1
􏼐 􏼑,

⇒ζIL
uv

−1
􏼐 􏼑≥ t1.

(9)

Similarly, ξIL
(uv−1)≤ t2, this implies that uv−1 ∈ I

(t1 ,t2)
L .

Hence, I
(t1 ,t2)
L is a subgroup of G. □

Proposition 2. For a group G and lattice L, let
IL � (G, L, ζIL

, ξIL
,℘) be a LIFS-3 such that for each

t1, t2 ∈ L, the (t1, t2)-cut set I
(t1 ,t2)
L ≤G. =en, I is a LIFSG-3

of G.

Proof. Suppose for all t1 ∈ Im ζIL
, t2 ∈ Im ξIL

, I(t1 ,t2)
L ≤G. Let

u, v ∈ G. )en, there are two possibilities

(i) Case 1: Let u, v ∈ I
(t1 ,t2)
L . )en, uv ∈ I

(t1 ,t2)
L and

ζIL
(u)≥ t1, ζIL

(v)≥ t1,

ξIL
(u)≤ t2, ξIL

(v)≤ t2

⇒ζIL
(uv)≥ t1, ξIL

(uv)≤ t2.

(10)

Suppose ζIL
(u) � ℓ1 and ζIL

(v) � ℓ2 and ℓ3 � ℓ1∧ℓ2.
)en ℓ3 ≤ ℓ1 and ℓ2 and uv ∈ I

(ℓ3 ,t2)
L . We get that

ζIL
(uv)≥ ℓ3 � ζIL

(u)∧ζIL
(v). (11)

Similarly, suppose ξIL
(u) � ℓ4

�
2

√
and ξIL

(v) � ℓ5 and
ℓ6 � ℓ4∨ℓ5. )en, ℓ6 ≥ ℓ4 and ℓ5 and uv ∈ I

(t1 ,ℓ6)
L . We get

that

ξIL
(uv)≤ ℓ6 � ξIL

(u)∨ξIL
(v). (12)

If u ∈ I
(t1 ,t2)
L ≤G, then by definition u−1 ∈ I

(t1 ,t2)
L . Now

using the same argument as above it is easy to show that

ζIL
u

−1
􏼐 􏼑 � ζIL

(u),

ξIL
u

−1
􏼐 􏼑 � ξIL

(u).
(13)

(ii) Case 2: if u ∈ I
(t1 ,t2)
L , v ∈ I

(t3 ,t4)
L , then three cases arise:

(1) t1 ≤ t3, t4 ≤ t2, then I
(t3 ,t4)
L ≤ I

(t1 ,t2)
L , this implies

that u, v ∈ I
(t1 ,t2)
L

(2) t1 ≤ t3, t2 ≤ t4. As L is a lattice so t2 ∨ t4 exist.
Suppose t5 � t2 ∨ t4 then t2, t4 ≤ t5

I
t1 ,t5( )

L � g ∈ G: ζIL
(g)≥ t1, ξIL

(g)≤ t5􏽮 􏽯. (14)

Now, ζIL
(v)≥ t3 ≥ t1, ξIL

(u)≤ t2 ≤ t5, ξIL
(v)≤ t4 ≤ t5

⇒ u, v ∈ I
t1 ,t5( )

L . (15)

(3) t1 ≥ t3, t4 ≤ t2. As L is a lattice so t1 ∧ t3 exist.
Suppose t6 � t1 ∧ t3 then t1, t3 ≥ t6,

I
t6 ,t4( )

L � g ∈ G: ζI(g)≥ t6, ξI(g)≤ t4􏼈 􏼉. (16)

Now ζIL
(v)≥ t3 ≥ t6, ζIL

(u)≥ t1 ≥ t6, ξIL
(v)≤ t4 ≤ t2

⇒ u, v ∈ I
t6 ,t2( )

L . (17)

On the basis of previous discussion we conclude that the
elements of G sustain the axioms of LIFSG-3. Hence, IL is a
LIFSG-3 of G. □

Remark 1. For every group G and lattice L with T and B as
the top and bottom element, the LIFS-3 IL � (G, L, ζIL

,

ξIL
,℘) is a LIFSG-3 of G if and only if

I
t1 ,t2( )

L ≤G ∀t1, t2 ∈ L. (18)

Proposition 3. For a group G and lattice L with T and B as
the top and bottom element, let H ≤ G. For t ∈ L, define ζHt

and ξHt
from G to L as

ζHt
(g) �

t, if g ∈ H,

B, if g ∈
G

H
,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ξHt
(g) �

t, if g ∈ H,

T, if g ∈
G

H
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

Let ℘: L⟶ [0, 1] be a lattice homomorphism. =en,
℘(T) � 1 and ℘(B) � 0. Suppose ℘(t) � 0.2, then
_IL � (G, L, ζHt

, ξHt
,℘) is a LIFSG-3 of G.

Proof. Let ℘: L⟶ [0, 1] be a lattice homomorphism
defined as ℘(T) � 1 and ℘(B) � 0 and ℘(t) � 0.2. For
g ∈ G we have two cases:

(1) Case 1: Let g ∈ H, ζHt
(g) � t, ξHt

(g) � t

⇒℘ ζHt
(g)􏼐 􏼑 + ℘ ξHt

(g)􏼐 􏼑 � ℘(t) + ℘(t) � 0.4< 1. (20)

(2) Case 2: Let g ∈ G/H, ζHt
(g) � B, ξHt

(g) � T

⇒℘ ζHt
(g)􏼐 􏼑 + ℘ ξHt

(g)􏼐 􏼑 � ℘(B) + ℘(T) � 1. (21)

Now, for g1, g2 ∈ G, we have three cases:
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(1) g1, g2 ∈ H, this implies that g1g2 ∈ H

ζHt
g1( 􏼁 � t,

ζHt
g2( 􏼁 � t,

ζHt
g1g2( 􏼁 � t,

ξHt
g1( 􏼁 � t,

ξHt
g2( 􏼁 � t,

ξHt
g1g2( 􏼁 � t.

(22)

(2) g1 ∈ H, g2 ∈ G/H, this implies that g1g2 ∉ H

⇒g1g2 ∈ G/H. (23)

)us, ζHt
(g1) � t, ζHt

(g2) � B, ζHt
(g1g2) � B

⇒ ζHt
g1( 􏼁∧ζHt

g2( 􏼁 � t∧B � B,

⇒ζHt
g1g2( 􏼁 � B � ζHt

g1( 􏼁∧ζHt
g2( 􏼁.

(24)

Similarly, ξHt
(g1g2) � T � ξHt

(g1)∨ξHt
(g2).

(3) g1, g2 ∈ G/H, then two cases arises:

(a) g1g2 ∈ G/H

ζHt
g1( 􏼁 � B, ζHt

g2( 􏼁,

� B, ζHt
g1g2( 􏼁,

� BξHt
g1( 􏼁,

� T,

ξHt
g2( 􏼁 � T,

ξHt
g1g2( 􏼁 � T.

(25)

(b) g1g2 ∈ H

ζHt
g1( 􏼁 � B, ζHt

g2( 􏼁 � B, ζHt
g1g2( 􏼁 � t≥BξHt

g1( 􏼁

� T, ξHt
g2( 􏼁 � T, ξHt

g1g2( 􏼁 � t≤T.

(26)

From previous discussion we get that

ζHt
g1g2( 􏼁≥ ζHt

g1( 􏼁∧ζHt
g2( 􏼁,

ξHt
g1g2( 􏼁≤ ξHt

g1( 􏼁∨ξHt
g2( 􏼁,

ζHt
(g) � ζHt

g
−1

􏼐 􏼑,

ξHt
(g) � ξHt

g
−1

􏼐 􏼑.

(27)

⇒ _IL is a lattice-valued intuitionistic fuzzy subgroup
type-3 of G.

Now, if s1 ∈ Im ζHt
, s2 ∈ Im ξHt

⇒s1 ∈ B, t{ }, s2 ∈ t, T{ }. (28)

)en, (t, t)− cut subgroup

_I
(t,t)

L � g ∈ G: ζHt
(g)≥ t, ξHt

(g)≤ t􏽮 􏽯,

� H.
(29)

□

Remark 2. Every subgroup H of G is a cut subgroup of some
suitable LIFSG-3 of G.

4. Lattice-Valued Intuitionistic Fuzzy Normal
Subgroups Type-3

As we defined the normality of the intuitionistic fuzzy
subgroup in the previous chapter, similarly, in this chapter,
we construct the lattice-valued intuitionistic fuzzy normal
subgroup type-3 (LIFNSG-3).)en, using this definition, we
proved some useful results in this section.

Definition 5. For a group G, lattice L with top element T and
bottom element B and lattice homomorphism ℘: L⟶
[0, 1]. Let IL � (G, L, ζIL

, ξIL
,℘) be a LIFSG-3. )en, IL is

called LIFNSG-3 G if

ζIL
xyx

−1
􏼐 􏼑 � ζIL

(y),

ξIL
xyx

−1
􏼐 􏼑 � ξIL

(y)∀x, y ∈ G.
(30)

Proposition 4. For a group G, lattice L with top element T

and bottom element B and lattice homomorphism
℘: L⟶ [0, 1]. If IL � (G, L, ζIL

, ξIL
,℘) is a LIFNSG-3 of G,

then for t1 ∈ Im ζIL
and t2 ∈ Im ξIL

I
t1 ,t2( )

L ⊲G. (31)

Proof. Suppose IL is a LIFNSG-3 of G. Let y ∈ I
t1 ,t2
L and

x ∈ G. )en, ζIL
(y)≥ t1 and ξIL

(y)≤ t2 this implies that

xyx−1 ∈ I
(t1 ,t2)
L ,

⇒I
t1 ,t2( )

L ⊲G. (32)
□

Proposition 5. For a groupG, the set IL � (G, L, ζIL
, ξIL

,℘) is
a LIFNSG-3 of G if and only if

ζIL
(xy) � ζIL

(yx),

ξIL
(xy) � ξIL

(yx)∀x, y ∈ G.
(33)

Proof. Suppose IL is a LIFNSG-3 of G. )en,
ζIL

(xyx−1) � ζIL
(y)∀x, y ∈ G, implies that ζIL

(xy) �

ζIL
(yx). Similarly we get that ξIL

(xy) � ξIL
(yx). Conversely,

assume that ζIL
(xy) � ζIL

(yx) and ξIL
(xy) � ξIL

(yx)∀x,

y ∈ G. )en, ζIL
((xy)x−1) � ζIL

(x−1(xy)) � ζIL
(y) and

ξIL
((xy)x−1) � ξIL

(x−1(xy)) � ξIL
(y). □
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Proposition 6. Let IL � (G, L, ζIL
, ξIL

,℘) be a LIFSG-3 of G.
=en IL is LIFNSG-3 if and only if for all x, y ∈ G,

ζIL
([x, y])≥ ζIL

(y),

ξIL
([x, y])≤ ξIL

(y).
(34)

Proof. Suppose IL is LIFNSG-3 of G. )en, ζIL
([x, y]) �

ζIL
(xyx−1y−1) implies that ζIL

([x, y])≥ ζIL
(xyx−1)∧ζIL

(y−1). We get that ζIL
([x, y])≥ ζIL

(y). Similarly, ξIL
([x, y])

≤ ξIL
(y). Conversely, assume that ζIL

([x, y])≥ ζIL
(y) and

ξIL
([x, y])≤ ξIL

(y). )en ζIL
(xyx−1) � ζIL

(xyx−1y−1y). We
get that ζIL

(xyx−1)≥ ζIL
([x, y])∧ζIL

(y).

⇒ζIL
xyx

−1
􏼐 􏼑≥ ζIL

(y). (35)

ξIL
xyx

−1
􏼐 􏼑≤ ξIL

(y). (36)

As ζIL
(y) � ζIL

(x−1xyx−1x) implies ζIL
(y)≥ ζIL

(x)∧
ζIL

(xyx−1)∧ζIL
(x)􏽮 􏽯. If ζIL

(x)∧ζIL
(xyx−1) � ζIL

(x), then
ζIL

(y)≥ ζIL
(x)∀x, y ∈ G. ⇒ ζIL

is constant. In this case,

ζIL
(y) � ζIL

xyx
−1

􏼐 􏼑. (37)

If ζIL
(x)∧ζIL

(xyx−1) � ζIL
(xyx−1)

⇒ζIL
(y)≥ ζIL

xyx
−1

􏼐 􏼑. (38)

If ξIL
(x)∨ξIL

(xyx−1) � ξIL
(x), then this implies that

ξIL
(y)≤ ξIL

(x)∀x, y ∈ G. )en, ξIL
is constant. In this case

ξIL
(y) � ξIL

(xyx−1). If ξIL
(x)∨ξIL

(xyx−1) � ξIL
(xyx−1)

⇒ ξIL
(y)≤ ξIL

xyx
−1

􏼐 􏼑. (39)

From (35) and (38), we get ζIL
(xyx−1) � ζIL

(y). Simi-
larly, from (36) and (39), we get ξIL

(xyx−1) � ξIL
(y). )us,

IL is LIFNSG-3 of G. Hence proved. □

Theorem 1. Let G be a finite group and IL � (G,

L, ζIL
, ξIL

,℘) be a LIFSG-3 of G, such that all (t, s)-cut
subgroups of IL are normal in G. =en, IL is a LIFNSG-3.

Proof. As G is finite this implies that ImζIL
and Im ξIL

are
finite sets. Suppose Im ζIL

� t1, t2, . . . , tk􏼈 􏼉 with t1 < t2,

. . . , < tk and Im ξIL
� s1, s2, . . . , sm􏼈 􏼉 with s1 > s2, . . . ,

> sm−1 > sm. Consider X � I
(ti ,sj)

L : 1≤ i≤ k,􏼚 1≤ j≤m} be
the complete set of (ti, sj)-cut subgroup of IL. As each
I

(ti ,sj)

L ⊲G, so

I
ti,sj( 􏼁

L

I
ti−1 ,sj+1( 􏼁

L

� x ∈ G: ζIL
(x) � ti, ξIL

(x) � sj􏽮 􏽯. (40)

It is normal in G, it can be expressed as union of C �

xyx−1: x ∈ G􏼈 􏼉 and y ∈ I
(ti,sj)

L /I(ti−1 ,sj+1)

L . Due to normality of
cut subgroups, ζIL

(xyx−1) � ζIL
(y) and ξIL

(xyx−1) � ξIL
(y)

for all x ∈ G and y ∈ I
(ti ,sj)

L /I(ti−1 ,sj+1)

L . We get similar result
from each cut-subgroup. Hence, ζIL

(xyx−1) � ζIL
(y) and

ξIL
(xyx−1) � ξIL

(y)∀x, y ∈ G. )is implies that IL is a
LIFNSG-3 of G. □

5. Coset and Homomorphism in Lattice-Valued
Intuitionistic Fuzzy Subgroup Type-3

In the first section, we introduced the fundamental concepts
of the factor group and group homomorphism. In this
section, we will discuss these two important features of
classical group theory for LIFSG-3.

Definition 6. For a group G, lattice L with top and bottom
element T and B. Consider the lattice homomorphism
℘: L⟶ [0, 1]. Let IL � (G, L, ζIL

, ξIL
,℘) be a LIFSG-3 of G.

For x ∈ G define two maps
ζx

IL
: G⟶ L as ζx

IL
(g) � ζIL

gx
−1

􏼐 􏼑∀g ∈ G,

ξx
IL

: G⟶ L as ξx
IL

(g) � ξIL
gx

−1
􏼐 􏼑∀g ∈ G.

(41)

)en,

℘ ζx
IL

(g)􏼐 􏼑 + ℘ ξx
IL

(g)􏼐 􏼑 � ℘ ζIL
gx

−1
􏼐 􏼑􏼐 􏼑 + ℘ ξIL

gx
−1

􏼐 􏼑􏼐 􏼑≤ 1.

(42)

)is implies that Ix
L � (G, L, ζx

IL
, ξx

IL
,℘) is a LIFS-3 of G.

)e LIFS-3
I

x
L � G, L, ζx

IL
, ξx

IL
,℘􏼐 􏼑, (43)

where G is called the lattice-valued intuitionistic fuzzy
coset type-3 (LIFC-3) of G induced by x and IL.

Proposition 7. If IL is a LIFNSG-3 of G, then for any x ∈ G,

ζx
IL

(xg) � ζx
IL

(gx) � ζIL
(g),

ξx
IL

(xg) � ξx
IL

(gx)

� ξIL
(g)∀g ∈ G.

(44)

Proof. Suppose IL is a LIFNSG-3 of G. )en, for x inG

ζx
IL

(xg) � ζIL
xgx

−1
􏼐 􏼑

� ζIL
(g),

ζx
IL

(gx) � ζIL
gxx

−1
􏼐 􏼑

� ζIL
(g).

(45)

Similarly, we proved for ξIL
. Hence proved. □

Theorem 2. Let IL � (G, L, ζIL
, ξIL

,℘) be a LIFNSG-3 of G.
Let G/IL � Ix

L: x ∈ G􏼈 􏼉 be the collection of all LIFC-3 of G

induced by x ∈ G and IL. =en, G/IL is a group under the
binary operation Ix

LoI
y
L � (G, L, ζxy

IL
, ξxy

IL
,℘) and

IL � (G/IL, L, ζIL
, ξIL

,℘) is a LIFSG-3 of G/IL, where

ζIL
I

x
L( 􏼁 � ζIL

(x),

ξIL
I

x
L( 􏼁 � ξIL

(x)∀Ix
L ∈ G/IL.

(46)

Proof. Let I
x1
L , I

x2
L , I

y1
L , I

y2
L ∈ G/IL such that I

x1
L � I

y1
L

and I
x2
L � I

y2
L

Consider ζx1x2
IL

(g) � ζIL
(g(x1x2)

−1) implies that
ζx1x2

IL
(g)≥ ζIL

(gy−1
2 y−1

1 )∧ζIL
(y1y2x

−1
2 x−1

1 ). As ζx1
IL

� ζy1
IL
and

ζx2
IL

� ζy2
IL

6 Computational Intelligence and Neuroscience



⇒ζIL
gx

−1
1􏼐 􏼑 � ζIL

gy
−1
1􏼐 􏼑,

⇒ζIL
gx

−1
2􏼐 􏼑 � ζIL

gy
−1
2􏼐 􏼑∀g ∈ G.

(47)

If g � y1y2x
−1
2 , then ζIL

(y1y2x
−1
2 x−1

1 ) � ζIL
(y2x

−1
2 ),

because IL is a lattice-valued intuitionistic fuzzy normal
subgroup type-3. As ζIL

(gx−1
2 ) � ζIL

(gy−1
2 ), implies that

ζIL
(y1y2x

−1
2 x−1

1 ) � ζIL
(e). )us, we get that

ζx1x2
IL

(g)≥ ζy1y2
IL

(g). (48)

Similarly, we get

ξx1x2
IL

(g) � ξy1y2
IL

(g). (49)

Now we have, ℘(ζx1x2
IL

(g)) + ℘(ξx1x2
IL

(g)) � ℘(ζIL

(g(x1x2)
−1)) + ℘(ξIL

(g(x1x2)
−1))

℘ ζx1x2
IL

(g)􏼐 􏼑 + ℘ ξx1x2
IL

(g)􏼐 􏼑≤ 1. (50)

)us, the binary operation is well defined. )e asso-
ciativity of composition of functions implies that the given
binary operation is associative. Consider

I
e
L � G, L, ζe

IL
, ξe

IL
,℘􏼐 􏼑, (51)

where ζe
IL

(g) � ζIL
(ge−1) � ζIL

(g) and ξe
IL

(g) � ξIL
(ge−1)

� ξIL
(g)∀g ∈ G, this implies that Ie

L � IL and for any
Ix

L ∈ G/IL.
I

e
LoI

x
L � G, L, ζx

IL
, ξx

IL
,℘􏼐 􏼑 � I

x
L. (52)

Similarly, Ix
L o Ie

L � Ix
L this implies that Ie

L is the identity
element in G/IL. Let Ix

L ∈ G/IL, where x ∈ G. As G is a group
so x−1 ∈ G, implies that Ix−1

L ∈ G/IL and

I
x
LoI

x−1

L � G, L, ζxx−1

IL
, ξxx−1

IL
,℘􏼒 􏼓,

I
x−1

L oI
x
L � I

e
L.

(53)

⇒G/IL is a group.
Consider IL � (G/IL, L, ζIL

, ξIL
,℘), where

ζIL
I

x
L( 􏼁�ζIL

(x),

ξIL
I

x
L( 􏼁�ξIL

(x)∀Ix
L∈

G

IL

,

ζIL
I

x
LoI

y
L( 􏼁�ζIL

I
xy
L( 􏼁

ζIL
I

x
LoI

y
L( 􏼁≥ζIL

I
x
L( 􏼁∧ζIL

I
y
L( 􏼁,

ζIL
I

x
LoI

y
L( 􏼁�ζIL

I
xy
L( 􏼁,

ζIL
I

x
LoI

y
L( 􏼁≥ζIL

I
x
L( 􏼁∧ζIL

I
y
L( 􏼁,

ξIL
I

x
LoI

y
L( 􏼁�ξIL

I
xy
L( 􏼁,

ξIL
I

x
LoI

y
L( 􏼁( 􏼁≤ξIL

I
x
L( 􏼁∨ξIL

I
y
L( 􏼁,�℘ ζIL

(x)􏼐 􏼑+℘ ξIL
(x)􏼐 􏼑􏼐 ≤1

℘ ζIL
I

x
L( 􏼁􏼐 􏼑+℘ ξIL

I
x
L( 􏼁􏼐 􏼑≤1

℘ ζIL
I

x
L( 􏼁􏼐 􏼑+℘ ξIL

I
x
L( 􏼁􏼐 􏼑,

(54)
⇒ IL is a LIFSG-3 of G/IL. Hence proved. □

Definition 7. Let IL be a LIFNSG-3 of G. )en, IL is called a
lattice intuitionistic fuzzy quotient subgroup type-3 of G

denoted by LIFQSG − 3.

Proposition 8. Let G be a group and IL be a LIFNSG-3 of G.
=e map φ: G⟶ G/IL defined by φ(x) � Ix

L∀xnG is epi-
morphism with

ker(φ) � GζIL
ξIL

� x ∈ G: ζIL
(e) � ζIL

(x), ξIL
(e) � ξIL

(x)􏽮 􏽯.

(55)

Proof. Let x, y ∈ G, then φ(xy) � I
xy
L � Ix

LoI
y
L � φ(x)oφ

(y) this implies that φ is a group homomorphism. Clearly, φ
is onto,

ker(φ) � x ∈ G: ζIL
(e) � ζIL

(x), ξIL
(e) � ξIL

(x)􏽮 􏽯,

ker(φ) � GζIL
ξIL

.
(56)

From 1st isomorphism theorem we get that G/GζIL
ξIL

�

G/IL. Hence proved. □

6. Group Homomorphism and Lattice-Valued
Intuitionistic Fuzzy Subgroup Type-3

Proposition 9. Let G be a group and IL � (G, L, ζIL
, ξIL

,℘)
be a lattice-valued intuitionistic fuzzy subgroup type-3 of G.
Suppose ϑ : G⟶ G

�

be a group isomorphism. =en,
JL � (G

�

, L, ϑoζIL
, ϑoξIL

,℘), where

ϑoζIL
􏼐 􏼑(g

�
) � ζIL

ϑ−1
(g

�
)􏼒 􏼓,

ϑoξIL
􏼐 􏼑(g

�
) � ξIL

ϑ−1
(g

�
)􏼒 􏼓,

(57)

is a LIFSG-3 of G
�

.

Proof. Let g
�

1, g
�

2 ∈ G
�

. )en,

ϑoζIL
􏼐 􏼑 g

�

1g
�

2􏼒 􏼓 � ζIL
ϑ−1

g
�

1g
�

2􏼒 􏼓􏼒 􏼓,

ϑoζIL
􏼐 􏼑 g

�

1g
�

2􏼒 􏼓≥ ϑoζIL
g
�

1􏼒 􏼓∧ϑoζIL
g
�

2􏼒 􏼓.

(58)

Similarly, (ϑoξIL
)(g

�

1g
�

2)≤ ϑoξIL
(g

�

1)∨ϑoξIL
(g

�

2). Let
a ∈ G

�

. )en,

ϑoζIL
􏼐 􏼑 a

−1
􏼐 􏼑 � ζIL

ϑ−1
a

−1
􏼐 􏼑􏼐 􏼑,

ϑoζIL
􏼐 􏼑 a

−1
􏼐 􏼑 � ϑoζIL

(a).
(59)

Similarly, (ϑoξIL
)(a−1) � ϑoξIL

(a). Now,

℘ ϑoζIL
(g

�
)􏼒 􏼓 + ℘ ϑoξIL

(g
�
)􏼒 􏼓 � ℘ ζIL

ϑ−1
(g

�
)􏼒 􏼓􏼒 􏼓 + ℘ ξIL

ϑ−1
(g

�
)􏼒 􏼓􏼒 􏼓

℘ ϑoζIL
(g

�
)􏼒 􏼓 + ℘ ϑoξIL

(g
�
)􏼒 􏼓≤ 1.

1
2
.

(60)

⇒ JL is a LIFSG-3 of G
�

. Hence proved.
Similar to the above proposition, now we will relate

LIFNSG-3 of G and G
�

. □
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Proposition 10. Let G be a group and IL � (G, L, ζIL
, ξIL

,℘)
be a LIFNSG-3 of G. If ϑ : G⟶ G

�

be a group isomorphism,
then JL � (G

�

, L, ϑoζIL
, ϑoξIL

,℘) is a LIFNSG-3 of G
�

.

Proof. Suppose IL is a LIFNSG-3 of G. Let u, v ∈ G
�

. )en,
for u, v ∈ G

�

ϑoζIL
uvu

−1
􏼐 􏼑 � ζIL

ϑ−1
uvu

−1
􏼐 􏼑􏼐 􏼑

� ζIL
ϑ−1

(v)􏼐

� ϑoζIL
(v).

(61)

Similarly, ϑoξIL
(uvu−1) � ξIL

(ϑ−1(v)) � ϑoξIL
(v)⇒JL is a

LIFNSG-3 of G
�

. Hence proved.
In the following proposition we will induce LIFSG-3 of G

from the LIFS-3 of G
�

. □

Proposition 11. Let G, G
�

be two groups and φ : G⟶ G
�

be
a group homomorphism. Suppose JL � (G

�

, L, ζJL
, ξJL

,℘) be a

LIFSG-3 of G
�

. =en, IL � (G, L, ζJL
oφ, ξJL

oφ,℘) is a LIFSG-3
of G. Where ∀g ∈ G

ζJL
oφ(g) � ζJL

(φ(g)),

ξJL
oφ(g) � ξJL

(φ(g)).
(62)

Proof. Let g1, g2 ∈ G. )en,

ζJL
oφ g1g2( 􏼁 � ζJL

φ g2g2( 􏼁( 􏼁,

ζJL
oφ g1g2( 􏼁≥ ζJL

oφ g2( 􏼁∧ζJL
oφ g2( 􏼁.

(63)

Similarly, ξJL
oφ(g1g2)≤ ξJL

oφ(g2)∨ξJL
oφ(g2). Now,

ζJL
oφ g

−1
􏼐 􏼑 � ζJL

φ g
−1

􏼐 􏼑􏼐 􏼑,

ζJL
oφ g

−1
􏼐 􏼑 � ζJL

(φ(g)),

ζJL
oφ g

−1
􏼐 􏼑 � ζJL

oφ(g).

(64)

Similarly, ξJL
oφ(g−1) � ξJL

oφ(g).

℘ ζJL
oφ(g)􏼐 􏼑 + ℘ ξJL

oφ(g)􏼐 􏼑 � ℘ ζJL
(φ(g))􏼐 􏼑 + ℘ ξJL

(φ(g))􏼐 􏼑≤ 1

℘ ζJL
oφ(g)􏼐 􏼑 + ℘ ξJL

oφ(g)􏼐 􏼑≤ 1.
(65)

⇒(G, L, ζJL
oφ, ξJL

oφ,℘) is a LIFSG-3 of G. Hence
proved. □

Proposition 12. Let G and G
�

be two groups, φ : G⟶ G
�

be
a group homomorphism and

JL � G
�

, L, ζJL
, ξJL

,℘􏼠 􏼡, (66)

be a LIFNSG-3 of G
�

. =en,

IL � G, L, ζJL
oφ, ξJL

oφ,℘􏼐 􏼑, (67)

is a LIFNSG-3 of G.

Proof. Let u, v ∈ G. )en,

ζJL
oφ uvu

−1
􏼐 􏼑 � ζJL

φ uvu
−1

􏼐 􏼑􏼐 􏼑,

� ζJL
φ(u)φ(v)φ u

−1
􏼐 􏼑􏼐 􏼑,

� ζJL
(φ(v)),

� ζJL
oφ(v).

(68)

Similarly, ξJL
oφ(uvu−1) � ξJL

oφ(v). ⇒ IL is a LIFNSG-3
of G. Hence proved. □

Theorem 3. Let G and G
�

be any two groups and
ϑ : G⟶ G

�

be a group isomorphism. Let L be a lattice with
top element T and bottom element B and ℘: L⟶ [0, 1] be a
lattice homomorphism. Let ILIFSG−3

G and ILIFSG−3

G
�

be the col-

lections of LIFSG-3 of G and G
�

, respectively. =en, the map

􏽢ϑ: I
LIFSG−3
G ⟶ I

LIFSG−3

G
� (69)

Defined by

􏽢ϑ G, L, ζIL
, ξIL

,℘􏼐 􏼑 � G
�

, L, ϑoζIL
, ϑoξIL

,℘􏼠 􏼡, (70)

is bijective.

Proof. From previous propositions we know that if

IL � G, L, ζIL
, ξIL

,℘􏼐 􏼑 ∈ I
LIFSG−3
G . (71)

)en,

JL � G
�

, L, ϑoζIL
, ϑoξIL

,℘􏼠 􏼡 ∈ I
LIFSG−3

G
� . (72)

Now, if

ϑoζ1IL
� ϑoζ2IL

,

⇒ϑoζ1IL
(g

�
) � ϑoζ2IL

(g
�
)∀g� ∈ G

�

,

⇒ζ1IL
ϑ−1

(g
�
)􏼒 􏼓 � ζ2IL

ϑ−1
(g

�
)􏼒 􏼓∀g

� ∈ G
�

.

(73)

As ϑ is bijective

⇒ ϑ−1
(g

�
): g

� ∈ G
�

􏼨 􏼩 � G ± ,

⇒ζ1IL
� ζ2IL

.

(74)
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Similarly,
ϑoξ1IL

� ϑoξ2IL
,

⇒ξ1IL
ϑ−1

(g
�
)􏼒 􏼓 � ξ2IL

ϑ−1
(g

�
)􏼒 􏼓∀g

� ∈ G
�

.
(75)

As ϑ is bijective, this implies ξ1IL
� ξ2IL

. )us, we get that, if
􏽢ϑ G, L, ζ1IL

, ξ1IL
,℘􏼐 􏼑 � 􏽢ϑ G, L, ζ2IL

, ξ2IL
,℘􏼐 􏼑, (76)

then (G, L, ζ1IL
, ξ1IL

,℘) � (G, L, ζ2IL
, ξ2IL

,℘)⇒􏽢ϑ is injective.
Now, if

G
�

, L, ζJL
, ξJL

,℘􏼠 􏼡 ∈ I
LIFSG−3

G
� , (77)

then (G, L, ζJL
oϑ, ξJL

oϑ,℘) ∈ ILIFSG−3
G and ∀g� ∈ G

�

,

ϑo ζJL
oϑ􏼐 􏼑􏼐 􏼑(g

�
) � ζJL

oϑ􏼐 􏼑 ϑ−1
(g

�
)􏼒 􏼓 � ζJL

(g
�
),

⇒ϑo ζJL
oϑ􏼐 􏼑 � ζJL

.

(78)

Similarly, ϑo(ξJL
o ϑ) � ξJL

. )is implies that 􏽢ϑ is bijective.
Hence proved. □

Theorem 4. Let G be a group, L and L
�

be any two lattices
with top elements T and T

�

, and bottom elements B and B
�

,
f : L⟶ L

�

and ℘: L⟶ [0, 1] be lattice homomorphisms
such that f(T) � T

�

, f(B) � B
�

, and ℘(T) � 1, ℘(B) � 0. If
IL � (G, L, ζIL

, ξIL
,℘) be a LIFSG-3 of G, then

J
L
� � (G, L

�

, fo ζIL
, fo ξIL

,℘� ) is also a LIFSG-3 of G. Where

foζIL
, foξIL

: G⟶ L⟶ L
�

, (79)

are defined as
foζIL

(g) � f ζIL
(g)􏼐 􏼑,

foξIL
(g) � f ξIL

(g)􏼐 􏼑,
(80)

and

℘� (l
�

) � sup
f(l)�l

�

℘ f
−1

(l
�

)􏼠 􏼡􏼠 􏼡. (81)

Proof. Let g1, g2 ∈ G. )en,

foζIL
g1g2( 􏼁 � f ζIL

g1g2( 􏼁􏼐 􏼑≥f ζIL
g1( 􏼁∧ζIL

g2( 􏼁􏼐 􏼑≥f ζIL
g1( 􏼁􏼐 􏼑∧f

ζIL
g2( 􏼁􏼐 􏼑≥foζIL

g1( 􏼁∧foζIL
g2( 􏼁.

(82)
Similarly, foξIL

(g1g2)≤foξIL
(g1)∨foξIL

(g2). Let g ∈ G

and

℘� foζIL
(g)􏼐 􏼑 � sup ℘ f

−1
foζIL

((g))􏼐 􏼑􏼐 􏼑􏼐 􏼑,

� M1
1
2
,

℘� foξIL
(g)􏼐 􏼑􏼐 􏼑 � sup ℘ f

−1
foξIL

(g)􏼐 􏼑􏼐 􏼑􏼐 􏼑,

� M2.

(83)

)en, M1 and M2 are of the form

M1 � ℘ f
−1

foζIL
(g)􏼐 􏼑􏼐 􏼑 � ℘ ζIL

(g)􏼐 􏼑,

M2 � ℘ f
−1

foξIL
(g)􏼐 􏼑􏼐 􏼑 � ℘ ξIL

(g)􏼐 􏼑.
(84)

)us,

℘� foζIL
(g)􏼐 􏼑 + ℘� foξIL

(g)􏼐 􏼑 � ℘ ζIL
(g)􏼐 􏼑 + ℘ ξIL

(g)􏼐 􏼑≤ 1.

(85)

Hence, we get the required result. □

Theorem 5. Let G and G
�

be any two group and ϑ : G⟶ G
�

be a group isomorphism. Let L and L
�

be any two lattice with
top elements T and T

�

, and bottom elements B and B
�

. Let
f : L⟶ L

�

and ℘: L⟶ [0, 1] be lattice homomorphisms
such that f(T) � T

�

, f(B) � B
�

, ℘(T) � 1,℘(B) � 0. Let IL �

(G, L, ζIL
, ξIL

,℘) be a LIFSG-3 of G. =en,

J
L
� � G

�

, L
�

, ζJ
L
�
, ξJ

L
�
,℘�􏼠 􏼡, (86)

is a LIFSG-3 of G
�

, where

ζJ
L
�

� ϑo foζIL
􏼐 􏼑,

ξJ
L
�

� ϑo foξIL
􏼐 􏼑,

℘� (l
�

) � sup
f(l)�l

�

℘ f
−1

(l
�

)􏼠 􏼡􏼠 􏼡.

(87)

Proof. If IL � (G, L, ζIL
, ξIL

,℘) is a LIFSG-3 of G, then from
)eorem 4

B
�

L � G, L
�

, foζIL
, foξIL

,℘�􏼠 􏼡, (88)

is a LIFSG-3 of G. From Proposition 9

C
�

L � G
�

, L
�

, ϑo foζIL
􏼐 􏼑, ϑo foξIL

􏼐 􏼑,℘�􏼠 􏼡, (89)

is a LIFSG-3 of G
�

. □

Theorem 6. For a group G, lattice L with top and bottom
elements T and B, respectively, lattice homomorphism
℘: L⟶ [0, 1]. Let IL � (G, L, ζIL

, ξIL
,℘) be a LIFNSG-3 of

G. =en, the set

GζIL
ξIL

� x ∈ G: ζIL
(x) � ζIL

(e), ξIL
(x) � ξIL

(e)􏽮 􏽯, (90)

is normal in G and

􏽢IL �
G

GζIL
ξIL

, L, 􏽣ζIL
, 􏽣ξIL

,℘⎛⎝ ⎞⎠. (91)

(where􏽣ζIL
(xGζIL

ξIL
)�ζIL

(x), 􏽣ξIL
(xGζIL

ξIL
)�ξIL

(x)forallx∈
G) is a LIFNSG-3 of G/GζIL

ξIL
.
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Conversely, if N⊲G and IN
L � (G/N, L, ζN

IL
, ξN

IL
,℘) is a

LIFNSG-3 of G/N, then INL � (G, L, ζINL
, ξINL

,℘) is a
LIFNSG-3 of G, where

ζINL
: G⟶ L, ξINL

: G⟶ L, (92)

are defined as

ζINL
(x) � ζN

INL
(xN),

ξINL
(x) � ξN

INL
(xN)∀x ∈ G.

(93)

Proof. Let IL be a LIFNSG-3 of G. )en, ζIL
(x)≤ ζIL

(e) and
ξIL

(x)≥ ξIL
(e)∀x ∈ G, implies that GζIL

ξIL
is a cut subgroup

so it is normal in G and allow to construct factor group
G/GζIL

ξIL
. Now, for the map 􏽣ζIL

: G/GζIL
ξIL
⟶ L

􏽣ζIL
xGζIL

ξIL

.yGζIL
ξIL

􏼒 􏼓 � 􏽣ζIL
(xy)GζIL

ξIL
􏼒 􏼓,

􏽣ζIL
xGζIL

ξIL
.yGζIL

ξIL
􏼒 􏼓 � ζIL

(xy),

􏽣ζIL
xGζIL

ξIL
.yGζIL

ξIL
􏼒 􏼓≥ ζIL

(x)∧ζIL
(y),

􏽣ζIL
xGζIL

ξIL
.yGζIL

ξIL
􏼒 􏼓≥􏽣ζIL

xGζIL
ξIL

􏼒 􏼓∧􏽣ζIL
yGζIL

ξIL
􏼒 􏼓.

(94)

Similarly, for the map 􏽣ξIL
: G/GζIL

ξIL

⟶ L

􏽣ξIL
xGζIL

ξIL
.yGζIL

ξIL
􏼒 􏼓≤􏽣ξIL

xGζIL
ξIL

􏼒 􏼓∨􏽣ξIL
yGζIL

ξIL
􏼒 􏼓. (95)

Also

℘ 􏽣ζIL
xGζIL

ξIL
􏼒 􏼓􏼒 􏼓 + ℘ 􏽣ξIL

xGζIL
ξIL

􏼒 􏼓􏼒 􏼓 � ℘ ζIL
(x)􏼐 􏼑 + ℘ ξIL

(x)􏼐 􏼑

⇒℘ 􏽣ζIL
xGζIL

ξIL
􏼒 􏼓􏼒 􏼓 + ℘ 􏽣ξIL

xGζIL
ξIL

􏼒 􏼓􏼒 􏼓≤ 1.

(96)

⇒ 􏽢IL is a LIFNSG-3 of G/GζIL
ξIL

. Conversely, suppose

I
N
L � G/N, L, ζN

IL
, ξN

IL
,℘􏼐 􏼑, (97)

be a LIFNSG-3 of G/N. Define ζINL
: G⟶ L as

ζINL
(x) � ζN

IL
(xN). (98)

)en,

ζINL
(xy) � ζN

IL
(xyN),

ζINL
(xy) � ζN

IL
(xN.yN),

ζINL
(xy)≥ ζN

IL
(xN)∧ζN

IL
(yN),

ζINL
(xy)≥ ζINL

(x)∧ζINL
(y).

(99)

Define ξINL
: G⟶ L as

ξINL
(x) � ξN

IL
(xN). (100)

)en,

ξINL
(xy)≤ ξINL

(x)∨ξINL
(y),

℘ ζINL
(x)􏼐 􏼑 + ℘ ξINL

(x)􏼐 􏼑 � ℘ ζN
IL

(xN)􏼐 􏼑 + ℘ ξxN
IL

􏼐 􏼑,

⇒℘ ζINL
(x)􏼐 􏼑 + ℘ ξINL

(x)􏼐 􏼑≤ 1,

(101)

⇒INL is a LIFNSG-3 of G. □

7. Conclusion

)e article is about the study of group theocratic concepts in
a lattice-valued intuitionistic fuzzy type-3 environment. )e
structure is established by introducing lattice homomor-
phism, membership and nonmembership grades obeying
certain laws for the binary operation defined on the group
and inverses of elements under that operation. It is con-
cluded that the level sets of LIFSG-3 of a group G are exactly
the subgroups of G, and conversely, any LIFS-3 of G whose
level sets are subgroups of G is LIFSG-3. Lattice-valued
intuitionistic fuzzy normal subgroups type-3 and lattice-
valued intuitionistic fuzzy factor subgroups type-3 of G are
governed by normal subgroups and factor groups of G.
Structure preserving LIFSG-3 maps are also discussed, and it
is observed that they can be derived by extending group
homomorphism. In the future, the notion foundations laid
in this article can be used to find the Abelian subgroups of
finite p-groups [34], verify Lagrange’s theorem [35, 36],
compute annihilator [37], aggregation [38], and funda-
mental isomorphism theorems [39] for lattice-valued
intuitionistic fuzzy subgroups type-3. )ere are several
generalizations of fuzzy sets [40–42] where lattice-valued
algebraic structures can be defined by replacing [0, 1] with a
suitable lattice L. )e research findings can be utilized for
application in algebra [43, 44] and real-life problems [45] to
handle uncertainty and ambiguity more accurately.
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