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Daily peak load forecasting (DPLF) and total daily load forecasting (TDLF) are essential for optimal power system operation from
one day to one week later. ,is study develops a Cubist-based incremental learning model to perform accurate and interpretable
DPLF and TDLF. To this end, we employ time-series cross-validation to effectively reflect recent electrical load trends and patterns
when constructing the model. We also analyze variable importance to identify the most crucial factors in the Cubist model. In the
experiments, we used two publicly available building datasets and three educational building cluster datasets. ,e results showed
that the proposed model yielded averages of 7.77 and 10.06 in mean absolute percentage error and coefficient of variation of the
root mean square error, respectively. We also confirmed that temperature and holiday information are significant external factors,
and electrical loads one day and one week ago are significant internal factors.

1. Introduction

,e increase in urban population has caused various
problems, such as resource depletion, traffic congestion, and
environmental pollution [1]. For the effective operation of
complex urban systems, many municipalities and govern-
ments have been trying to transform existing cities into
smart cities [2]. ,e smart city concept aims to improve the
efficiency and security of urban infrastructure as well as the
quality of life for its citizens [3]. For instance, smart cities can
reduce GHG emissions by reducing traffic congestion and
energy consumption and introducing technologies such as
electric vehicles, energy storage systems (ESSs), and re-
newable energy (RE) [4]. In particular, improving the energy
efficiency of buildings with ESSs and RE is an important
issue for cities because building energy consumption is one
of the main sources of GHG emissions [5]. Most smart city
systems use recent technologies such as the Internet of
,ings and big data to implement various city services [6].
For instance, the energy efficiency of existing buildings can
be improved using building energy management systems
(BEMSs) [7].

A BEMS is a computer-aided tool that improves energy
efficiency between the grid operator and consumers through
bidirectional interaction [7, 8]. It collects and analyzes data
related to electrical energy consumption to establish oper-
ational plans for building energy use [8]. On the demand
side, a BEMS provides ways for customers to reduce or shift
peak energy consumption and trade the remaining energy
[9]. On the supply side, it serves as a tool for optimal al-
location of RE, ESS, and demand response in electric utility
grids [10]. Here, short-term load forecasting (STLF) has
been widely used to determine the amount of power nec-
essary for the reliable operation of electric utility grids from
the next hour to the next week [9, 11]. It includes daily peak
load forecasting (DPLF), total daily load forecasting (TDLF),
hourly electrical load forecasting, and very short-term load
forecasting (VSTLF) [12]. DPLF and TDLF are used to
predict from one day to one week later as an essential
procedure for unit commitment, energy trading, security
analysis, and tight scheduling of outages and fuel supplies in
power systems [13, 14].

Accurate STLF is challenging because typical electrical
energy consumption has various patterns accompanied by
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uncertainties due to unforeseeable external factors [15].
Furthermore, when predicting electrical loads, it is necessary
to adequately consider complex correlations between his-
torical and current data [9]. Many studies have been con-
ducted to achieve accurate STLF based on machine learning
(ML) methods because they can properly extract implicit
nonlinear relationships between input and output variables
[16–19]. Table 1 briefly summarizes recent STLF models
based on ML methods. For instance, Lee and Han [20]
developed a day-ahead (DA) DPLF model using multiple
linear regression (MLR). ,ey collected daily peak electrical
load data in South Korea from 2012 to 2016 through the
Korea Power Exchange (KPX) and constructed an MLR
model using the days of the week, seasons, average tem-
perature, and historical loads from one day to one year
before the prediction time point. ,e model achieved better
predictive performance than the forecasting model of KPX,
extreme learning machine, and autoregressive moving av-
erage (ARMA). Fan et al. [21] proposed a STLF model based
on weighted K-nearest neighbor (KNN), called W-KNN.
When constructing the KNN model, they considered the
inverse of the Euclidean distance to give appropriate weights
to each data point after selecting a value for K. In experi-
ments using electrical load data from the National Electricity
Market (Australia), their model outperformed KNN,
ARMA, and artificial neural network (ANN) in predicting
performance.

On the other hand, Dong et al. [22] developed an hourly
electrical load forecasting model based on bootstrap ag-
gregating (Bagging) for Chinese special days. ,ey collected
three years of hourly electrical load in Qingdao, China. To
construct their STLF model, they defined a holiday variable,
with 2 representing statutory days, 1 representing working
days, and 0 representing bridging days, proximity days, and
weekends. ,eir Bagging model showed better prediction
performance than ANN and Bagging, which trained a
holiday variable that included 1 for working days and 0 for
holidays. Sun et al. [23] proposed an hourly electrical load
forecasting model based on ANNs. ,ey first collected
hourly electrical load data of Tai’an City, Shandong Prov-
ince, China, from 2016 to 2018. ,ey then generated various
input variables, considering timestamp, temperature, and
historical electricity consumption to construct their STLF
model. ,eir model showed a mean absolute percentage
error (MAPE) of 4.11 and a mean absolute error of 33.88.
Truong et al. [24] developed an additive ANN (AANN)
model to predict building electrical energy consumption.
,ey collected hourly electrical load data for one year from a
residential building with an RE system and configured five
input variables, such as days of the week, hours of the day,
isolation, temperature, and historical electricity consump-
tion, to train the AANNmodel.,eir concept was based on a
gradient boosting machine (GBM). Unlike GBM, which
generally uses decision trees (DTs) as weak learners, the
AANN trains iteratively by estimating an ANN as one weak
learner and passing the remaining residuals back to other
ANNs. ,e AANN model outperformed MLR, DT, ANN,
and support vector regression (SVR) in predictive
performance.

Recently, various hybrid STLF models based on two or
more ML techniques have been proposed to derive better
prediction performance than single ML-based STLF models.
For instance, Fan et al. [25] proposed an SVR-based STLF
model, namely, EMD-SVR-PSO-AR-GARCH, by hybrid-
izing with empirical mode decomposition (EMD), particle
swarm optimization (PSO), and autoregressive-generalized
autoregressive conditional heteroscedasticity (AR-GARCH).
,ey firstly decomposed an original electrical load data
sequence into conventional intrinsic mode functions (IMFs)
and residuals using the EMD. ,en, they used SVR-opti-
mized PSO and AR-GARCH to fit IMF1 and other IMF
components and residuals, respectively. Finally, they ob-
tained the final prediction value by integrating and fitting the
prediction values of the models. ,eir model outperformed
ARMA, AR-GARCH, SVR, and others in predictive per-
formance. Zhang et al. [26] developed a hybrid STLF model,
called VMD-SR-SVRCBCS, using variational mode de-
composition (VMD) and self-recurrent (SR)-SVR by opti-
mizing the parameters through the cuckoo bird search
process of the cuckoo search algorithm (CBCS). ,ey per-
formed data preprocessing using the VMD to obtain more
accurate IMFs and applied SR-SVRCBCS to model each
decomposed IMF for more accurate forecasting results.
Here, the SR mechanism, inspired from the combination of
Jordan’s and Elman’s recurrent neural network, was used to
learn more recurrent information from the hidden layer
values at the previous time point concerning the outcomes of
the SVRCBCS models. ,eir model outperformed single ML
models such as autoregressive integrated moving average
(ARIMA), seasonal ARIMA, ANN, and SVR in predictive
performance.

However, because the decision-making process inside
most of these models mentioned above is opaque (i.e., a
black box), forecasting results derived from these models
cannot be entirely accepted and utilized. ,erefore, their
interpretation has been another challenging task [32]. Re-
cently, interpretability methods in ML have attracted in-
creasing attention for constructing accurate and
interpretable forecasting models [33, 34]. Here, “interpret-
able” means that the user can understand how the model
employs the input variables to make predictions [33]. ,e
variable importance (also referred to as feature importance)
measure is the basis for enhancing the interpretability of a
model [34]. Several studies have used the variable impor-
tance measure to confirm the most significant factors in
STLF. Bouktif et al. [27] proposed a long short-termmemory
(LSTM) network-based STLF model using Metropolitan
France’s electrical load data. ,ey used a genetic algorithm
to optimize the hyperparameter tuning of the LSTM model.
,ey also confirmed that the historical load was the most
significant input variable for model training using the
variable importance of extra trees (ETs). ,eir LSTM model
outperformed ridge regression, KNN, RF, GBM, ANN, and
ET. Wang et al. [28] proposed an hourly electrical load
forecasting model based on RF. ,ey configured ten input
variables representing weather, occupancy, and time-related
data and constructed a forecasting model for each academic
semester. ,ey predicted the electrical load of two
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educational buildings and identified the most influential
variables that differed by semester. ,e RF model performed
better than the DT and SVR models.

Ruiz-Abellón et al. [29] developed four 48-hour-ahead
electrical load forecastingmodels using hourly electrical load
data collected from the Technical University of Cartagena in
Spain. ,ey used Bagging, RF, conditional RF (CRF), and
XGB as tree-based ensemble methods to construct the
forecasting models. ,ey also described the essential input
variables for training each forecasting model through var-
iable importance. In the experiments, the XGB model
achieved better prediction performance than Bagging, RF,
and CRF. Abbasi et al. [30] proposed a 30-minute-interval
electrical load forecasting model based on XGB. ,ey used
variable importance to extract input variables from the
historical load during a week and confirmed that the his-
torical loads close to the prediction time point and from a
week before the prediction time point had high importance
for the model construction. Subsequently, they constructed
the XGB-based forecasting model using the extracted input
variables. ,e XGB model exhibited a MAPE of 10% and an
accuracy of 97%. Zhang et al. [31] proposed a TDLF model
based on K-means clustering and categorical boosting
(CatBoost). ,ey collected total daily electrical load data
from Yangzhong High-Tech Zone in China and executed
K-means clustering to group industrial customers with

similar load features into the same cluster. ,ey then
constructed a CatBoost-based TDLF model for each cluster
and showed the variable importance of the CatBoost model.
,eir proposed model outperformed ARMA, LSTM, GBM,
and CatBoost in predictive performance.

Despite these efforts, there are still limitations. For in-
stance, when a forecasting model based on these methods is
constructed using conventional time-series forecasting
model evaluation [35], we can determine the essential input
variables by analyzing the variable importance in the model
constructed from the training dataset. However, conven-
tional time-series forecasting model evaluation performs
unsatisfactorily when there is a significant gap between the
training set period and the test set period [14]. ,is makes it
difficult to ensure confidence in the decision-making process
of the model. In addition, most of the studies were con-
ducted mainly on STLF with high time resolution, such as
hourly or subhourly intervals, for DA energy planning.
,erefore, further studies are needed on the quantitative
DPLF and TDLF for DA and weak-ahead (WA) energy
planning. Furthermore, although a Cubist regression model
has shown excellent performance in time-series forecasting
[36–38], its use for STLF has rarely been reported [38].

To address these issues, this study proposes a robust
interpretable short-term electrical load forecastingmodel for
accurate DPLF and TDLF. To this end, we collected five

Table 1: Summary of recent STLF studies based on ML techniques.

Author (Year) Dataset Granularity ML
method

Rolling
procedure Model interpretability

Lee and Han [20]
(2017)

South Korea provided by Korea Power
Exchange (KPX)

Daily peak
load MLR Yes Yes

Fan et al. [21] (2019) Australian Energy Market Operator
(AEMO) 8 h KNN No No

Dong et al. [22]
(2021) Qingdao City in China 1 h Bagging No No

Sun et al. [23] (2021) Tai’an City, Shandong Province in China 1 h ANN No No
Truong et al. [24]
(2021)

Residential building with a renewable
energy system 1 h AANN No No

Fan et al. [25] (2020) New South Wales (NSW) in Australia 30min

EMD
SVR
PSO

AR-GARCH

No Yes

Zhang et al. [26]
(2020) Queensland (QLD) in Australia 30min

VMD
SR
SVR
CBCS

Yes No

Bouktif et al. [27]
(2018) Metropolitan France 30min GA

LSTM-RNN Yes Yes

Wang et al. [28]
(2018) University campus in Florida 1 h RF No Yes

Ruiz-Abellón et al.
[29] (2018) University campus in Spain 1 h

Bagging
RF
CRF
XGB

No Yes

Abbasi et al. [30]
(2019) AEMO 30min XGB No Yes

Zhang et al. [31]
(2020)

More than 1,400 enterprises in Yangzhong
High-Tech Zone, China Daily

K-means
clustering
CatBoost

No Yes
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electrical load datasets from two commercial buildings and
three educational building clusters. We configured various
input variables that highly correlate with DPLF and TDLF.
,en, we constructed STLF models using Cubist and time-
series cross-validation (TSCV) to achieve high accuracy. ,e
main contributions of this paper are as follows:

(1) We use electrical load data from two public buildings
and three building clusters with different purposes to
predict building-level electrical energy consumption,
which has more complex patterns.

(2) We configure different input variables to predict
both DPLF and TDLF by considering both DA and
WA energy planning for effective BEMS operation.

(3) When a forecasting model is constructed for WA
forecasting, we obtain multistep-ahead forecasting of
all prediction time points (from one day to seven
days) to compensate for uncertainty.

(4) To address the data shortage problem and reflect
current electrical load trends and patterns, we use the
cross-validation procedure based on a rolling fore-
casting origin.

(5) We compare our proposed model with other popular
statistical and machine learning methods in terms of
four forecasting types: DA-DPLF, DA-TDLF, WA-
DPLF, and WA-TDLF.

(6) We perform an in-depth analysis of which input
variables are the most important factors in electrical
load forecasting for each dataset by using the variable
importance of the proposed model.

,e remainder of this paper is organized as follows.
Section 2 describes the data preprocessing used to configure
different input variables for forecasting types and presents
the process of constructing the proposed model. In Section
3, we analyze the experimental results to demonstrate the
superiority of the proposed model. Finally, we conclude our
study and present the directions for future research in
Section 4.

2. Materials and Methods

In this section, we describe in detail the data preprocessing
and forecasting model construction. Figure 1 illustrates the
overall flowchart of the proposed method.

2.1. Data Collection and Preprocessing. In this section, we
first present a data resampling process to construct data
suitable for forecasting purposes. ,en, we describe the
process of configuring the input variables according to the
purpose (i.e., DA and WA forecasting) using timestamps,
weather, and historical load information. Figure 2 illustrates
the framework of the data preprocessing for constructing a
Cubist model.

We collected electrical load datasets from five different
types of buildings or building clusters, as summarized in
Table 2. We first collected publicly available datasets from
two buildings in Richland, WA, USA [39, 40]. ,e datasets

consist of three years’ worth of information, including the
hourly electrical load, the hourly outdoor temperature,
and the corresponding timestamps. We filled in the
missing values (i.e., daylight saving time in North
America) in both datasets using linear interpolation.
Because the dataset contains the hourly electrical load
data for a day (24 rows), we calculated the maximum load
value and the sum of all load values for each day for DPLF
and TDLF, respectively.

In addition, we collected typical 15-minute-interval
electrical load datasets from three clusters of buildings at a
private university in Seoul, South Korea [41]. ,e dataset
collection period was three years. ,e first cluster comprised
16 residential buildings, and the electrical load had a resi-
dential pattern. ,e second cluster consisted of 32 academic
buildings, including the main hall, library, classrooms, and
offices. ,e third cluster contained five science and engi-
neering buildings. ,is cluster exhibited much higher
electrical loads per building than the other clusters, mainly
due to the various experimental equipment and devices in
the laboratories. In South Korea, the daily peak load of the
building was calculated by multiplying the highest value
among the 15-minute-interval electrical load used per day by
4. We took this into account when calculating the daily peak
electrical load for DPLF. Likewise, we took the sum of 96
values per day to perform TDLF.

Tables 3 and 4 provide some statistics on daily peak loads
and total daily loads for the five datasets, respectively.
Weather conditions and holiday information are closely
related to electrical load [42]. ,erefore, we used these data
to configure the input variables for Cubist modeling. Be-
cause we performed two types of forecasting, namely, DA
and WA forecasting, we used different input variable con-
figurations for each type of forecasting.

Time is another important factor for electrical loads. We
considered various temporal variables, such as months, days,
and days of the week. However, these variables cannot reflect
periodic information when applied to forecasting models.
For instance, 31 December and 1 January are temporally
contiguous, yet, the range of both values in sequence form is
30 and 11 as day and month, respectively. Hence, we rep-
resented them as continuous data in the two-dimensional
(2D) space to reflect their periodicity using equations (1)–(6)
[41, 42]. Here, the variable for seven days of the week is
defined as 1 to 7 from Monday to Sunday, according to
international standard ISO 8601. LDMmonth represents the
last day of the month to which the day belongs (e.g., January:
31, February: 28 or 29, March: 31, and so on). Consequently,
we used six input variables to describe the date and time of
the prediction time points.

Monthx � sin
360
12

  × Month , (1)

Monthy � cos
360
12

  × Month , (2)

Dayx � sin
360

LDMmonth
  × Day , (3)
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Figure 1: Architecture of interpretable short-term electrical load forecasting model (DA: day-ahead, WA: week-ahead, DPLF: daily peak
load forecasting, and TDLF: total daily load forecasting).
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Table 2: Building information.

Dataset # Number of buildings Building type (description) Location Dataset period Public access
Building 1 1 Commercial (office) Richland, Washington Jan. 2, 2009–Dec. 31, 2011 Yes
Building 2 1 Commercial (office) Richland, Washington Jan. 2, 2009–Dec. 31, 2011 Yes
Cluster 1 16 Educational (dormitory) Seoul, South Korea Jan. 1, 2016–Dec. 31, 2018 No
Cluster 2 32 Educational (humanities bldg.) Seoul, South Korea Jan. 1, 2016–Dec. 31, 2018 No
Cluster 3 5 Educational (engineering bldg.) Seoul, South Korea Jan. 1, 2016–Dec. 31, 2018 No

Table 3: Statistics on daily peak electrical load data (unit: kW).

Statistics Building 1 Building 2 Cluster 1 Cluster 2 Cluster 3
Number of valid cases 1094 1094 1096 1096 1096
Mean 49.16 54.46 1575.94 4132.02 2606.01
Standard deviation 21.69 21.15 308.91 1327.07 451.57
Trimmed mean 50.40 56.23 1552.32 4325.76 2623.04
Median 48.59 54.52 1561.97 4176.24 2670.00
Median absolute deviation 19.87 18.52 321.31 1537.16 437.66
Minimum 8.86 10.97 878.40 1426.56 1579.20
Maximum 141.11 135.00 2623.68 6900.48 3549.60
Range 132.25 124.03 1745.28 5473.92 1970.40
Skew 0.34 0.05 0.42 –0.25 –0.31
Kurtosis 0.43 0.09 –0.15 –1.03 –0.71
Standard error 0.66 0.64 9.33 40.09 13.66
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• Historical load (2 buildings and 3 building clusters)
• Historical temperature 
• Public holiday information from Time and Date 

USA South Korea

Raw dataset

Data resampling

• Missing data (i.e., daylight saving time in USA)
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Figure 2: Data preprocessing for Cubist modeling (DA: day-ahead, WA: week-ahead, DPLF: daily peak load forecasting, and TDLF: total
daily load forecasting).
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Dayy � cos
360

LDMmonth
  × Day , (4)

Day of the Weekx � sin
360
7

  × Day of the week ,

(5)

Day of the Weeky � cos
360
7

  × Day of the week .

(6)

To verify the validity and applicability of the 2D rep-
resentation, we computed several regression statistics on the
electrical loads in one-dimensional (1D) space, consisting of
three temporal variables (i.e., months, days, and days of the
week), and 2D space, as shown in Tables 5 and 6. Here, the
residual standard error (RSE), multiple R-squared, and
adjusted R-squared were calculated using equations (7)–(9).

RSE �

���������������

1
n − 2



n

t�1
yt − yt( 

2




, (7)

R2
� 1 −

 yt − yt( 
2

 yt − y( 
2 , (8)

Adjusted R2
� 1 −

1 − R2
 (n − 1)

n − p − 1
, (9)

where yt and yt represent the actual and estimated values,
respectively, at the time t. y represents the mean of the actual
values, and n and p indicate the number of observations and
variables, respectively. From the tables, we can observe that
the 2D representation exhibits correlations more effectively
than the 1D representation.

Typical electrical load patterns are different on weekdays
and holidays, depending on the type of building [16, 40]. To
reflect this, holiday information was also used as an input
variable of the forecasting model. We collected holiday
information by country from https://www.timeanddate.com
[43]. ,e holidays included Saturdays, Sundays, and public
holidays.We used one-hot encoding (i.e., “1” for the relevant
data and “0” otherwise) as a nominal scale. Hence, we used

seven time factors as input variables at the prediction time
point.

In general, the electrical load increases in the summer
and winter due to the heavy use of air-conditioning and
electrical heating appliances, respectively [13, 44]. Here, the
most influential factor in the electrical load is temperature
[13]. In this study, we focused on temperature-related
variables, such as the daily maximum, average, and mini-
mum temperatures [44]. In the case of Buildings 1 and 2,
because the datasets we collected also included the outdoor
temperature along with the electrical load, we calculated the
daily maximum, average, and minimum temperatures (in
the Fahrenheit scale). For Clusters 1 to 3, we first collected
hourly temperature data using regional synoptic meteoro-
logical data provided by the Korea Meteorological Ad-
ministration (KMA) and collected by the Seoul
Meteorological Observatory located about 6 km from the
university campus. As in Buildings 1 and 2, we calculated the
daily maximum, average, and minimum temperature in
Celsius. In South Korea, the KMA provides weather fore-
casts, including short and mid-term forecasts, for the most
significant regions. ,e KMA mid-term forecast service
provides the maximum and minimum temperatures from
day 3 to day 10, as shown in Figure 3.

Historical electrical load data are particularly important
in electrical load forecasting because they exhibit the trend of
recent electrical loads [17, 45]. To reflect the recent trend in
the prediction, we used the daily peak and total daily loads of
the previous seven days as input variables for the DPLF and
TDLFmodels, respectively. Because the electrical load trends
of weekdays and holidays can differ, we added a holiday
indicator to indicate whether the day was a holiday [46]. We
used a total of 24 input variables to build the DA-DPLF and
TDLF models.

Now, we describe the configuration of the input variables
for theWA-DPLF and TDLFmodels. First, we used the same
time and temperature variables as in the DA forecasting
models. However, the daily peak and total daily loads from
the previous day to the sixth day before the forecast date are
unknown when consideringWA forecasting. To compensate
for this, we configured the input variables using the daily
peak and total daily loads and holiday indicators of the same
day of the previous four weeks for theWA-DPLF and TDLF,
respectively [46]. ,erefore, we used a total of 18 input

Table 4: Statistics on total daily electrical load data (unit: kW).

Statistics Building 1 Building 2 Cluster 1 Cluster 2 Cluster 3
Number of valid cases 1094 1094 1096 1096 1096
Mean 719.31 852.63 29802.41 62563.10 49440.52
Standard deviation 250.53 290.95 5350.39 17167.95 6409.23
Trimmed mean 723.27 850.15 29390.76 62514.48 49506.54
Median 714.88 844.97 29569.92 62872.23 49771.80
Median absolute deviation 229.40 244.27 5407.28 20269.87 6802.47
Minimum 198.22 242.09 19013.04 27961.44 32546.40
Maximum 1527.30 2130.50 49235.76 98475.84 64403.70
Range 1329.08 1888.41 30222.72 70514.40 31857.30
Skew 0.16 0.44 0.45 –0.13 –0.11
Kurtosis –0.32 0.98 –0.03 –1.06 –0.64
Standard error 7.57 8.80 161.61 518.58 193.86
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variables to construct our WA electrical load forecasting
models. Table 7 presents all the input variables that we
considered for DA and WA forecasts.

2.2. Forecasting Model Construction. Variable importance is
a technique that assigns scores to input variables based on
the relative importance of each variable for accurate pre-
diction [34]. Variable importance scores can be evaluated for
both classification and regression problems. Variable im-
portance scores play an essential role in constructing
forecasting models because they can provide insight into the
dataset or the model supported by the dataset [47]. For
instance, relative scores can highlight which input variables
have the greatest or least effect on the output variable. ,ese
scores can be interpreted by domain experts and used as a
reference for collecting more or different data. Because most
variable importance scores are calculated by forecasting
models that fit the dataset, these scores can be calculated for
the model interpretation. In addition, analyzing variable

importance can offer suggestions to improve the efficiency
and effectiveness of the forecasting model through dimen-
sionality reduction and feature selection [48].

To date, the R language has been widely used for data
cleansing, preparation, and analysis [49]. To facilitate ac-
cessibility, we also adopted multiple R packages, including
variable importance evaluation functions. To calculate
variable importance measures in the R environment, we
used Cubist, a regression tree-based model, because it
provides a balance between interpretability and predictive
power [36]. Figure 4 exhibits the flowchart of interpretable
electrical load forecasting based on Cubist modeling. Cubist
was developed based on Quinlan’s M5 model tree [48, 50].
,e Cubist method generates a series of “if-after-after” rules.
Each rule holds a linked multivariate linear model. As long
as the covariate set meets the rule conditions, the corre-
sponding model is used to compute the predicted value. ,e
Cubist output includes variable usage statistics and provides
the percentage of times each variable was adopted in a
condition and/or a linear model.
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Figure 3: Example of mid-term forecast provided by the KMA.

Table 5: Residual standard error and R-squared statistics for daily peak electrical load data.

Statistics
Building 1 Building 2 Cluster 1 Cluster 2 Cluster 3
1D 2D 1D 2D 1D 2D 1D 2D 1D 2D

Residual standard error (unit: kW) 17.7 17.1 17.4 16.5 285.8 271.4 1128 1121 365.9 351.9
Multiple R-squared (unit: %) 33.9 38.6 32.6 39.7 14.6 23.2 27.9 29.1 36.4 41.3
Adjusted R-squared (unit: %) 33.7 38.2 32.4 39.4 14.4 22.8 27.7 28.7 36.2 41.0

Table 6: Residual standard error and R-squared statistics for total daily electrical load data.

Statistics
Building 1 Building 2 Cluster 1 Cluster 2 Cluster 3
1D 2D 1D 2D 1D 2D 1D 2D 1D 2D

Residual standard error (unit: kW) 211 203 256 228 4958 4698 14680 14670 5699 5417
Multiple R-squared (unit: %) 29.3 34.9 22.9 39.0 14.4 23.3 27.1 27.4 27.4 34.6
Adjusted R-squared (unit: %) 29.1 34.6 22.7 38.7 14.1 22.9 26.9 27.0 27.2 34.2
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,e general concept of a Cubist regression model can be
explained as follows.

(1) While the tree is growing, many leaves and branches
grow.

(2) Branches can be considered a series of “if-then” rules,
whereas terminal leaves remain a connected multi-
variate linear model.

(3) Assuming that the covariate set complies with the
rule conditions, the relevant model is used to
measure the predicted value.

,e Cubist model sequentially develops a series of trees
with adjusted weights and strengthens them with training
committees (usually one or more), similar to the “boosting”
method.,e number of neighbors in the Cubist model is used
to correct rule-based predicted values, and the final predicted
value denotes a function of all the linear models from the
initial node to the terminal node.,e percentages displayed in
the Cubist output reflect all the models related in the pre-
dicted value rather than the terminal models displayed in the
output. ,e variable importance used here is a linear com-
bination of the rule condition usage and model [50].

When constructing a forecasting model, datasets are
usually divided into a training set and a test set, and then the
forecasting model is built using the training set and verified
using the test set [35]. However, conventional time-series
forecasting model evaluation could exhibit unsatisfactory
prediction performance when there is a significant gap
between the training set period and the test set period.
Additionally, when the dataset is insufficient, it is chal-
lenging to obtain satisfactory prediction performance using
a small amount of training data [19].

To solve these problems, we utilized TSCV based on a
rolling forecasting origin [51]. TSCV focuses on a single or
several forecast horizons for each test set. In this study, we used
several different training sets, each containing one or more
observations not used in the previous training set, depending on
the scheduling period. To perform DPLF and TDLF, we took
the test sets one day after the current time and a week after the
current time, as shown in Figure 5.We evaluated the forecasting
model performance by calculating the prediction accuracy at
each time point and then calculated their average value.

,erefore, it is possible to solve the data shortage
problem because more data can be used over time than in the
conventional time-series forecasting model evaluation. We
can also expect satisfactory prediction performance because
it can adequately reflect recent electrical load patterns and
adjust the weights of the input variables in the forecasting
model. Here, we presented interpretable electrical load
forecasting results by calculating the importance of the
variables for each training set in the model.

3. Results and Discussion

In this section, we first introduce metrics to compare the
prediction performance of the forecasting models and de-
scribe the experimental design and results in detail. We also
present the results of several statistical tests to prove the
validity of our experiment. We exhibit the interpretable
short-term electrical load forecasting using the proposed
model. Finally, we discuss experimental procedures.

3.1.ExperimentalDesign. ,e quantitative experiments were
conducted with an Intel® CoreTM i7-8700k CPU with

Table 7: Input variables for day-ahead and week-ahead forecasts.

IV # Input variables for day-ahead forecasting Input variables for week-ahead forecasting Variable type
01 Monthx Monthx Continuous [–1, 1]
02 Monthy Monthy Continuous [–1, 1]
03 Dayx Dayx Continuous [–1, 1]
04 Dayy Dayy Continuous [–1, 1]
05 Day of the weekx Day of the weekx Continuous [–1, 1]
06 Day of the weeky Day of the weeky Continuous [–1, 1]
07 Holiday Holiday Binary
08 Minimum temperature Minimum temperature Continuous
09 Average temperature Average temperature Continuous
10 Maximum temperature Maximum temperature Continuous
11 Holiday (the day before seven days) Holiday (the day before four weeks) Binary
12 Electrical load (the day before seven days) Electrical load (the day before four weeks) Continuous
13 Holiday (the day before six days days) Holiday (the day before six three weeks) Binary
14 Electrical load (the day before six days) Electrical load (the day before three weeks) Continuous
15 Holiday (the day before five days) Holiday (the day before five two weeks) Binary
16 Electrical load (the day before five days) Electrical load (the day before two weeks) Continuous
17 Holiday (the day before four days) Holiday (the day before one week) Binary
18 Electrical load (the day before four days) Electrical load (the day before one week) Continuous
19 Holiday (the day before three days) — Binary
20 Electrical load (the day before three days) — Continuous
21 Holiday (the day before two days) — Binary
21 Electrical load (the day before two days) — Continuous
23 Holiday (the day before one day) — Binary
24 Electrical load (the day before one day) — Continuous
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32GB DDR4 RAM. We performed the input variable
configuration and forecasting model construction in
RStudio (v. 1.1.453) with R (v. 3.5.1). We used three years of
electrical load data from 2009 to 2011 for Buildings 1 and 2
and from 2016 to 2018 for Clusters 1 to 3, respectively. We
divided the dataset into training (in-sample) and test (out-
of-sample) sets in an approximate proportion of 2 :1. For
Buildings 1 and 2, we confirmed that the electrical load from
November to December 2011, the out-of-sample period, was
higher than that for the remaining days. ,e R random
number generator seed was set to 1234 for all methods.

To evaluate the predictive performance of forecasting
models, we used theMAPE and coefficient of variation of the
root mean square error (CVRMSE). MAPE and CVRMSE
values show the accuracy as a relative percentage error.
Hence, they are easier to understand than other well-known
metrics, such as the mean absolute error, mean square error,
and root mean square error [40, 52]. ,e MAPE measures
the prediction accuracy for constructing fitted time-series

values in statistics, specifically in trend estimation. ,e
CVRMSE is used to aggregate the residuals into a single
measure of predictive ability and is more useful when sig-
nificant errors are particularly undesirable. ,e lower the
MAPE and CVRMSE values, the better the forecasting
model’s predictive performance. However, it is known that
the MAPE and CVRMSE increase significantly when the
actual value tends to zero [35, 52]. ,eMAPE and CVRMSE
are calculated using (10) and (11), respectively, where yt and
yt are the actual and forecasted values at time t, respectively,
y is an average of the actual values, and n is the number of
observations.

MAPE �
100
n



n

t�1

yt − yt
yt




, (10)

CVRMSE �
100
y

������������


n
t�1 yt − yt( 

2

n



. (11)

Split the dataset into a training set (2 years)
and test set (1 year) 

Use a grid search with 5-fold cross-validation 
for hyperparameter optimization 

Select the best hyperparameter values

Build a Cubist model using the dataset from
the biggening to prediction time point Di-1 

Predict electrical load at
the prediction time point Di

Calculate variable importance
of the Cubist model 

Select a dataset considering building type 
and forecasting type 

Building type
• Building 1 
• Building 2
• Cluster 1
• Cluster 2
• Cluster 3

Forecasting type
• DA-DPLF
• DA-TDLF
• WA-DPLF
• WA-TDLF

Start

End

i < 365
Yes

No

Optimal structure detection in Cubist modeling

Robust and interpretable energy forecasting

D1: Jan. 1
D2: Jan. 2

D364: Dec. 30 
D365: Dec. 31

Training set 

Test set

Time-series cross-validation
(incremental learning)

Hyperparameters
• Committees
• Neighbors

i = i + 1

Figure 4: Flowchart of interpretable electrical load forecasting based on Cubist modeling (DA: day-ahead, WA: week-ahead, DPLF: daily
peak load forecasting, and TDLF: total daily load forecasting).
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To demonstrate the validity of the proposed model, we
considered a total of 12 machine learning methods in-
cluding MLR, partial least squares (PLS), multivariate
adaptive regression splines (MARS), KNN, SVR, DT,
Bagging, RF, GBM, XGB, and CatBoost. Most machine
learning methods have hyperparameters that can influ-
ence model performance. To further improve their per-
formance, it is critical to tune the hyperparameters
effectively. To find the optimal hyperparameters, we
performed 10-fold cross-validation, all on the training set.
Table 8 describes the hyperparameters for each method,
the R package used, the references where details about
their optimal value can be found, and the hyperparameter
ranges.

For DA forecasting, we also considered the MLR model
in [20], which achieved better prediction performance than
KPX’s forecasting model, as a baseline model in the eval-
uation of the proposed model. ,e MLR model adapts a
rolling procedure using a dataset from one day to one year
before the prediction time point and is specified in the
following equation:

YD � β0 + β1YD−1 + β2YD−2 + β3YD−7 + β4WD

+ β5SD + β6TD + β7SDTD + ϵ,
(12)

where YD is the expected daily peak or total daily electrical
load at day D; YD−1, YD−2, and YD−7 are historical loads
before one day, two days, and one week, respectively; WD,
which represents the day of the week at dayD, is a categorical
variable and consists of seven categories from 1 (Monday) to
7 (Sunday); SD is a categorical variable for season and
consists of six categories from 1 (Jan. and Feb.) to 6 (Nov.
and Dec.); TD is the average temperature at day D; SDTD is a
quadratic variable to reflect appropriate weather informa-
tion according to the season; and β0, βi, and ϵ are the
constant term, the slope coefficient of the ith independent
variable, and the error term, respectively.

3.2. Experimental Results. Tables 9–12 present the MAPE
and CVRMSE results of DA-DPLF and TDLF, respectively,
through conventional time-series forecasting model evalu-
ation, also known as holdout, and TSCV. Tables 13–16
present the MAPE and CVRMSE forecasting results for
DPLF and TDLF, respectively. In Tables 9–16, we demon-
strate that the Cubist method produced lower MAPE and
CVRMSE values than any other forecasting method that we
considered. We also exhibit the prediction performance for
each time point through holdout and TSCV. In most cases,
TSCV exhibited better prediction performance than

: Training data

: Forecasting point

: One day

Dayi

Dayi+1

Dayi+2

Dayi+3

Dayi+4

Dayi+5

Dayi+6

Dayi+7

(a)

: Training data

: Forecasting point

: One day

Dayi

Dayi+1

Dayi+2

Dayi+3

Dayi+4

Dayi+5

Dayi+6

Dayi+7

(b)

Figure 5: . Time-series cross-validation for day-ahead forecasting and week-ahead forecasting. (a) Day-ahead forecasting. (b) Week-ahead
forecasting.
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holdout, except for PLS, where the input variable weight was
adjusted in the forecasting model to reflect the recent
electrical load pattern.

We made the following five observations from the
experiments:

(1) ,e day-ahead electrical load forecasting models
exhibited better prediction performance than the
week-ahead electrical load forecasting models.

(2) ,e week-ahead electrical load forecasting models
exhibited a lower prediction performance as the
prediction time moved further from the current
time.

(3) Despite the same time point, the day-ahead electrical
load forecasting models showed better prediction

performance than the first prediction time point of
the week-ahead electrical load forecasting models.

(4) ,e total electrical load forecasting models displayed
higher prediction performance than the peak elec-
trical load forecasting models.

(5) ,e prediction accuracy for Clusters 1–3 was higher
than the prediction accuracy for Buildings 1 and 2.

In general, the electrical load pattern of buildings or
building clusters could change from a variety of causes, and
hence the further apart the current and forecast times, the
higher the uncertainty [9]. ,erefore, both the DA and the
first prediction time point of the WA electrical load fore-
casting models yielded more accurate predictions because
they modeled electrical load patterns of the day before using

Table 9: MAPE comparison of DA-DPLF (%).

Methods
Building 1 Building 2 Cluster 1 Cluster 2 Cluster 3

Holdout TSCV Holdout TSCV Holdout TSCV Holdout TSCV Holdout TSCV
MLR 21.15 20.88 18.27 17.95 5.55 5.55 8.91 8.95 3.68 3.81
PLS 21.10 33.30 18.45 28.21 5.51 10.77 8.95 22.90 3.70 9.15
MARS 20.32 18.83 18.08 16.28 4.96 4.70 5.90 5.95 2.83 2.87
KNN 22.35 22.15 19.97 19.49 6.65 6.02 9.49 8.80 3.98 3.87
SVR 22.17 20.82 17.37 15.95 5.94 4.66 7.42 6.56 2.81 2.29
DT 22.11 23.20 26.04 23.10 8.71 8.05 12.07 11.56 5.22 5.05
Bagging 23.08 22.11 22.13 20.56 7.30 6.58 10.91 10.39 4.67 4.43
RF 19.72 17.78 18.42 15.42 5.90 5.12 6.45 5.99 2.98 2.63
GBM 18.17 16.99 17.90 15.38 5.42 4.87 6.21 5.82 2.99 2.71
XGB 19.93 17.17 18.50 15.08 6.23 5.32 6.25 5.70 2.94 2.68
CatBoost 22.61 20.31 19.31 16.88 6.49 5.49 7.48 6.65 3.58 3.05
Cubist 18.60 16.98 14.97 13.51 4.90 4.68 5.09 5.03 3.15 2.78
Values in bold indicate the lowest values for the respective datasets.

Table 8: List of the hyperparameters used to build optimal forecasting models.

Methods Package Hyperparameters and their range
MLR [53] lm None (automatic identification)
PLS [53] pls, caret ncomp (vector of positive integers): 1 :1 less than the number of input variables

MARS [49] earth, caret degree (maximum degree of interactions): 1 : 3
nprune (number of terms retained in the final model): 2, 13, 24, 35, 46, 56, 67, 78, 89, 100

KNN [21] caret k (number of neighbors): 2

SVR [54] kernlab, caret sigma (sigma): 0.35, 0.4, 0.1
C (cost): 1, 3, 5, 8, 10, 12

DT [53] rpart maxdepth (maximum depth of any node of the final tree): automatic identification
Bagging [53] Ipred None (automatic identification)

RF [40, 48] randomForest mtry (number of variables randomly chosen at each split): number of input variables divided by 3
ntree (number of trees to grow): 128

GBM [55] gbm

n.trees (number of trees to grow): 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000
interaction.depth (maximum depth of each tree): 5

shrinkage (shrinkage or learning rate parameter): 0.001
bag.fraction (subsampling rate): 0.5

XGB [56] xgboost, caret

nrounds (number of trees to grow): 50, 100, 250, 500
eta (shrinkage or learning rate parameter): 0.01, 0.1, 1
lambda (L2 regularization term on weights): 0.1, 0.5, 1
alpha (L1 regularization term on weights): 0.1, 0.5, 1

CatBoost [57] catboost, caret
learning rate (shrinkage or learning rate parameter): 0.03, 0.1

depth (maximum depth of each tree): 4, 6, 10
l2_leaf_reg (coefficient at the L2 regularization term of the cost function): 1, 3, 5, 7, 9

Cubist [50] Cubist committees (sequence generation of rule-based models (similar to boosting)): 1, 10, 50, 100
neighbors (single integer value to adjust the rule-based predictions from the training set): 0, 1, 5, 9
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TSCV. In addition, because the DA electrical load fore-
casting models utilized the electrical load of the day before as
an input variable, they exhibited more accurate prediction
performance than the first prediction time point of the WA
electrical load forecasting models. Hence, we confirmed that
the electrical loads during the week were more significant

input variables than the electrical loads of the same days of
the week. Overall, we also confirmed that the forecasting
models displayed low prediction accuracy when the elec-
trical load was close to zero. From November to December
2011 (out-of-sample), Buildings 1 and 2 showed a sudden
higher electrical load than that on other days. ,us, the

Table 10: CVRMSE comparison of DA-DPLF (%).

Methods
Building 1 Building 2 Cluster 1 Cluster 2 Cluster 3

Holdout TSCV Holdout TSCV Holdout TSCV Holdout TSCV Holdout TSCV
MLR 24.03 23.85 19.35 19.18 7.36 7.35 10.03 10.00 5.50 5.85
PLS 24.07 34.33 19.47 27.73 7.31 12.83 10.04 22.38 5.50 11.38
MARS 28.66 23.11 18.47 17.88 6.94 6.45 6.83 6.62 3.41 3.71
KNN 29.75 27.70 22.28 22.15 9.71 8.70 12.05 11.06 5.42 5.30
SVR 30.28 26.61 17.65 17.44 11.06 7.66 8.78 7.66 4.53 3.99
DT 26.34 26.86 24.73 22.67 12.28 10.66 12.61 12.49 5.81 5.62
Bagging 26.90 25.18 20.54 19.59 10.81 9.01 11.04 10.71 5.27 5.00
RF 27.93 23.33 18.26 17.03 8.81 7.19 7.09 6.55 3.57 3.24
GBM 26.68 22.87 18.08 16.92 8.07 6.75 6.91 6.44 3.53 3.28
XGB 29.37 23.13 18.43 17.60 9.32 7.27 7.28 6.65 3.56 3.32
CatBoost 31.20 26.08 19.48 18.07 9.45 7.56 8.09 7.31 4.35 3.90
Cubist 26.90 23.22 17.34 16.16 6.72 6.29 5.63 5.67 4.45 3.62
Values in bold indicate the lowest values for the respective datasets.

Table 11: MAPE comparison of DA-TDLF (%).

Methods
Building 1 Building 2 Cluster 1 Cluster 2 Cluster 3

Holdout TSCV Holdout TSCV Holdout TSCV Holdout TSCV Holdout TSCV
MLR 11.18 11.12 10.98 10.66 3.61 3.63 7.06 7.11 2.55 2.73
PLS 11.18 26.27 11.10 27.34 3.60 8.62 7.03 18.13 2.57 7.49
MARS 9.39 8.64 11.59 9.97 3.28 3.36 4.30 4.26 2.08 2.09
KNN 13.03 12.05 18.82 17.67 6.00 5.05 7.42 6.89 4.79 4.63
SVR 9.84 8.74 17.14 10.74 3.97 2.61 5.19 4.46 2.89 2.15
DT 17.40 17.29 23.68 19.71 6.96 6.16 9.12 8.86 4.72 4.22
Bagging 15.89 15.24 18.90 16.11 5.80 5.01 8.33 8.00 4.18 3.48
RF 10.92 9.95 15.01 9.58 4.44 3.97 4.51 4.29 2.46 2.05
GBM 10.74 9.77 14.44 10.04 4.08 3.59 4.61 4.42 2.50 2.08
XGB 10.98 9.86 13.66 9.47 4.54 3.84 4.54 4.38 2.63 2.18
CatBoost 11.49 10.20 14.94 10.07 4.92 3.81 5.27 4.70 2.95 2.23
Cubist 8.80 8.89 11.20 8.39 3.26 3.24 3.55 3.60 2.36 1.98
Values in bold indicate the lowest values for the respective datasets.

Table 12: CVRMSE comparison of DA-TDLF (%).

Methods
Building 1 Building 2 Cluster 1 Cluster 2 Cluster 3

Holdout TSCV Holdout TSCV Holdout TSCV Holdout TSCV Holdout TSCV
MLR 14.23 14.17 12.98 12.79 4.84 4.83 8.31 8.31 4.43 4.45
PLS 14.13 26.59 12.95 25.95 4.82 10.19 8.31 19.07 4.45 9.14
MARS 12.59 11.02 12.85 11.60 4.44 4.39 4.99 5.00 3.44 3.82
KNN 17.23 16.73 19.36 18.61 8.41 6.97 10.37 9.65 6.57 6.45
SVR 12.45 11.80 16.67 12.56 8.67 4.84 7.12 6.05 5.54 5.04
DT 22.07 22.38 23.08 21.57 9.61 8.38 10.41 10.46 5.41 4.95
Bagging 19.91 19.96 18.19 17.53 8.37 7.05 9.57 9.19 4.73 4.04
RF 14.48 13.59 14.89 11.68 6.86 5.65 5.43 5.16 2.95 2.66
GBM 13.47 12.86 14.54 12.17 6.25 5.10 5.56 5.31 2.94 2.79
XGB 14.86 13.77 14.71 12.45 7.00 5.45 5.65 5.48 3.12 3.66
CatBoost 14.34 13.52 15.07 12.34 7.34 5.36 6.74 5.86 3.57 2.85
Cubist 12.09 11.72 13.16 10.55 4.46 4.36 4.15 4.24 3.27 3.34
Values in bold indicate the lowest values for the respective datasets.
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electrical load forecasting models had a large prediction
error because they were not trained on these electrical loads.

To find the best forecasting method, we ranked them by
considering all the TSCV performance metrics for each
building or cluster. We then calculated the average rank
using the rank for all buildings and clusters for the DA-
DPLF and TDLF and WA-DPLF and TDLF for each
method. Table 17 presents the ranks for each method for
each performance metric and the average ranks. We con-
firmed that the Cubist method exhibited the best rank in the
table. In addition, we demonstrated that the proposed Cubist

model outperformed the MLR model in all aspects of DA
forecasting, as shown in Table 18.

3.3. Statistical Verification. To demonstrate the validity of
the proposed method, we conducted three statistical tests.
,e paired sample t-test was used to demonstrate the ef-
fectiveness of TSCV, and the Wilcoxon signed-rank and
Friedman tests were used to confirm the difference in
prediction performance between the proposed model and
the other models. Here, the p value gives the probability of

Table 13: MAPE comparison of WA-DPLF (%).

Datasets Evaluation
Forecasting methods

MLR PLS MARS KNN SVR DT Bagging RF GBM XGB CatBoost Cubist

Building 1 Holdout 25.89 26.25 22.15 24.11 20.03 26.97 24.64 19.92 19.44 19.45 21.15 20.68
TSCV (avg.) 26.08 28.62 21.06 23.54 19.36 25.58 23.59 19.48 19.16 19.00 20.15 19.13

Building 2 Holdout 21.52 21.60 19.28 21.97 18.92 24.82 22.04 18.60 18.31 17.44 18.76 16.92
TSCV (avg.) 21.26 23.89 17.10 21.17 16.99 23.58 20.97 15.87 15.56 15.65 16.87 14.55

Cluster 1 Holdout 8.00 8.01 6.82 8.53 7.91 9.60 8.89 7.89 7.55 8.25 7.89 6.77
TSCV (avg.) 8.16 10.47 7.01 8.07 6.80 9.47 8.71 7.26 6.99 7.77 7.26 6.53

Cluster 2 Holdout 11.27 11.38 8.75 9.79 8.11 12.48 11.49 7.75 7.60 7.87 8.48 7.04
TSCV (avg.) 11.18 18.27 7.32 9.88 7.56 11.92 11.07 7.46 7.18 7.41 8.24 6.87

Cluster 3 Holdout 4.77 4.85 3.82 4.86 3.14 5.76 5.24 3.50 3.53 3.57 3.93 3.40
TSCV (avg.) 4.93 7.38 3.57 4.63 2.83 5.56 4.94 3.19 3.22 3.43 3.57 3.25

Table 14: CVRMSE comparison of WA-DPLF (%).

Datasets Evaluation
Forecasting methods

MLR PLS MARS KNN SVR DT Bagging RF GBM XGB CatBoost Cubist

Building 1 Holdout 31.49 31.55 48.77 33.57 32.38 34.54 32.32 31.44 29.74 32.20 32.90 30.09
TSCV (avg.) 31.40 35.83 39.15 32.88 29.03 32.16 29.13 27.82 27.40 26.73 29.61 27.44

Building 2 Holdout 23.31 23.36 19.83 23.62 19.77 23.07 20.54 19.09 18.93 19.51 20.17 19.02
TSCV (avg.) 23.04 27.03 18.99 22.79 19.43 23.84 19.98 18.23 17.50 18.42 19.31 18.07

Cluster 1 Holdout 10.89 10.89 9.21 11.97 11.94 13.40 12.45 11.05 10.57 11.69 10.98 9.17
TSCV (avg.) 10.82 13.66 9.28 11.39 9.81 12.76 11.77 10.02 9.57 10.59 9.87 8.92

Cluster 2 Holdout 12.13 12.19 9.60 11.94 9.11 13.29 11.95 8.47 8.57 9.36 9.41 8.08
TSCV (avg.) 12.18 20.30 8.35 12.10 8.57 12.90 11.60 8.29 8.24 8.70 9.00 8.00

Cluster 3 Holdout 6.61 6.47 4.58 5.93 4.21 6.33 5.80 4.12 4.12 4.25 4.92 4.14
TSCV (avg.) 7.15 10.07 4.44 5.69 3.89 6.13 5.50 3.94 3.87 4.21 4.43 4.01

Table 15: MAPE comparison of WA-TDLF (%).

Datasets Evaluation
Forecasting methods

MLR PLS MARS KNN SVR DT Bagging RF GBM XGB CatBoost Cubist

Building 1 Holdout 17.18 17.61 12.68 16.02 12.51 20.41 16.69 12.56 12.45 13.37 13.31 11.62
TSCV (avg.) 17.23 18.35 12.05 15.11 11.96 18.40 15.95 11.80 11.87 12.05 12.54 11.46

Building 2 Holdout 17.47 17.86 15.77 21.78 17.01 24.42 19.64 16.28 16.45 15.13 16.98 15.24
TSCV (avg.) 16.19 16.80 12.95 20.37 11.28 17.82 15.59 10.82 11.88 10.85 12.57 10.94

Cluster 1 Holdout 6.76 6.87 6.11 8.58 6.70 9.03 7.73 7.04 6.61 7.08 7.14 5.90
TSCV (avg.) 6.90 9.05 5.71 8.01 5.49 8.76 7.82 6.46 6.05 6.54 6.25 5.51

Cluster 2 Holdout 9.73 9.92 5.98 7.90 6.18 9.79 9.13 5.89 5.57 5.85 6.47 4.91
TSCV (avg.) 9.84 15.07 5.63 7.76 5.63 9.81 9.18 5.86 5.53 5.67 6.15 5.11

Cluster 3 Holdout 4.51 4.54 3.45 5.97 3.88 5.40 4.79 3.20 3.28 3.29 3.63 2.96
TSCV (avg.) 4.76 5.97 3.05 5.56 3.62 4.87 4.24 2.75 2.86 2.91 3.06 2.88
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observing test results under the null hypothesis. ,e cutoff
value for determining statistical significance is usually a
value of less than 0.05, which corresponds to a 5% or lower
chance of obtaining a result like the one observed if the null
hypothesis is correct.

,e paired sample t-test compares two means of the
same individual, object, or related units. ,e test objective is
to discover whether there is statistical evidence that the
mean difference between a pair of observations for a critical
result is significantly different from zero. Typical

applications of the paired sample t-test include case-control
studies or repeated-measurement designs. Because PLS
performed poorly for all forecasting tasks in TSCV, we
performed the paired sample t-test considering all the
holdout and TSCV values for each method except PLS for
MAPE and CVRMSE. Table 19 shows that the MAPE and
CVRMSE p values were both less than 0.05. ,erefore, we
can confirm the validity of the TSCV used in this study.

,e Wilcoxon signed-rank test [58, 59] is used to
confirm the null hypothesis to determine a significant

Table 16: CVRMSE comparison of WA-TDLF (%).

Datasets Evaluation
Forecasting methods

MLR PLS MARS KNN SVR DT Bagging RF GBM XGB CatBoost Cubist

Building 1 Holdout 21.71 22.25 15.16 19.58 15.71 24.91 20.65 16.35 15.10 16.57 17.49 15.04
TSCV (avg.) 21.59 25.73 14.18 18.26 15.33 22.97 20.26 15.43 14.82 15.73 16.33 14.82

Building 2 Holdout 19.73 20.43 16.75 22.77 17.00 23.67 19.69 16.15 16.77 15.88 17.20 16.33
TSCV (avg.) 19.27 22.77 14.39 21.44 13.95 20.83 17.68 13.73 13.98 14.21 15.42 13.41

Cluster 1 Holdout 9.21 9.27 7.82 11.24 10.24 12.06 10.60 9.57 8.93 9.84 9.67 7.78
TSCV (avg.) 9.17 11.85 7.39 10.60 7.94 11.47 10.52 8.62 8.08 8.73 8.30 7.39

Cluster 2 Holdout 11.35 11.43 7.47 10.80 8.04 11.46 10.16 6.93 6.72 7.37 7.82 6.08
TSCV (avg.) 11.55 17.95 6.63 10.62 7.18 11.48 10.45 6.94 6.74 7.23 7.47 6.27

Cluster 3 Holdout 6.48 6.24 4.19 7.78 6.55 5.96 5.32 3.82 3.82 3.94 4.35 3.68
TSCV (avg.) 7.43 7.83 3.95 7.49 6.40 5.69 4.89 3.41 3.44 3.72 3.82 3.65

Table 17: Ranks of each model based on the performance metrics and average rank.

Methods
MAPE CVRMSE

Average rank
DA-DPLF DA-TDLF WA-DPLF WA-TDLF DA-DPLF DA-TDLF WA-DPLF WA-TDLF

MLR 8.2 7.4 9.8 9.4 7.8 7 9.4 9.6 8.6
PLS 12 12 12 11.4 12 12 11.8 12 11.9
MARS 4.8 2.8 5.4 4.6 3.8 2.6 6 3.2 4.2
KNN 9 9.6 8.2 9.8 9.8 9.8 9.2 9.8 9.4
SVR 4 4.4 3.8 3.8 7 6.2 4.6 4.8 4.8
DT 11 10.8 10.8 10.8 10.6 10.6 10.4 10 10.6
Bagging 9.8 9.4 9.2 8.6 8.6 9 8 8.2 8.9
RF 4 4.4 4.2 3.2 3.2 4.2 3.8 3.6 3.8
GBM 3.2 4.2 2.6 3.2 2 3.8 1.8 3 3.0
XGB 3.2 4.8 4 4.6 4.2 6 4.6 5.6 4.6
CatBoost 6.8 6.6 5.8 6.2 6.8 5 6.2 6.2 6.2
Cubist 2 1.6 1.8 2 2.2 1.8 2.2 1.6 1.9
Values in bold indicate the lowest values for the respective electrical load forecasting types (DA: day-ahead; WA: week-ahead).

Table 18: Prediction performance of Lee and Han’s MLR and Cubist.

Datasets Metrics
DPLF TDLF

MLR [20] Cubist MLR [20] Cubist

Building 1 MAPE 28.98 16.98 17.19 8.89
CVRMSE 29.58 23.22 19.57 11.72

Building 2 MAPE 24.44 13.51 16.05 8.39
CVRMSE 24.57 16.16 17.82 10.55

Cluster 1 MAPE 7.22 4.68 5.00 3.24
CVRMSE 9.17 6.29 6.49 4.36

Cluster 2 MAPE 13.62 5.03 16.59 3.60
CVRMSE 10.22 5.67 13.66 4.24

Cluster 3 MAPE 6.20 2.78 5.12 1.98
CVRMSE 8.83 3.62 7.71 3.34
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difference between the two models. In contrast, the Fried-
man test [58] is a multiple-comparison test that aims to
identify significant differences between three or more
forecasting models. To verify these test results, we used all
the MAPE and CVRMSE values (the DA-DPLF and TDLF
and the WA-DPLF and TDLF) for each forecasting method.
,e Wilcoxon signed-rank test results with a significance
level of 0.5 and the Friedman test results are shown in
Table 20. Because the p value in all cases is below the sig-
nificance level, the proposed model is superior to the other
models.

3.4. Model Interpretation. We determined the variable im-
portance of the proposed model at each test point (one day
or one week), according to the TSCV cycle. Figures 6 and 7
present heat map graphs for the DA forecast, revealing the
importance of the input variables listed in Table 7. Figures 8
and 9 present heat map graphs for the WA forecast, re-
vealing the importance of the input variables listed in Ta-
ble 7.,e analytical results obtained, as shown in the figures,
can be summarized as follows. In the calendar data, we
confirmed that the holiday was the most significant variable
for the forecasting model, and the variables for the days of
the week were highly important.,e variables for the day did
not significantly affect the model performance. We also
confirmed that, overall, the temperature data were essential
for themodel performance, and the average temperature was
a key input variable for the proposed model. In the historical
load data, the electrical load from the previous day was the
most important variable, and the electrical load one-week
prior was also crucial for the DA forecasting model. In the
WA forecasting models, the electrical load one-week prior

was the most significant input variable in the historical load
data. Here, we can see that the adjacent autocorrelation
variables (e.g., historical load) are essential for the model
performance. We also presume that the DA forecasting
models performed better than the WA forecasting models
because they could reflect the crucial historical load vari-
ables, both the day before and the week before.

3.5. Discussion. ,e experimental results showed that PLS
exhibited poor prediction performance in TSCV. PLS is a
popular method to deal with multicollinear relationships
between output and input variables [48]. Even though we
predicted the electrical load by setting the PLS hyper-
parameter automatically, it performed poorly. Although the
historical load was highly correlated with the actual electrical
load, PLS did not adequately reflect the historical load in
TSCV, and hence we conclude that this caused the pre-
diction accuracy to be low. XGB and CatBoost are state-of-
the-art technologies. XGB performed satisfactorily, but
CatBoost did not. Because most input variables are con-
tinuous, CatBoost could not use its advantages, such as
ordered target statistics. ,erefore, we concluded that XGB
is better suited for DPLF and TDLF than CatBoost.,emain
advantage of the Cubist method is the addition of multiple
training committees and “reinforcement” to balance the
weights better. ,erefore, we presume that Cubist can
achieve satisfactory prediction performance because it
predicts the next time point by adjusting the weights of the
input variables better through TSCV.

,e light GBM (LightGBM) and neural network
methods also performed well in STLF but were not
considered here. ,ese methods require a sufficient

Table 19: Paired sample t-test of holdout and TSCV.

Statistics MAPE CVRMSE
T-test statistic value (t) 11.136 11.167
Degrees of freedom (df) 219 219
Significance level of the t-test (p value) 2.2×10−16 2.2×10−16

Confidence interval (conf.int) of the mean differences at 95% [0.787, 1.125] [0.821, 1.173]
Mean differences between pairs (sample estimates) 0.956 0.997

Table 20: Results of Wilcoxon signed-rank and Friedman tests.

Methods
Wilcoxon signed-rank test Friedman test

MAPE CVRMSE MAPE CVRMSE
MLR 1.907×10−6 1.907×10−6

2.2×10−16 2.2×10−16

PLS 1.907×10−6 1.907×10−6

MARS 3.624×10−5 0.005841
KNN 1.907×10−6 1.907×10−6

SVR 0.009463 5.722×10−6

DT 1.907×10−6 1.907×10−6

Bagging 1.907×10−6 1.907×10−6

RF 0.000168 0.001432
GBM 8.202×10−5 0.019580
XGB 6.294×10−5 0.000210
CatBoost 1.907×10−6 0.000175
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dataset for model training [18, 60]; however, it takes a
significant amount of time to collect enough data because
only one dataset for daily peak load and total daily load is
generated per day. Moreover, these methods are better
configured for the Python environment [60]. In partic-
ular, neural network methods require high-performance
computer specifications [9]. In this paper, we only

considered several datasets collected over three years, and
a little over 700 tuples were used for the first model
training. ,erefore, we did not expect these methods to
formulate a robust forecasting model with such small
datasets. In the future, we will apply these methods to
perform interpretable hourly electrical load forecasting or
VSTLF.
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Figure 6: Example of variable importance for DA-DPLF (Building 1).
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Figure 7: Example of variable importance for DA-TDLF (Building 1).
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Figure 8: Example of variable importance for WA-DPLF (Building 1).
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4. Conclusions

In this paper, we developed a novel forecasting model for
interpretable short-term electrical load forecasting. To do
this, we collected five different electrical load datasets with
temperature and holiday information. We constructed
different input variables by considering four forecasting
types: day-ahead DPLF and TDLF and week-ahead DPLF
and TDLF. We built the proposed model based on Cubist, a
rule-based model, and applied TSCV to address the lack of
data and reflect recent electrical load trends. ,e experi-
mental results demonstrated that the proposed model
showed excellent prediction performance. In addition, we
conducted interpretable electrical load forecasting for each
building or building cluster using the variable importance
produced by the proposed model.

We found that applying the TSCV method can improve
prediction performance, except for PLS, and that the Cubist
method performed satisfactorily using a small dataset. It was
challenging for CatBoost, a state-of-the-art technique, to
produce excellent prediction performance because almost all
input variables were configured as continuous. Overall, we
confirmed that the higher the electrical load, the higher the
prediction accuracy. TDLF and the day-ahead forecasting
model had a better prediction performance than DPLF and
the weak-ahead forecastingmodel. However, it was difficult to
adequately train the forecasting models on sudden electrical
load fluctuations because the amount of data was smaller than
the amount of data for hourly load forecasting or VSTLF.

We plan to perform interpretable VSTLF, such as 10-
minute or 15-minute-interval load forecasting, using neural
network methods such as activation maps or an attention
mechanism. In addition, we will make an effort to develop
various methodologies for explainable forecasting in in-
terpretable forecasting. We also plan to find variables that
can reflect building characteristics and include them in the
forecasting model.

Abbreviations

1D: One-dimensional
2D: Two-dimensional
AANN: Additive artificial neural network
ARIMA: Autoregressive integrated moving average
ARMA: Autoregressive moving average
ANN: Artificial neural network
Bagging: Bootstrap aggregating
BEMS: Building energy management system
CatBoost: Categorical boosting
CBCS: Cuckoo bird search process of the cuckoo

search algorithm
CRF: Conditional random forest
CVRMSE: Coefficient of variation of the root mean square

error
DA: Day-ahead
DPLF: Daily peak load forecasting
DT: Decision tree
EMD: Empirical mode decomposition
ESS: Energy storage system
ET: Extra tree
GBM: Gradient boosting machine
GHG: Greenhouse gas
IMF: Intrinsic mode function
KNN: K-nearest neighbor
KPX: Korea Power Exchange
LightGBM: Light gradient boosting machine
LSTM: Long short-term memory
MAPE: Mean absolute percentage error
MARS: Multivariate adaptive regression splines
MLR: Multiple linear regression
PLS: Partial least squares
PSO: Particle swarm optimization
RE: Renewable energy
RF: Random forest
SR: Self-recurrent
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STLF: Short-term load forecasting
SVR: Support vector regression
TDLF: Total daily load forecasting
TSCV: Time-series cross-validation
VSTLF: Very short-term load forecasting
WA: Week-ahead
XGB: Extreme gradient boosting.
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