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Computed tomography (CT), through the use of ionizing radiation, allows us to assess the di�erent parts of the body. It is made up
of an X-ray tube that rotates rapidly around the patient generating the radiation beam. �is is attenuated with the patient
producing information, which is collected by the detectors that are opposite to the tube located in the gantry (part of the
tomography equipment); �nally, these collected data are sent to the computer that will reconstruct the information obtained and
will represent it as an image on the monitor. In the practice of a study, arti�ces or artifacts may appear regardless of their origin,
which limits the scan examination; this leads to stopping the examination and starting again, and added to this with the contrast
media, they have to apply these drugs again. State-of-the-art scanners allow complete reconstructions to be performed with few
projections, limiting radiation doses, by means of statistical algebraic reconstruction methods. �e present work shows the
simulation of artifacts in sinusitis diagnosis computed tomography images, the extraction of features from each image, and an
automatic classi�cation algorithm for the di�erentiation of artifacts. �e results show that the algorithm is able to classify the
simulated artifacts with a percentage of 90%.

1. Introduction

Computed tomography (CT), which employs ionizing ra-
diation, enables us to evaluate various anatomical structures.
�e X-ray tube, which rapidly revolves around the patient
and emits the radiation beam, is the main component [1].
�is is diminished by the patient producing data, which is
then gathered by detectors opposite the tube in the gantry (a
component of the tomography equipment), and �nally,
these collected data are sent to the computer that will re-
construct the information obtained and will display it as an
image on the monitor [2]. Sinusitis (Figure 1), a pathology
marked by swelling and thickening of the mucosa lining the
paranasal sinuses, may be brought on by obstructions, in-
fections, or even anatomical variations [3]. Computed to-
mography is used frequently to diagnose sinusitis. It should
be noted that sinusitis can a�ect both adults and children
due to a viral or bacterial infection of the upper airways [4].

When we have an acute sinus infection, the tomographic
study will reveal air-�uid levels because of the build-up of
secretions that reduce the amount of air in the sinus and
result in increased radiopacity and thickened mucosa.
Chronic sinusitis is characterised by nonuniform, persistent
radiopacity of the sinus, sclerosis, or thickening of the
nearby bone, hypertrophy of the sinus mucosa, enlargement
of the inferior turbinates, and nasal and sinus polyps [5].�e
role of CT in this pathology makes it a tool that can be used
directly in clinical practice because of the high sensitivity and
speci�city of contemporary technological equipment. De-
spite what has already been said, diagnosing the local si-
nusitis index is crucial. As a result, we are interested in
�guring out how frequently patients have paranasal sinusitis
(Figure 2), which can be diagnosed by CT scan [6].

�e signs of acute sinusitis: Behind the skull, nose bridge
and cheeks are air-�lled cavities known as the sinuses.
Ciliated cells that line the sinuses produce the mucus that
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Frontal sinuses in axial and frontal section, computed tomography of paranasal sinuses.

Maxillary sinuses in Axial and Coronal section.

sphenoid sinuses in axial, frontal and sagittal slices computed tomography of paranasal
sinuses

Ethmoidal cells in axial and sagittal section, computed tomography of paranasal sinuses

Figure 1: Various types of sinuses.

Figure 2: Tomography of the paranasal sinuses.
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covers them. Bacteria and other contaminants are kept from
spreading by mucus and nose hairs. A mucus that has
thickened due to sinusitis can prevent the sinuses from
receiving mucus. Sinus pressure rises as fluid accumulates.
From bacterial growth, walls become infected. &is affects
14% of Americans. In many cases, triggers include nasal or
throat viruses or bacteria [7].

A sinus infection’s early stages can cause symptoms
mistaken for a cold,makingdiagnosis challenging.Congestion
andfatiguecanbebroughtonbyeither.Acoldgoesaway in5 to
7 days, but sinusitis can persist for weeks if left untreated. Flu-
like symptoms, a fever, and facialpainareall symptomsof sinus
infections. A quick office exam, patient history, and physical
examination all help to identify acute sinusitis. In addition to
inspecting your ears, nose, and throat, the doctor may also
palpate your face to feel for sinus tenderness while asking you
about the severity and duration of your symptoms. In order to
make a diagnosis, your doctormight put a nasopharyngoscope
through your nose. Doctorsmay order X-rays and CTscans to
examine the paranasal sinuses and rule out any syndromes or
other conditions. Inmost cases, sinus infectionsare treatedand
resolved in less than three weeks. Long-term sinus infections
last longer than three weeks [8].

&emucosa lining the paranasal sinuses is closely related
to the mucous membranes that line the nostrils and is
completely pneumatized. &e nasal cavity is encircled by
them, and they drain into it. &ey are situated around the
facial and cranial bones. It serves to warm, humidify, and
protect the air that is inhaled as well as the nearby bones
fromwhich it gets its name. It also protects the lungs in times
of trauma [9]. &ey consist of the sphenoid sinus, ethmoidal
cells, and pairs of frontal and maxillary sinuses. &ey
originate from the diverticula in the nostril wall. &e su-
perior, middle, and inferior turbinates are bony shell-shaped
structures located inside the nostrils on the side walls. &ey
have a mucosal lining that helps to maintain the quality of
the air we breathe. &e nasal septum, which is made of bone
and cartilage on the backside and separates the right and left
nostrils, is a bony structure [10]. &e ostium connects them
to the nostrils, and their pseudostratified cylindrical and
ciliated respiratory epithelium lining ensures their physi-
ology. However, if there is any obstruction, the partial
pressures of oxygen and carbon dioxide inside the lungs
become out of balance (14).

In computed tomography, the process of reconstructing
images involves effectively utilising the interaction of x-rays
with the body, taking into account the projections obtained
in each beam path and accounting for the data recorded by
each detector [11]. &e same plane is subjected to numerous
projections in order to reconstruct the cross-section of the
body part being studied. In addition to the incidence and
interaction of the X-rays, which are deterministic by the
beam of the ray and their respective projections according to
the angle of rotation and their arrival at the detectors, the
human body is composed of structures of various densities
that are very different from one another, allowing the cre-
ation of a recognition pattern that aids in the processing of
images. As computed tomography (CT) technology has
advanced, significant aspects of image acquisition should be

considered. One of the most significant is the decrease in
scan time, which is necessary to improve image quality and
reduce exposure doses while also shortening reconstruction
times. Although the number of projections can be deter-
mined in TAC, it is still not necessary to implement a
mathematical formula for its processing; instead, effective
algorithms are applied to evaluate it. Johann Radon devel-
oped one of the first image reconstruction methods in 1917
[12], who used a mathematical solution through a transform,
which indicates that an image is determined by an infinite set
of its projections [13].

In the mathematical processes of image reconstruction,
the statistical methods fulfil a complementary function to the
analytical methods but are differential at the same time,
being the iteration methods our object of study in the
present work. To ensure the best possible development of
image processing, computed tomography relies on both
mathematical and analytical data processing techniques.
However, these techniques must take into account factors
that make tomography a superior method of diagnosis in
medicine, such as image quality, acquisition and processing
times, minimization of radiation dose, reduction of noise
and artifacts, and computational costs. Image quality is the
result of the application of all the processes listed above. Still,
in clinical practice, the patient’s condition may act as a
source of artifice generation and involuntary movements
[14].

&ese aspects change the quality of the image and its
diagnosis, necessitating a repeat exam and subjecting the
patient to an excessive dose of radiation. In addition, when
contrast media are provided, the travel times in the images
are slowed down, which can also affect the diagnosis.
&rough an iterative reconstruction by approximation,
which allows collecting and retrieving images to complete
the study, it is possible to finish the study without needing to
repeat the examination. Despite this, these methods require
a complex algorithm and the appropriate implementation of
the data for its processing. When an image appears with
artifacts from a previous image, it is automatically recog-
nised and moves on to carry out the correction process
without the need to restart the study.

2. Theoretical Framework

2.1. Machine Learning. Artificial intelligence is the branch
of computing in which basic analog processes can be
executed automatically in response to input with its re-
spective output through programmed logic. Machine
learning, as part of artificial intelligence, is responsible for
generating algorithms that have the ability to learn,
avoiding continuous programming; what is required is to
feed the algorithm with data so that it learns and has
autonomous decision alternatives. Machine learning is a
scientific method that allows computers with the com-
putational capacity to learn and extract patterns and
correlate them by themselves. &ese patterns can then be
used to predict behaviors that facilitate decision-making,
and this is possible through information analysis called
“training data” [15, 16].
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2.2. SupportVectorMachines (SVMs). &edecision surface is
learned by an SVM using two input classes. &e data are
mapped to a higher-dimensional feature space using a
Gaussian kernel or another kind of kernel. &e SVM theory
is based on structural risk minimization, and neural net-
works have been used to highlight applications of the theory
that have demonstrated outstanding performance [17]. &e
SVM resolves a quadratic problem where the number of
inputs or training data equals the number of coefficients.
Many applications exist for classification and regression,
including image classification, character recognition, pattern
classification, function identification. Another definition of
the SVM is a system for efficiently training linear learning
machines[18].

2.2.1. SVM for Regression. &e goal of the SVM is to find a
function f(x) that has at most one deviation ϵ from the
output yi for all the training data, and at the same time, that
is as small as possible. What has not been considered are
minor errors ϵ, only those greater [19]. What is sought with
the SVM for regression (Figure3) is to perform a mapping of
the training data xϵX, to a space of greater dimension F
through a nonlinear mapping φ : XF , where the linear
regression can be performed. &e support vectors on which
all the data that contain the most information possible
depend [17].

2.2.2. SVM for Classification. To build a hyperplane that
separates two classes, labelled x, 1, +1, so that the distance
between the optimal hyperplane and the closest training
pattern margin is the maximum [21]. Within the classifi-
cation problems are the linearly separable and nonlinearly
separable cases. Suppose we have S labeled points for
training as shown in Figure 4.

2.3.Cross-Validation. Within the data validation techniques
in machine training, it is obtained through theoretical
physical models or with simulations through the hold-out
validation methods and k-fold. When the amount of data for
training and testing is limited, the hold-out method can be
applied to estimate the error [23]; the objective is the ad-
equate use of all the instances in D for the test training.

2.3.1. Leave-One-Out Cross-Validation. It is based on a
confusion matrix where one record is used to test the val-
idation classifier K times to run the training algorithm

throughN iterations, excluding one from the sample process
is repeated until leaving each of the samples outside the
confusion matrix as shown in Figure 5.

2.3.2. Cross-Validation k Iterations. To perform k-folds
validation, we split the original dataset into k equal parts;
then, during model training, we use the first k of these parts
as the test set and the remaining (k − 1) parts as the training
set. Each iteration of this procedure will collect data from a
new test set [23].

2.4. ROC Curve. ROC curves are used to evaluate the per-
formance of a classificationmethod, which seeks to highlight
event characteristics [24, 25]. &e operating characteristics
curve (receiver operating characteristics) represents the
sensitivity and specificity for each threshold value and that
allows comparing two or more classifiers based on their
discriminant capacity, and we have the fraction of the true
positive fraction (TPF) is plotted against the false positive
fraction (FPF) which is given by the following function:

ROC(c) � FTP(c), TPF(c); c ∈ −∞,∞. (1)

One of the indices for estimating the efficacy of a system
is the area under the ROC curve (AUC), whose value will
always be between 0.5 and 1, which is why it is commonly
used to compare the performance of the markers, the ROC
provides a description of the separation between the dis-
tributions of positives and negatives.

3. Methodology

&e methodology includes four steps in which a modifica-
tion is made to a set of computed tomography images
extracting features from said images using singular value
decomposition, the training of a support vector machine
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with different kernels, and validation to find the validity of
the proposed algorithm as shown in Figure 6.

3.1. Image Set. As input, a set of 43 paranasal sinus and skull
base tomography images taken from different patients was
used, where it was taken into account that the bone structures
were differentiated. On the other hand, these images were
found in the three body planes: sagittal, coronal, and axial.

3.2. Simulation of Artifacts. Taking into account that there is
no tomography equipment to carry out tests on images with
noise or real artifacts, it was decided to apply different al-
gorithms that allow simulating these effects on tomography
images. In practice, there are two types of artifices that can be
presented in computed axial tomography; depending on the
origin, we can classify them as direct or indirect:

(i) Direct: they are generated by the patient: voluntary
and involuntary movements

(ii) Metallic implants: osteosynthesis material, surgical
clips

(iii) Indirect: detector misalignment; beam hardening;
undersampling

3.2.1. Patient Movement. In Euclidean space, a rotation is
represented by a special kind of matrix called a rotation
matrix. Rotation matrices in two dimensions look like the
following equation (equation (2)):

R(θ) �
cos θ −sin θ

sin θ cos θ
􏼠 􏼡, (2)

where θ represents the angle of rotation of the matrix.

3.2.2. Concentric Rings. Two or more circles are said to be
concentric if they have the same centre but different radii.
Assuming a point (h, k) as the centre and a radius of r, the
equation of the circle is

(x − h)
2

+(y − k)
2

� r
2
. (3)

Taking into account what is described in equation 31,
rotation was used to generate different rings within the image
with the same centre to simulate concentric rings’ artifice.

3.2.3. Beam Hardening. RGB values are converted to
grayscale using the NTSC formula:

GrayImage � 0.299R + 0.587G + 0.114B. (4)

&e relative brightness of red, green, and blue light as
perceived by the average person is well captured by this

equation. &e grayscale image was then converted to binary
using Otsu’s technique.

&e threshold value is determined by Otsu’s method in
such a way that the spread within each segment is as small as
possible while the spread between segments is as large as
possible. To do this, the quotient between the two variances
is calculated, and the maximum quotient is sought for a
given threshold value. Let p(g) be the probability of oc-
currence of the gray value 0 < g < G (G is the maximum
gray value). &en, the probability of occurrence of the pixels
in the two segments is

K0: P0(t) � 􏽘
t

g�0
p(g), K1: P1(t) � 􏽘

t

g�t+1
p(g) � 1− P0(t). (5)

Once the image has been binarized, it is sought that the
whites are attenuated to obscure the skull’s internal struc-
tures. At this point, a threshold of 0.4 was used in order to
detail such structures. Using the 43 original images, and
taking into account that a transformation was applied to
each of them in order to simulate the artifacts, a total of 172
images were obtained.

3.2.4. Feature Extraction. Using the theory and considering
the development, the null values of the matrix that are in the
established range are discarded. When applying it to the 172
images, 172 matrices are obtained, and finally, the singular
value of each element is obtained by passing each image
through an algebraic method, which compresses the matrix
that composes it. With the data obtained, a general matrix is
fed that stores the result of the SVD of each image in order to
train a machine learning algorithm in which interclass
comparisons will be made with support vector machines and
classification binary vectors.

3.3. Machine Learning. &e implementation of the algo-
rithm to develop programs or solve specific problems can
result in recognizable or repetitive patterns within the image,
with which patterns or some kind of task can be predicted,
improving its performance. For this case, a machine learning
approach will be applied that allows to select and determine,
and within a computerized axial tomography study bank, the
images have some artifice and manage to classify them
autonomously with respect to the original image. Finally, a
cross-validation method of k-folds cross-validation is used
in order to train the machine and find the real values of the
simulation of the artifacts with respect to the reference
image.

4. Results

Figure 7 shows the result of applying the rotation matrix to
an image.

Set of images Simulation of Artifacts Feature extraction Classification

Figure 6: A proposed methodology for the simulation and classification of artifacts in CT images.
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On the other hand, from left to right, a normal brain scan
image is followed by the simulation of the incident ray beam
hardening device, that is, when there is a loss of contrast with
respect to the original image due to the excessive absorption
of the beam of the ray by the bony structures of the skull.
Finally, you can recreate double artifices and concentric rings
on the right, which considerably limits their evaluation.

In Figure 8(a), by means of the ROC curve, it can be seen
that the AUC value (area under curve) is approximately 0.78,
which indicates that this artifact has an error range of 12%
with respect to the original images. &is value was obtained
through 30 iterations of the model, which can vary by 0.06
between iterations of the same cut.

It is important to mention that the samples or class must
be of the same matrix size, which is ensured by the singular
value decomposition (SVD); even so, the images correspond
to different sections and brain structures, so the Kernel is of
the Gaussian type.

In the case of cross-validation k-folds, between the original
images and the images with beam hardening artifacts, the
value is approximately 0.91 AUC, again demonstrating that it
corresponds to a true positive; we can say that images are
supported as a method of validation and classification. &ese
were also performed in 30 iterations with a variation between
each exercise and 0.09 between samples.&e result can be seen
in Figure 8(b). In the last case study, an AUC value of 0.63
(Figure 8(c)) was obtained, which is somewhat low compared
to previous studies, but it is still considered a true positive, and
this is due to although the rotated image maintains the same
matrix size, the values of each composition pixel vary
depending on the degree of rotation of the image. &e result
varies between 0.09 between the samples after 30 iterations.

With the values from the different samples, validations,
and binary classifications between training samples and
classes, it is possible to programme an algorithm that
automatically identifies artifice. From this, machine
learning’s importance in image reconstruction as a method
of learning and predicting them, optimising tomography
imaging, can be seen (CT). As seen in Figures 8(a)–8(c), the
trend of the tests is in the upper left corner, indicating that
it has great prediction accuracy with each sample. We can
also see that the model can distinguish between normal and
fake images.

&e device with the best test performance was the in-
cident ray beam hardening with 83% efficiency, followed by
the concentric ring device with 79% and the rotation device

with 73%.&is is because the distortion of the original image
varies depending on the artifice, with beam hardening
causing the least distortion and rotation causing the most.
Each artifice’s simulation is based on a package of images.
Due to the number of iterations and because they cannot be
classified linearly, polynomial or Gaussian Kernel types are
used when performing different tests. Even so, training the
machine learning algorithm for image classification with CT
artifacts is reliable.&e case study will use a confusionmatrix
to redistribute the 172 images into 4 groups of 43 each. With
these values, we can calculate the model’s classification
accuracy through the following formula:

Precision �
TP

(TP + FP)
, (6)

where TP is True Positive, and FP is False Positive.
&is means that 80% of the images will be recognised

within or derived from the original image.
In the second validation measure, the Recall (Com-

pleteness) will be calculated, which refers to the prediction
capacity of the machine learning model.

Recall �
FN

(TP + FN)
, (7)

where TP is True Positive, and FN is False Negative.
&is means that the model is able to recognise 90% of the

images with artifice and the normal images.
Finally, the F-score or F1 will be calculated to determine

the positive predictive value, and the performance of the
model is the following equation:

F − Score �
Precision × Recall

(Pres + Recall) × 2
. (8)

&is indicates that the quality of the model is approxi-
mately 84% reliable, taking into account the entire sample,
that is, the 172 images.&is can be seen in the graphs of each
ROC curve of the artifacts versus the original images, where
each score is close to 1 as a true positive. What proceeds next
is to carry out the same exercise, but with each of the
proposed tricks against the set of original images to obtain
the following Figure 9.

&e data are taken in each of the cases, and it is evident
that the percentages are relatively consistent in comparison
with those obtained through the classification model of
prediction proposed in MATLAB; on the other hand, for
each artifact, it can be concluded that the artifact that most

Figure 7: Orbit normal scan image, the same image with motion simulation.
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closely resembles the original image is hardening of the
incident beam since the original image is maintained, but the
intensity of the grayscale is affected, showing overexposure
in the brain structures is consequently poorly defined. &e
second artifice with greater adherence to the original image
is that of concentric rings, which preserves the original
format but the distortion due to overlapping is evident in the
brain structures. Lastly, the images with a rotation device are
the ones that lose the most similarity with the original
images, where the evaluation of any brain structure is totally
limited.

5. Discussion of Results

&e image quality is improved by the algebraic methods’
significant reduction of all types of noise and artifacts.
Another benefit of this method is that reconstruction can be
completed without requiring all of the conventional pro-
jections of a typical study, which also results in a significant
decrease in exposure doses per study. For example, when
using iterative algorithms, matrices are recalculated in all
possible directions to obtain new sinograms. When using

other statistical methods, corrections are made in the ge-
ometry using the incident ray beam approach, which also
requires more computational work and, as a result, has a
higher GPU cost [20–22]. From the foregoing, we can infer
the followings:

81% 88% 84% 92%

72% 91% 80% 89%
68%

83% 74% 64%

PRECISION RECALL F-SCORE AUC

ARTIFACT VS ORIGINAL 

HARDING BEAM
CONCENTRIC RING
ROTATION

Figure 9: Final results of the classification algorithm with an
interclass comparison between the simulated artifacts and the
original image.
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ROC Curve for Classification by Artifact Harding
Beam Vs Original
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ROC Curve for Classification by
Artifact rotation Vs Original
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Figure 8: (a) ROC curve original image vs. concentric rings; (b) ROC curve original image vs. artifact hardening beam; (c) ROC curve
original image vs. artifact rotation.
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(i) High contrast and superior quality images
(ii) Requires fewer projection data for image

reconstruction
(iii) Considerable reduction in exposure dose
(iv) Longer reconstruction time
(v) High computational costs

Hybrid architectures that use both reconstruction
methods and parallel algorithms are being developed to
create more efficient reconstruction mechanisms. Higher
image resolution means a larger initial matrix and more
equations per pixel, which equals more tomograph detec-
tors. Parallel algorithms and filtering techniques such as
Gaussian, median, Wiener, and bilateral filters are being
implemented to improve data acquisition efficiency [21].

As we have discussed, several ways to “clean” an image
efficiently with statistical methods require complex adap-
tation to current hardware systems. It works with GPU
systems, a graphic processing unit, to speed up iterative data
processing, implement new algorithms, and achieve maxi-
mum reduction [17, 20, 21]. Statistical methods have the
advantage of not requiring a large number of projections and
data to reconstruct later. Noise and artifacts in images are
not only caused by external factors, such as voltage arcs,
improper instrument calibration, and misaligned detectors.
Image quality improves with analytical and mathematical
algorithms.

6. Conclusions

Any artifice chosen for the study can be duplicated from any
scanned image, replicating a real medical image while testing
the visualisation of sinusitis’s important aspects. MATLAB
could mimic the most common CT artifacts without
changing the original matrix’s dimensions. Based on the
algebraic properties of each matrix, which can be trans-
formed and used in other matrix operations, it was possible
to duplicate tomography artifacts. Medical image classifi-
cation algorithms are not linear due to matrix features when
using normal and verification photos as training references.
Artificially produced images require a Gaussian or poly-
nomial Kernel to solve and represent. &ese photos can’t be
arranged on a normal plane for classification; hence, a linear
solution isn’t possible. &e Gaussian Kernel allows features
derived from artifact-filled simulated images to be consistent
with the binary classification space defined; i.e., inside the
classification group, we have two alternative labels between 0
and 1 to define positive or negative.

Using this binary classification, we can show how true
positives and false positives behave in the sample. Machine
learning helps computed axial tomography equipment’s
image reconstruction processes automatically recognise
artifices and perform the appropriate modifications to lessen
or eliminate image distortion. K-folds fit SVM classification
data better, allowing model validation with an AUC (ROC).
Cross-validation (K-folds) assesses the estimator’s perfor-
mance to determine the algorithm’s prediction effectiveness.
Iterations are used to retrain the model. Beam hardening

artifact drastically altered the image, allowing for sensitive
classification. &is shows that the binarization algorithm’s
threshold affects image disturbance.

Data Availability

&e data used to support the findings of this study are in-
cluded within the article.
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