Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 6949846, 10 pages
https://doi.org/10.1155/2022/6949846

Research Article

Logic Design and Power Optimization of

Floating-Point Multipliers

Na Bai, Hang Li, Jiming Lv, Shuai Yang, and Yaohua Xu

Key Laboratory of Computational Intelligence and Signal Processing, Ministry of Education (Anhui University),
School of Integrated Circuit, Anhui University, School of Electronic Information Engineering, Anhui University,

Hefei 230601, China

Correspondence should be addressed to Yaohua Xu; xyh@ahu.edu.cn

Received 30 October 2021; Accepted 10 December 2021; Published 7 January 2022

Academic Editor: Akshi Kumar

Copyright © 2022 Na Bai et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Under IEEE-754 standard, for the current situation of excessive time and power consumption of multiplication operations in
single-precision floating-point operations, the expanded boothwallace algorithm is used, and the partial product caused by booth
coding is rounded and predicted with the symbolic expansion idea, and the partial product caused by single-precision floating-
point multiplication and the accumulation of partial products are optimized, and the flowing water is used to improve the
throughput. Based on this, a series of verification and synthesis simulations are performed using the SMIC-7 nm standard cell
process. It is verified that the new single-precision floating-point multiplier can achieve a smaller power share compared to the

conventional single-precision floating-point multiplier.

1. Introduction

According to a study by Stanford University, the demand for
arithmetic power in artificial intelligence has doubled every
three to four months since 2012, a rate that has surpassed
Moore’s law (doubling the number of transistors in a chip
every 18 months) [1]. That is, the current rate of Moore’s law
has lagged far behind the speed of the growth in demand for
computing power, relying solely on the progress of process
technology that has been entirely unable to meet the demand
for computing power growth. According to Intel’s latest
study, for computationally intensive applications, floating-
point operations account for 75% of processor core power
consumption and 45% of total processor power consump-
tion [2], as shown in Figure 1, while its operator power
consumption accounts for 39.57% in Think-II, an artificial
intelligence inference chip developed by the first team of the
Institute of Microelectronics at Tsinghua University [3].
From this, it can be seen that floating-point operation is a
module with a very large power consumption ratio in big
data computing, so it is significant to reduce the power
consumption of floating-point operation.

As an important indicator of scientific computing
capability, floating-point arithmetic is an important
computing method for processing various information in
today’s electronic information tools. Floating-point
numbers have a large dynamic range compared to fixed-
point numbers; however, the structure is more complex
and power consumption is higher, so it is a meaningful
breakthrough to achieve multiplicative power optimiza-
tion of floating-point numbers. In the past, 60% of the
performance improvement of microprocessors depended
on process advancement [4]; now, we need a breakthrough
in design to achieve the demand of arithmetic power
growth.

This paper focuses on the power optimization of single-
precision floating-point multiplication operations in float-
ing-point operations. The single-precision floating-point
multiplication calculation can be divided into three parts,
namely, the judgment of symbolic bits, the summation of
exponential bits, and the multiplication of trailing bits. The
first two conventional designs are similar in this paper, but
the core of the design optimization is in the multiplication of
trailing bits.

mailto:xyh@ahu.edu.cn
https://orcid.org/0000-0003-0861-1802
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6949846

1%

2%

Fetch+Decode

B OOO+speculation
Integer Execution
Caches

TLBs

Legacy

m Others

= FP Execution

Floating-point
operations account for
core power
consumption and total

Computational Intelligence and Neuroscience

Fetch+Decode

OOO+speculation

Integer Execution

TLBs
Legacy
Others

Fetch+Decode
OOO+speculation
Integer Execution
Caches

TLBs

Legacy

Others

FP Execution

40%

Uncore

FIGURE 1: Intel’s microprocessor core-level.

The conventional design for the trailing part of the
multiplier is mainly a Wallace tree structure with a com-
bined CSA and 4-2 compressor, mainly in the form of a
booth code. Finally, the final product is obtained with an
overrunning adder [5]. Figure 2 shows the conventional tail
partial multiplier design.

In this paper, we hope to improve the coherent design to
reduce the power consumption of single-precision floating-
point multipliers.

2. Materials and Methods

2.1. Ideas and Advantages of the Design Algorithm Based on
Boothwallace Tree. For the current design of single-preci-
sion floating-point multiplication, this paper divides the
design into three parts as the direction of optimization: how
to appropriately increase the throughput of data processing
when emitting signals; how to process the partial products
caused by the multiplication of trailing bits and reduce the
number of operations and storage at the same time; and how
to effectively reduce the workload of summing and reduce
the hyperactive operations in the process of partial product
summing.

This design is considered for processing a huge amount
of multiplication data operations at 2 GHZ frequency. If we
just follow the timing sequence to process one data and then
continue to process the next data, such a way is actually very
ineflicient. Therefore, this paper adopts the form of flowing
water to improve the throughput of data processing and
increase the frequency of the clock. Although the primary
delay (1 * (T1 + T2)) is added in the first stage of processing,
the pipelined operation can substantially improve the overall
data processing efficiency because the register delay must be
smaller than the combinational logic delay. The difference
time between the register delay and the combinational logic
delay can be saved almost every time the pipelined data
processing is done under the huge data processing. The

disadvantage of pipelining is that it increases power con-
sumption, area, and hardware complexity. Therefore, while
using pipelining to improve data processing efficiency, it is
important to weigh the loss of power consumption, area, and
software complexity.

The encoding operation of the partial product caused by
the trailing bits in the multiplication stage can significantly
affect the final power consumption and area. If the partial
product is used directly or a simple booth-2 coding oper-
ation is done, the power consumption loss and the area
occupied are too large. Adopting the booth-4 encoding form
can reduce half of the partial product caused by booth-2,
compared to the direct use of the partial product form that
reduces the part beyond 1/2, which can significantly reduce
the time consumption caused by the subsequent operation of
partial product, but also can significantly reduce power
consumption. Although in the case of booth-4 coding op-
eration, there will be some assignment and logic operations,
which will lead to this coding operation will consume a
certain amount of time and power consumption, as well as
occupy part of the area, still, for a large number of data
operations, the increased consumption of this part is much
smaller than the consumption saved by the subsequent
partial product operation of the data, so this paper uses the
booth-4. The symbolic bit expansion method is used in this
paper [6]. The symbolic bit expansion can predict the partial
product sum form, which can appropriately compress some
redundant operations of the partial product sum, and use a
certain logical relationship between the two summed partial
products to establish the variable relationship, which can
compress the area and reduce the power consumption to a
certain extent to achieve a comprehensive multiplication of
multiple bits, and a large number of partial sums can save a
lot of areas and power consumption effect and for subse-
quent operations can reduce more add operations [7].

In the partial product summation stage, using the direct
array summation form or the rounding reservation form will

Computational Intelligence and Neuroscience

Partial product

Multiplicand > sum
— >
. Wallence
Booth . tree Lookahead | product
encoding . compression adder
. structure Carry
multiplier >

FiGure 2: Conventional multiplier design.

result in a large blanking hypervalue, which will not only
occupy a large area but also increase the nonessential ad-
dition operations leading to increased power consumption
and time. Using the Wallace tree in the form of overlay
summation in the form of tree depth reduction will greatly
reduce the number of nonessential addition operations and
reduce the amount of white space, resulting in a significant
improvement in time. Although multiple uses of the full
adder can cause a slight loss of power consumption, but for a
large amount of data processing, it brings better rate gain
and is therefore chosen [8].

2.2. Implementation Platform and Implementation Algorithm

2.2.1. Implementation Platform and Process. Figure 3 shows
the experimental platform and the validation process [9].

The first step is to build a golden model database in the
MATLAB platform about single-precision floating-point
multipliers and multiplied numbers and generating control
group products. Since the range of single-precision floating-
point designs is too wide to be verified by the exhaustive
method based on hardware limitations, it is the idea of the
design to create a database of golden models as the basis for
verification calls. The simple steps are to use the rand
function and the num2hex function to generate random data
and convert single-precision floating-point data. A database
of 100 million multipliers and multiplied numbers are
created, saved as num and hex types, respectively, and
multiplied together in MATLAB to form a product database
as a control group for later testing processes as an accuracy
standard. After generating the data, the hist function is used
to demonstrate the uniformity of the generated database to
ensure that the generated database is the golden model
database and reduce the uncontrollable experimental error.
The following are the functions for generating random data
and converting type functions:

a(i) = f +2*e=*rand(1,1,single), "

a_temp = num2hex (a (i)).

Under the foundation of the golden model database
with good calls, a suitable testbench environment needs to
be established as a way to verify the authenticity of the
source code logic and debug the source code logic opti-
mization. The platform for design implementation is the
NC-Verilog platform. Here, in addition to calling the
golden model database and generating the verification

product library, the direct window output under the
waveform file is also done. The display function is called
with embedded precision verification judgments to sim-
plify verification access.

In order to subsequently implement the power con-
sumption parameter analysis and obtain the simulation data
for each of the source codes, a synthesizable implementation
of the source code is required. The design is implemented in
the Design Compiler platform. The original description of
the source code is modified, and the source code is reshaped
in the specified hardware description language. After in-
voking the synthesis environment, the synthesis simulation
of the source code is realized, and the simulation data of each
source code can be obtained, and the required slack data and
area data can be extracted as the final control index. In the
process of synthesis, the required netlist file is generated as a
sample for subsequent calls. It should be noted that the DC
environment CLK needs to be annotated when calling
Design Ware samples, and the source code constraint in this
paper is 2 GHz. Here, this paper relies on the final code to
generate the circuit netlist to observe the structure of the
circuit diagram.

After generating the required circuit netlist file samples,
call the samples to verify them in the testbench environment,
noting that it may be necessary to create a process library for
import. After verification, the VCD waveform file sample is
exported, and the circuit netlist ssmple and VCD waveform
file sample are imported into the PTPX platform to create
the required PTPX environment to generate the corre-
sponding power analysis report sample. Based on the
samples and the required theory, the source code is designed
and optimized, and the optimized samples are saved. And
save the Design Ware samples as a control group to achieve
the desired results.

2.2.2. Logic Design and Optimization. The basic single-
precision floating-point multiplier is built on the basis of the
binary floating-point representation formula, which extracts
the sign bits, the tail f, and the step code e from the 32-bit
binary data, respectively. Figure 4 represents the arithmetic
structure of this 32-bit single-precision floating-point
number. The core part is the fixed-point multiplication of the
trailing part af:{1'b1, a[22:0]}, bf:{1'b1, b[22:0]}. In the based
code, this multiplication structure is the simplest shift
judgment flow structure. In the optimization structure, the
main thing is also the fixed-point multiplication in the tail

4 Computational Intelligence and Neuroscience
Generating gold
models
inspection
I l Feedback Improvement |
PTPX platform
Sourcg pode NC Platf'orm DC platfqrm Generate netlisty power
Writing validation synthesis consumption
analysis
Generate circuit netlist
NC platform
secondary Generate vcd files
validation
F1GURE 3: Design verification and simulation flow.
TaBLE 1: Booth-4 transcoding table.
S e[30:23] [22:0] i q
Part of the product
Xoin1 X5 Xoiny PP P NEG Z B, B,
31 30 2322 0 [n-1:1]

000 +0 = Y 0 1 1 0
001 +1 = Y 0 1 0 1
Symbolic bit Step code bit Multiply the mantissa bits 010 +1 % Y 0 0 0 1
judgment summation plus a default positive sign bit 011 +2 % Y 0 0 1 0
FIGURE 4: Single-precision floating-point multiplication structure. 100 2= Y ! 0 1 0
101 -1 %Y 1 0 0 1
110 -1 %Y 1 1 0 1
111 -0 = Y 1 1 1 0

part and the optimization of the accuracy in the combination
of the final product c parts [10].

The booth-4 encoding has been introduced above to
effectively reduce the number of partial products caused by
the fixed-point multiplier. In this paper, the single-precision
floating-point multiplier is actually optimized by the booth-
4 encoding for the trailing part (i.e., the 24-bit fixed-point
multiplier). In addition, this paper also deals with the
symbolic bit expansion of the booth-4 encoding. Since this
24-bit fixed-point multiplier is treated as a symbolic number
by default, a simple processing should be done. af is pro-
cessed as aff:{1'b0, af}. In this paper, bf is treated as the
transcoded original code of booth-4 in the code as bf b:
{2'b00, bf, 1'b0} form, and then the transcoding process is
performed corresponding to Table 1, hosting the symbols of
each part (neg) and generating the transcoding code (zero,
one, two). According to the transcode, the aft is operated
accordingly, with zero being taken, one being unchanged,
and two being shifted left by one. Then, determine whether
the operation of taking the inverse plus one is needed
according to the neg symbol. There is an important logic
here such that the neg symbol is 0 by default under the
premise of determining zero. This is an important logic point
in the subsequent symbolic bit expansion [11].

In the case that the basic encoding has been completed, it
is necessary to do another simplification of booth-4, which is
used as a prediction of the booth algorithm with a rounding,
again compressing its partial product [12]. Then, according

to the partial product logical association of each line to do
symbolic bit expansion simplification, here note that if there
are zero cases, the front added symbolic bit neg default is 0,
~neg is 1. So far, we get 13 partial product prod, the end of
the first flow level, into the second level of flow. Figure 5
shows the comparison of the partial product after the ex-
pansion with symbolic bits after the booth processing.

In the second level of flow, what this paper has to do is
based on the first level of the partial product of 13 prods’
multiple coverage compression to the last only one layer of
product situation. According to the 3-2 compressor theory
(2-2 compression is 3-2 compression in one additive to zero
states), make add compression module; in the second level of
flow in six levels cover the compression of 13 layers of prod
so as to get the final result product. Therefore, a compression
module needs to be added at each level to avoid bias. In the
last level of the six-level overlay compression, the last two
levels are added directly to obtain the final fixed-point 24-bit
multiplication product using the system’s built-in overfeed
adder [13]. Figure 6 shows the compression coverage of the
six-level level.

In the Wallace tree above, we have obtained the product
of fixed-point multiplication results for the trailing part so
that the symbolic bits, the order part, and the trailing part of
the resultant floating-point number have been obtained.
Nowadays, rounding and direct rounding are popular in

Computational Intelligence and Neuroscience

_ C 0000000000000 0OCOCOIOIOOOROONONONINONIC O

|

=
7

~

FIGURE 5: Schematic diagram of symbol bit expansion.

®
°
o
oo
eee
see
seoe
seoe
ee00e
sadkne
eeocee
scocee
eccceee
02000000
e0000000
00000000
eo0c0000e
e0ocsce0e
0000000000
0000000000
00000000000
00000000000
000000000000
eeccocssssee
0000000000000 =
0000000000000
0000000000000
0000000000000
000000000000
00000000000
00000000000
0000000000
0000000000
000000000
000000000
s0000000
soccccee
eocece0
eosceee
ssoc0e
esecoe
ee00e
®o00e
eoee
eeee
eoe
eoe
o

(d)

®

FIGURE 6: (a) The first-level compression diagram. (b) The second-level compression diagram. (c) The third-level compression diagram. (d)

The fourth-level compression diagram. (e) The fifth-level compression diagram. (f) The sixth-level direct overfeed summation.

exceeds 382 as the maximum overflow and is below 127 as

precision, and the former scheme is adopted in this design.
In the end, the first result of the final fixed-point product is
judged to be 1 to determine the overflow of the ordinal code.

the minimum overflow, and the fixed-point product result

cf2<

[45:23] is extracted in the nonoverflow case. If the first

place of the fixed-point product is 1, the order code beyond

If the first place of fixed-point product is 0, the order code

'h FIDOEO7D

No flow design
three clock units
can run an output

Computational Intelligence and Neuroscience

You can verify
that the logic
output corresponds
to the Gold Model

database output

There are flowing
designs a clock
unit can run an

output

The first output of
the stream is still
three clock units

FIGUre 7: Logic output diagram of flowing and nonflowing water.

Ln:59807h38, 59a55450] jout : 73a5£37 7} foverfalg: 0,[gompare: true
in:d98chcfe, dBe7f18c|jout: 72££069afloverfalg: 0 [gompare: true
in:d8a686ac, S9df1f4c|jout: £31123ac|loverfalg: 0 [gompare: true
in:d9c9f4h7, 58002930|jout: £24a35h3||overfalg: 0 [gompare: true
in:58£83358, d960eeld|jout:f2dal3cd||overfalg:0,[fompare: true
in:d99abedb, d8bb9fad|lout: 72e2d3d3||overfaly: 0,[fompare: true
in:d90ch164, d9adlb42|jout: 733e45h7||overfaly: 0,[fompare: true
in:59c97c2c, d873cf10|jout: f2hfe3dé||overfalg:0,[fompare: true
in:592e65c0, d99442f2(jout : £34a00dc||overfala: 0,[fompare: true

Logic Output

Enter 1,2

—

Verify that the logic is
correct against the database
output

Overflow determination

FiGure 8: Logic function verification diagram.

381 is the maximum overflow, below 126 is the minimum
overflow, and the result of extracting the fixed-point product
in the nonoverflow case is cf5<=[46:24]. Then, do the
precision constraint part, judge the latter bit of the extracted
result part, and judge whether it is required as a feed. Here, it
should be noted that the condition needs to be attached
whether the extracted part is all one, or the order code is the
maximum number 255, that is, whether the overflow result
may be caused in the rounding state, if not, then the
extracted part cf5+ 1. So, this paper gets a single-precision
floating-point multiplier with the accuracy to meet the usage
requirements. Complete the design requirements.

3. Results and Discussion
3.1. Code Logic Functional Verification

3.1.1. Testbench Environment Creation. Here, in this paper,
we first write the most basic single-precision floating-point
multiplier, whose core 24-bit fixed-point multiplier uses the
simplest shift-hosted binary multiplication, and here we can
get a series of codes for single-precision floating-point
multiplier. After writing the codes, we make the corre-
sponding comparisons on the flowing water, citing the
nonflowing water format and the flowing water format. And

Computational Intelligence and Neuroscience 7

No flow design
three clock units
can run an output

output correspond
to the Gold Model
database output

DISROG7E

S3DADFEE

There are flowing
designs a clock unit
can run an output

FIGURE 9: Optimized logic output diagram for flowing and nonflowing water.

in:594e5510, 59e77886, out: 73ba8feS, overfalg: 0, compare: true
in:597efcdc, 598371ch, out: 7382echbd, overfalg: 0, compare: true
in:582c65a0, d95f2aea, out:£216496d, overfalg: 0, compare: true
in:d9829fc4, d95acf66, out: 735£4bcl, overfalg: 0, compare: true
in:59%ed1ff4, d989%e24c, out: £3ff6f6c, overfalg: 0, compare: true

FiGUure 10: Final code logic verification diagram.

the source code is verified by the relevant logic, and the
corresponding verification code is written in testbench, and
the comparison output true for the code output is consistent
with the MATLAB gold model production product result.
See waveform in Figure 7 and logic verification in Figure 8.

As you can see, after the source code is written, the logic
function is verified to be error free, and the accuracy is fully
up to the requirements. The comparison between the
waveform graphs of nonflowing and flowing formats also
shows that the throughput in the flowing format is much
larger than that in the nonflowing format so that the basic
code is established, and the following is the code modifi-
cation of the source code, adding the booth and Wallace tree
modules, after which the combination and generation of
partial product modules are optimized accordingly to
achieve the desired goal.

3.1.2. Logic Validation after Adding the Boothwallace Tree
Module. In this paper, we add the optimized boothwallace
module here to generate the final code, and then add and
reduce the state of the running module, and use the original
testbed environment to functionally verify the final code,
and again compare the raw product of the code with the raw
product in the MATLAB gold model database for numerical
comparison. Figures 9 and 10 show the waveforms obtained
from the verification.

Here, the verification related to the logic function of the
code has been concluded in this paper, and the algorithm is

extracted and analyzed for each parameter to verify whether
it achieves the expected effect of this paper when the use of
the function can be confirmed without errors.

3.2. Comparison of Power Consumption of Fixed-Point
Multipliers. Here, in this paper, we first analyze the power
consumption of the fixed-point multiplier in this paper and
take out the 24-bit fixed-point multiplier of the most basic
fmpy shift-hosting direct sum, the multiplier of the simple
added booth module and Wallace module, and finally, the
24-bit fixed-point multiplier of boothwallace after optimi-
zation in this paper. Because these are all combined logic
parts, this paper sets its max_delay to 0.5ps, that is,
according to the frequency of 2 GHz work, combines logic
area, and measures its power consumption data. The data are
recorded and compared at 25c¢, 85c, and 125c¢ for three
temperature process angles to get a relatively detailed report.
They are displayed as Tables 2, 3, and 4, respectively.

The obtained statements are organized to obtain area
(Figure 11) and power consumption comparison (Figure 12)
for the three fixed-point module algorithms corresponding
to different temperature process angles.

Here, we get the corresponding power consumption data
of each fixed-point multiplier module. This paper can an-
alyze that, with the maximum delay parameter set, the area
of the combinational logic part of the original fmpy 24
fixed-point multiplier is the smallest under the process angle
model of each temperature, resulting in its power

Computational Intelligence and Neuroscience

TABLE 2: Power consumption table of each fixed-point multiplier of 25c.

2GHz (TC-25C) max_delay Area (combination) Power
fmpy_24 0.5 298.752 4.159E - 06
normal_24 0.5 529.4208 2.934E - 04
boothwallace_24 0.5 324.2592 1.923E — 04
TABLE 3: Power consumption table of each fixed-point multiplier of 85c.
2 GHz (TCH-85C) max_delay Area (combination) Power
fmpy_24 0.5 298.752 2.894F — 05
normal_24 0.5 529.4208 2.947F — 04
boothwallace_24 0.5 324.2592 2.116E - 04
TaBLE 4: Power consumption of each fixed-point multiplier of 125c¢. 4.000E-04
2 GHz (WC-125C) max_delay A.rea . Power 3.500E-04
(combination)
3.000E-04
fmpy_24 0.5 298.752 2.345E - 05
normal_24 0.5 529.4208 3.397E-04 %.3; 2.500E-04
boothwallace_24 0.5 324.2592 2.309E - 04 L%* 2 000E-04
I
2 1.500E-04
600 1.000E-04
- 500 5.000E-05
e 400 0.000E+00
s fmpy_24 normal_24 boothwallence_24
E 300
3 m WC-125C
- 200 m TCH-85C
L
5 loo B TC-25C
0 F1Gure 12: Comparison of total power consumption of fixed-point
fmpy_24 normal_24 boothwallence_24 modules at three temperature process angles.

Figure 11: Comparison of the combined area of fixed-point
modules.

consumption in all aspects being lower than the normal
value. The area of the fmpy_24 fixed-point multiplier is the
smallest, resulting in a lower than normal power con-
sumption in all aspects. The area of the fmpy_24 fixed-point
multiplier is increased by simply adding the booth code and
the Wallace tree module, and the power consumption is
increased accordingly. Since the fixed-point multiplication
part is the core operation module of single-precision
floating-point multiplication, the optimized power con-
sumption and area of the fixed-point multiplication module
are of great significance for the power consumption and area
of the entire single-precision floating-point part. The fol-
lowing is a comparison of the power consumption of the
single-precision floating-point section.

3.3. Single-Precision Floating-Point Multiplier Power Con-
sumption Comparison. After the analysis of each bit of data
of the internal module 24-bit fixed-point multiplier module

was carried out above, here the analysis of power con-
sumption data is done for the source code fmpy, the al-
gorithm of adding booth and Wallace normally, and the final
algorithm of the optimized boothwallace module to get the
final power consumption statement. The different temper-
ature process angles from 25¢, 85c to 125¢ are shown in
Tables 5-7. In addition to the data on the above aspects, this
paper adds a record on the peak power, which helps to clarify
the choice of chip power. In the integrated netlist section of
this paper, the timing.sdc file is designed with an excitation
of 0.5ps, reaching the final measurement frequency of 2
GHz.

The combined and noncombined area comparison of the
floating-point multiplier for the three algorithms is obtained
in Figure 13, the total power consumption comparison in
Figure 14, and the peak power comparison in Figure 15.

From the above tables, we can see that after the modi-
fication of the algorithm in the noncombination of the area
is greatly reduced, although the combination of logic part
compared to the most just fmpy algorithm way to increase,
but adding combinatorial logic modules to the fixed-point

Computational Intelligence and Neuroscience 9
TaBLE 5: 25c¢ single-precision floating-point multiplier power consumption table.
2 GHz (TC-25C) Area (nonportfolio) Area (combination) Total power Peak power
fmpy 568.5504 375.9168 3.016E - 04 0.1556
Naomal 71.1552 560.0448 1.630E - 04 0.1493
boothwallace 67.1443 290.8974 1.246E — 04 0.1432
TABLE 6: 85c¢ single-precision floating-point multiplier power consumption table.
2 GHz (TC-25C) Area (nonportfolio) Area (combination) Total power Peak power
fmpy 568.5504 375.9168 3.780E — 04 0.1586
Naomal 71.1552 560.0448 2.133E - 04 0.1496
boothwallace 67.1443 290.8974 1.562E — 04 0.1439
TABLE 7: 125c¢ single-precision floating-point multiplier power consumption table.
2 GHz (TC-25C) Area (nonportfolio) Area (combination) Total power Peak power
fmpy 568.5504 375.9168 3.192E - 04 0.1136
Naomal 71.1552 560.0448 1.894E - 04 0.1025
boothwallace 67.1443 290.8974 1.396E — 04 0.1012
600 0.18
500 0.16
400 0.14
0.12
300 5}
i 0.10
200 % 008
100 ™ 0.06
0.04
fi 11 d
mpy wallence W 0.02
m area (Non-combined) 0
m area (combination) fmpy wallence dw
FIGURE 13: Area of combined and noncombined floating-point WC-125C
multiplier modules. m TCH-85C
m TC-25C

4.000E-04

3.500E-04

3.000E-04

2.500E-04

2.000E-04

total power

1.500E-04

1.000E-04

5.000E-05

0.000E+00
wallence dw

fmpy

m WC-125C
m TCH-85C
m TC-25C

FIGURE 14: Comparison of total power consumption of floating-
point multipliers at three temperature process angles.

Figure 15: Comparison of floating-point multiplier spike power
consumption at three temperature process angles.

modules will definitely create excess losses. The area of the
floating-point algorithm is still much smaller than that of the
fmpy algorithm of the shift-hosting method and the normal
algorithm of simply adding the booth and Wallace modules.
The total power of the modular algorithm of simply adding
booth and Wallace is much lower than the original shift-
hosting fmpy algorithm in the power analysis, with a re-
duction of 45.95%, while the optimized boothwallace algo-
rithm module total power algorithm compared to the shift-
hosting fmpy algorithm reduction of 58.69%, proving that
optimizing Wallace will get very significant power savings,
and on top of that adding a symbolic bit expansion module
there is a not insignificant secondary improvement. In the
peak power measurement, in various temperature process
angles, the peak power reduction of the normal algorithm
with the simple addition of the booth and Wallace modules
and the optimized boothwallace algorithm compared to the

10

float32_mpycore

FIGURE 16: Integrated results’ netlist diagram.

original shifted hosting fmpy algorithm are 3.79% and 7.97%,
respectively, showing that the optimized algorithm also has a
very significant improvement in peak power, which can make
it a more generous choice in terms of power supply. At this
point, the design fully meets the usage requirements.

The final result comes down to the resulting integrated
netlist picture and cell diagram in Figure 16.

4. Conclusion

At this point in the paper, the single-precision floating-point
multiplication algorithm has been logically designed and
ultimately power-optimized through a series of rigorous
verification and simulation processes. From source code
writing, modification, verification on various platforms,
synthesis, simulation, to the final experimental data, a
comparative analysis of the experimental and control groups
on multiple databases is performed. By using the symbolic
bit expansion method to predict the partial product caused
by the booth-4 code by rounding, the area of the resulting
partial product tree is reduced. Then, the corresponding add
operation and storage area are reduced in the covering
structure of the Wallace tree, achieving the requirement of
reducing the area and reducing power consumption. At this
point, the algorithm design meets the expected
requirements.

Data Availability

All data included in this study are available upon request to
the corresponding author.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this study.

Computational Intelligence and Neuroscience

Authors’ Contributions

N.B,H.L,J. L, and S. Y. designed the method and wrote
the paper. N. B. and Y. X. performed the experiments and
analyzed the data. All authors have read and agreed to the
published version of the manuscript.

Acknowledgments

This research was funded by the National Natural Science
Foundation of China (no. 61204039) and the Key Laboratory
of Computational Intelligence and Signal Processing,
Ministry of Education (no. 2020A012).

References

[1] C. Saran, Stanford University Finds that Al is Outpacing
Moore’s Law, Computerweekly. com, London, UK, 2019.

[2] A. Sodani and C. Processor, “Race to Exascale: Opportunities
and challenges,” in Proceedings of the Keynote at the Annual
IEEE/ACM 44th Annual International Symposium on
Microarchitecture, Porto Alegre, Brazil, December 2011.

[3] S. Yin, P. Ouyang, and J. Yang, “An energy-efficient recon-
figurable processor for binary-and ternary-weight neural
networks with flexible data bit width,” IEEE Journal of Solid-
State Circuits, vol. 54, no. 4, pp. 1120-1136, 2018.

[4] L. Su, “Delivering the future of high-performance comput-
ing,” in Proceedings of the 2019 IEEE Hot Chips 31 Symposium
(HCS), pp. 1-43, IEEE Computer Society, Hyderabad, India,
December 2019.

[5] G. Marcus, P. Hinojosa, A. Avila, and J. Nalozco-Flores, “A
fully synthesizable single-precision, floating-point adder/
substractor and multiplier in VHDL for general and educa-
tional use,” in Proceedings of the IEEE International Caracas
Conference on Devices, IEEE, Punta Cana, Dominican Re-
public, November 2004.

[6] J. Ding and S. Li, “Determine the carry bit of carry-sum
generated by unsigned MBE multiplier without final addi-
tion,” in Proceedings of the 2017 27th International Conference
on Field Programmable Logic and Applications (FPL), pp. 1-4,
Ghent, Belgium, September 2017.

[7] G. Haridas and D. S. George, “Area efficient low power
modified booth multiplier for FIR filter,” Procedia Technology,
vol. 24, pp. 1163-1169, 2016.

[8] R. R. Desella, “Design and implementation of advanced
modified booth encoding multiplier,” International Journal of
Engineering Science, vol. 2, no. 8, pp. 60-68, 2013.

[9] N. Bai, L. Wang, Y. Xu, and Y. Wang, “Design of a digital
baseband processor for UHF tags,” Electronics, vol. 10, no. 17,
p. 2060, 2021.

[10] M. George, Improved 24-bit Binary Multiplier Architecture for
Use in Single Precision Floating Point Multiplication, 2018.

[11] B.Rashidi, S. M. Sayedi, and R. R. Farashahi, “Design of a low-
power and low-cost booth-shift/add multiplexer-based mul-
tiplier,” in Proceedings of the 22nd Conference on Electrical
Engineering, IEEE, Tehran, Iran, May 2014.

[12] C. G. Hooks, Symbolic Expansion of Complex Determinants,
2004.

[13] K. Bhardwaj and Mane, “Power- and area-efficient approxi-
mate wallace tree multiplier for error-resilient systems,” In-
ternational System Quality Electronic, 2014.

