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In the discipline of data mining, association rule mining is an important study topic that focuses on discovering the relationships
between database attributes. �e maximum frequent itemset comprises the information of all frequent itemsets, which is one of
the important di�culties in mining association rules, and certain data mining applications just need to mine the maximum
frequent itemsets. As a result, analyzing the maximum frequent itemset mining technique is practical. Considering this, the
research introduces FP-MFIA, a new maximum frequent itemset mining approach based on the FP-tree, which is inspired by the
data structure of the frequent pattern tree and the idea that the maximum frequent itemset implies all frequent itemsets. First, the
FP-MFIA constructs a one-way FP-tree structure, which only has pointers from the root to the leaves, so that only two scans of the
FP-tree are required by the FP-MFIA. On the other hand, it rede�nes a data storage structure MFI-list for maximum frequent
itemsets. It can quickly release unnecessary nodes in the FP-tree after scanning it. In this way, not only the information required by
the maximum frequent itemsets can be quickly mined but also the space required for storing the maximum frequent itemsets can
be reduced, which greatly improves the mining e�ciency. Finally, experiments were conducted to compare the mining e�ciency
of the novel FP-MFIA algorithm to the IDMFIA and DMFIA algorithms. We can see from the �ndings that the FP-MFIA
algorithm is more e�cient than the other two techniques.

1. Introduction

�e base and core of association rule mining are frequent
itemset mining, which is an important study direction in the
�eld of data mining [1, 2]. Many scholars have joined this
research �eld since Agrawal. R et al. published the famous
algorithm Apriori in 1994 [3] and have undertaken lots of
research on the association rules’ problem and achieved
promising research results [4–6]. Literature [7–9] carried
out some optimization work based on the Apriori algorithm,
such as the introduction of hashing method, the idea of
division, and random sampling, to make mine rules more
e�cient. However, none of these algorithms can avoid the
inherent defects of the Apriori algorithm, that is, during the
mining procedure, a signi�cant number of candidate
itemsets are formed, and the database needs to be repeatedly
scanned, which seriously a�ects the e�ciency of the algo-
rithms. In response to this problem, Han et al. based on the

FP-tree, the literature [10], suggested a method called FP-
growth for discovering frequent itemsets. �e FP-growth
algorithm’s execution e�ciency is substantially superior to
that of the Apriori since it does not form candidate itemsets
when searching for frequent itemsets and only needs to scan
the database twice. However, if the number of large itemsets
is too big, and if the obtained FP-tree has many branches and
long branches, a huge number of conditional FP-tree will be
constructed in the FP-growth algorithm, which is not only
time-consuming but also takes up a lot of storage space. It
may lead to the low e�ciency of the FP-growth algorithm.
�erefore, due to the inherent computational complexity of
mining frequent itemsets, the above algorithms are still
unsatisfactory for mining frequent itemsets with intensive
data. For this reason, scholars have proposed a series of
researchers to directly search the maximum frequent
itemsets [11–13]. Compared with other association rule
mining algorithms, they do not generate numerous frequent
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itemsets so that it can help decrease the generation of re-
dundant itemsets, so the mining speed is faster. Meanwhile,
only the maximum frequent itemsets can meet application
needs in some cases. ,erefore, an in-depth study of the
maximum frequent itemset mining algorithm has important
research significance for improving the space utilization and
time utilization of the algorithms.

Since it was first proposed in 1998, the research on the
maximum frequent itemset has received scholars’ great at-
tention.,ey have performed a lot of work on the maximum
frequent itemset [14, 15]. For example, the more classic
maximum frequent itemset mining algorithms are Max-
Miner [16], DepthProject [17], GenMax [18], MAFIA [19],
FP-max [20], and Pincer-Search [21]. What’s more is that
the well-known maximum frequent itemset mining algo-
rithms also include the algorithm DMFI proposed in lit-
erature [22], the algorithm DMFIA proposed in literature
[23], and the algorithm IDMFIA used in literature [24]. ,e
Max-Miner was first proposed by Bayardo et al. in 1998. It
adopts a breadth-first search strategy and proposes a “look-
ahead” pruning strategy. Meanwhile, the dynamic sorting
method is used to ensure efficient look-ahead prune, which
greatly reduces the traversal time. ,e DepthProject algo-
rithm adopts a depth-first search strategy and a selective
projection method. It represents projected transactions by
using horizontal binary bit strings with high compression
and counting efficiency. But the problem is that both the
preprocessing cost based on binary bit string and the
postprocessing cost based on statistical support rate cannot
be ignored. ,e GenMax algorithm proposes to use the local
maximum frequent itemsets for superset checking, which
reduces the overhead of look-ahead pruning to a certain
extent. Later, the literature [19] introduced the MAFIA
algorithm, which adopts a depth-first search strategy and
uses vertical bitmap and dynamic reordering technology for
spatial pruning, which has better performance. Based on FP-
growth, the literature [20] utilizes an efficient approach
called FP-max for maximum frequent itemset mining. It
adopts FP-tree to search frequent itemsets and inserts fre-
quent itemsets into an MFI-tree one by one. But the premise
is that there is no superset of the itemset in theMFI-tree, and
then, the maximum frequent itemset is finally obtained by
traversing the MFI-tree. ,e Pincer-Search algorithm uses
bottom-up and top-down bidirectional search strategies to
effectively prune candidate itemsets.

,e DMFI algorithm has the same search strategy as the
Pincer-Search algorithm. It also uses bottom-up and top-
down two-way search strategies. When the database is huge,
mining the largest frequent itemset is effective. But like the
MAFIA algorithm, repeated scans of the database are in-
evitable. ,erefore, the literature [23] introduced the
DMFIA algorithm based on the storage structure of the FP-
tree. It makes some improvements based on Max-Miner and
compresses the relevant information of frequent itemsets.
Only two scans of the FP-tree are required without gener-
ating conditional pattern bases, but it needs to generate
manymaximal frequent item candidates. While the IDMFIA
algorithm adopts top-down and bottom-up bidirectional
search strategies, it does not make full use of infrequent

itemsets for dimensionality reduction so that there are still
many useless itemsets in the maximum frequent candidate
itemsets.

Analyzing the above research, it is found that since the
research history of the maximum frequent itemset mining
algorithm is not long, there are still many deficiencies in the
efficiency of the algorithms [25, 26]. However, the challenge
of mining the maximum frequent items lies in the huge
amount of data, and the efficiency of the algorithm is the key.
,erefore, it is necessary to develop an efficient algorithm
that occupies less memory, operates less, and executes faster.
Considering this, the research introduces the FP-MFIA
algorithm, a new maximum frequent itemset mining ap-
proach based on the FP-tree, which is inspired by the data
structure of the frequent pattern tree and the idea that the
maximum frequent itemset implies all frequent itemsets.,e
innovation of the new algorithm is as follows:

(1) A one-way FP-tree structure is constructed, which
only has pointers from the root to the leaves, so that
only two scans of the FP-tree are required by the FP-
MFIA. ,ereby, it reduces the number of generated
maximum frequent item candidate set and times of
traversing FP-tree, which greatly improves the space
utilization.

(2) A new data structure MFI-list is adopted to store the
maximum frequent itemsets. After scanning the FP-
tree, this structure can immediately release numer-
ous useless nodes during the FP-tree, thereby re-
ducing the space required to store the largest
frequent itemsets and improving the mining effi-
ciency, especially for the mining of long-pattern
frequent itemsets.

(3) Finally, experiments were conducted to compare the
mining efficiency of the novel FP-MFIA algorithm to
the IDMFIA and DMFIA algorithms. We can see
from the findings that the FP-MFIA algorithm is
more efficient than the other two techniques.

2. Related Concepts and Theories

2.1. FP-Tree Data Structure and the Relevant Definitions.
Next, we will introduce the data structure FP-tree used in the
algorithm FP-MFIA to store dataset information [27]. ,e
FP-tree is a data structure commonly used in frequent
itemset mining. However, the classic FP-tree is a compressed
storage for the transaction database. When the transaction
database is very large, the corresponding constructed FP-
tree will also be very large, leading to the algorithm taking up
a lot of space. In response to this problem, we optimized the
FP-tree in the FP-MFIA algorithm and changed it to a one-
way data structure, with only pointers from the root to the
leaves. Given a transaction database TD and an itemset IS�

{s1, s2, s3,. . ., sm} containing m items, the support sup(t) of an
itemset t(t⊆IS) in TD can be defined as

sup(t) �
Nt

|TD|
× 100%, (1)
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where Nt is the number of records in TD containing t, and
|TD| is the total number of records in the database. ,e
relationship between the support number count(t) of t in
TD and the support degree sup(t) is shown in

count(t) � sup(t) ×|TD|, (2)

If the support of itemset t satisfies
sup(t) ≥min sup. (3)

then t is called frequent itemset.
For item set t, if it satisfies

sup(t)≥min sup,

sup(u)<min sup, ut.
 (4)

then t is called the maximum frequent itemset, expressed
as MFI.

2.2. &e Construction Process of FP-Tree

2.2.1. &e Structure Definition of FP-Tree. ,e FP-tree is a
tree structure, and each node contains five fields, that is, the
project name called node_name, the support count called
node_count, the child node chain called node_children, the
pointer node-link of the next node in the node chain, and
the project prefix called node-pre. In addition, it also needs to
have a frequent item header table called the Header table,
which contains two fields, the item name called item_name,
and the header pointer of the node chain called item-links.

2.2.2. &e Construction Process of FP-Tree. ,e construction
process of the FP-tree just scans the transaction database twice:
the first time generates frequent 1-itemsets, and the second time
constructs the FP-tree. During the process of constructing the
FP-tree, each transaction is scanned, the items whose support is
greater than the user-defined minimum support threshold are
inserted, and they are inserted in descending order of support.
When inserting items, you need to use a current pointer to assist
the insertion. If the current pointer has no child nodes, the node
to be inserted is inserted as its leftmost child node. Otherwise, if
the child node of the node pointed to by the current pointer has
a node with the same node_name value as the item to be
inserted, 1 should be added to its node_count value; otherwise, a
new node should be created and it should be inserted into the
child chain of the node pointed to by the current pointer. After
inserting the node, according to the node_name value of the
node, it should be inserted into the corresponding item_links
chain in the Header table, and the node_link of the node should
be modified at the same time. Table 1 gives the algorithm
description of the new FP-tree.

2.3. &e Example of Constructing a New FP-Tree

Example 1. Let Table 2 be the transaction database D, and
the given minimum support number is 3; then, the corre-
sponding FP-tree is displayed in Figure 1. Figure 2 is the
conditional FP-tree based on the c node.

All frequent items can be obtained after scanning the
databaseD for the first time, arranged in descending order of
support to get the itemset FIk � {bacde}. ,en D should be
scanned for the second time to make a tree. Figure 1 shows
the completed FP-tree.

After the FP-tree is constructed, recursive mining can be
performed on it. It should be started with the last item in the
Header table, and it should be worked your way up. Taking c
as an example, its conditional pattern base is {{b, a:2},{b:
2},{a:2}}. Its conditional FP-tree has two branches, as shown
in Figure 2. It produces a pattern set: {{a, c:4},{b, c:4},{b, a, c:
2}}.

3. Maximum Frequent Itemset Mining
Algorithm Based on FP-Tree

3.1.&e Idea of the FP-MFIAAlgorithm. Inspired by the data
structure of the FP-tree and the idea that the maximum
frequent itemset implies all frequent items, the research
introduces FP-MFIA, a new maximum frequent itemset
mining approach based on FP-tree. ,e FP-MFIA is mainly
optimized from the storage structure of the maximum
frequent items. First, as introduced in Section 2.2, the FP-
MFIA adopts a one-way FP-tree data structure, which only
has pointers from the root to the leaves, so that only two
scans of the FP-tree are required by the FP-MFIA. ,en, the
information required to mine the maximum frequent
itemsets is obtained, which significantly optimizes the de-
tection efficiency of the FP-MFIA algorithm. Second, we
redefine a data storage structure MFI-list. It can quickly
release numerous unnecessary nodes in the FP-tree after
scanning it, thereby reducing the space required to store the
largest frequent itemsets and improving the mining effi-
ciency, especially for the mining of long-pattern frequent
itemsets.

3.2. Construction of MFI-List. Analyzing the existing max-
imum frequent itemset mining algorithms, it can be found
that the algorithms spendmost of the time detecting whether
the obtained itemset is the maximum frequent itemset,
resulting in low efficiency.,erefore, to reduce the detection
time and optimize the mining efficiency of the algorithm, we
redefine a data storage structure of maximum frequent
itemsets in the FP-MFIA algorithm, called the MFI-list.

,e structure of the MFI-list is defined as follows: as-
suming that the length of theMFI-list is |LDF|, it is composed
of MFI-list nodes and maximum frequent itemset linked list
list-MFI. ,e MFI-list node contains three fields: the item
name is denoted as node_name, the maximum length is
denoted as length, and the pointer to the corresponding
maximum frequent itemset linked list is denoted as first_-
MFI. ,e last item of the maximum frequent itemset con-
tained in each node in the maximum frequent itemset linked
list pointed to by first_MFI must be node_name. ,e
node_MFI of each node in the maximum frequent itemset
linked list list_MFI contains two fields: the maximum fre-
quent itemset bit vector is calledMFI_BV, and the pointer to
the next node_MFI node is called next_MFI. ,e definition
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item_name item_links

b

a

c

d

e

root

Header table b:7

a:4

e:1

a:2

e:1

d:1 c:2c:2

d:1 c:2

Figure 1: FP-tree constructed from the transactional database.

Table 1: Pseudocode for constructing new FP-tree.

Algorithm 1: �e construction algorithm of new FP-tree.
Input: Transaction database D, minimum support min_sup. In the process of constructing the FP-tree, the node-pre of each node is null,
and the node-pre is assigned after the FP-tree is constructed.
Output: FP-tree
Process:
Scan database D to get frequent 1-itemsets, sort them from large to small according to the support degree, and get the frequent item
sequence FI1;
Create a new FP-tree node, assign the value of the node_name to null, and use it as the root node T;
Create FP-tree: call Create function
Function Create()
For each transaction in the database Ti do
{Initialize the current pointer in the FP-tree to point to the root node T;
Put the items in the transaction Ti that meet the minimum support count requirement into the queue Q in descending order of support
count;
For each item in the queue Q do
FP-tree. Insert(I); //Insert I in the child of the node pointed to by the current pointer (if it exists, its counter will be incremented by 1) and
move the current pointer to the node
}
Function Insert (char name)//Insert a node with an item named name into the FP-tree
{if the node pointed to by the current pointer has no child nodes or there is no node whose node_name �eld is name in the child nodes
�en
{Create a new FP-tree node whose node_name �eld is name；
current-> node_children� node;
current�� node;//Modify the current pointer to point to the new node
current-> node_link� item_head;
item_head� current;//Add it to the item_name linked list whose item_name value is name in the header table
}
else increase the node_count value of the child node by 1 and modify the current pointer to point to it;
}

Table 2: �e transaction database.

TID Items Frequent items in descending order of support
T1 Abe bae
T2 Bd bd
T3 Bc bc
T4 Abd bad
T5 Ac ac
T6 Bc bc
T7 Ac ac
T8 Abce bace
T9 Abc bac
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of the maximum frequent itemset bit vector MFI_BV is as
follows: suppose there is a maximum frequent itemset {i1,
i2,..., im}, i1, i2,..., im is, respectively, the x1, x2,..., xm item in
LDF. �en, the length of the maximum frequent itemset bit
vectorMFI_BV is xm, the value of the x1, x2,..., xm bit is 1, and
the other bits are 0.

�e construction process of the MFI-list is as follows:
traverse the FP-tree in preorder, initialize the MFI-list, and
assign a value to the node_pre of each node. Preorder
traverses a path from the root to a leaf node. If the node_pre
of the parent node of a node has a value, the node_pre of this
node is assigned, and the value is the frequent itemset
composed of the union of the node_pre of the parent node
and the node_name of this node. If the node_count value of
a node is greater than or equal to the minimum support
min_sup, and the node_count value of one of its child nodes
is less than the minimum support min_sup, or it has no child
nodes, the node_pre of this child node is assigned a value,
and the value is the frequent itemset consisting of the
node_name values of all nodes traversed on the path from
the root to this child node. At the same time, the candidate
maximum frequent itemset composed of the node_name of
all nodes traversed on the path from the root to its parent
node is converted into a bit vector; then, it is added to the
maximum frequent itemset linked list pointed to by the
pointer �rst_MFI of the p node in the MFI-list. Suppose the
node_name of the p node is the same as the node_name of its
parent node, its length is compared with p-> length. If it is
greater than the existing p-> length, the p-> length value is
updated. If all child nodes of a node have been traversed, the
node space is released, and the item_links and node_links
pointers are accordingly modi�ed. Table 3 gives a descrip-
tion of the algorithm for constructing the MFI-list storage
structure.

After the MFI-list is initialized, the MFI-list is traversed
in reverse order according to the support degree from small
to large. Each node is scanned in the MFI-list in turn. If the
length value of a node is equal to its number in the LDF, the
node should be deleted from the Header table and the
corresponding node in the FP-tree should be deleted.

3.3. Maximum Frequent Itemset Mining Algorithm FP-MFIA
Based on FP-Tree. �e FP-MFIA algorithm �rst uses the
properties of the FP-tree to scan the transaction database
twice, which greatly improves the detection e�ciency. Sec-
ond, a newmaximum frequent item storage structureMFI-list
is used to �nd the maximum frequent itemsets according to
the elements obtained in the itemHeader table.�e FP-MFIA

algorithm considers the frequent items with the minimum
support count, and each cycle performs the following oper-
ations: the nodes nd1, nd2, ..., ndh are found, which have the
same name as the item to be processed in the FP-tree. First,
nd1->node-pre, nd2->node-pre,...,ndh->node-pre should
be converted into bit vectors. �en, for the bit vector of each
node ndi->node_pre, an “AND” operation should be per-
formed with the bit vector of other ndj->node-pre (1≤ j< � h,
i ≠ j); then, the result will be nd (bit vector), as shown in

n � nd − > node pre∧ndj − > node pre. (5)

If the number “1” in nd is greater than or equal to 2, then
the sum of node_count is greater than or equal to s, and then,
the “AND” operation is performed on nd and the existing
maximum frequent itemsets in the MFI-list node, respec-
tively. If a value other than 0 is obtained, the processing of
the next node is performed. If all values are 0, it is added to
the MFI-list. �en, the next frequent item should be con-
sidered. According to the above introduction, Table 4 gives
the maximum frequent itemset mining algorithm FP-MFIA
based on FP-tree.

3.4. Case Analysis

Example 2. Let Table 5 be the transaction dataset D, then
min_sup is 2. �e mining results of the FP-MFIA algorithm
are shown in Figures 3–5, respectively.

First, the FP-tree corresponding to D should be con-
structed, as can be seen in Figure 3. �en, according to the
FP-MFIA algorithm, the maximum frequent itemset MFS is
obtained. Figure 4 shows the MFI-list obtained after tra-
versing the FP-tree in preorder, and Figure 5 shows the
simpli�ed FP-tree obtained after traversing the MFI-list.

For frequent item f, the node_pre of each node obtained
by traversing the FP-tree is abcdf, aef, and bef, respectively,
and they can be converted into bit vectors of 111101, 100011,
and 010011, with the help of

111101Λ100011 � 100001, (6)

111101Λ010011 � 010001, (7)

100011Λ010011 � 000011. (8)

�en, we can get the frequent itemsets af, bf, and ef.
Because there is no corresponding MFIf in the MFI-list, af,
bf, and ef can be added to the corresponding MFI-list. For
frequent item e, since its count value is 1, there is no MFIe.
�e �nal MFI-list is shown in Figure 6. According to the
MFI-list, we can get the maximum frequent itemsets {a, f},
{b, f}, {e, f}, {a, e}, {b, e}, and {a, b, c, d}.

4. Experimental Testing and Analysis

To test the mining e�ectiveness of the FP-MFIA proposed in
this study, we conducted a series of experiments among the
FP-MFIA, IDMFIA, and DMFIA algorithms.

item_name item_links
b
a

root

Header table b:7

a:4

a:2

Figure 2: Conditional FP-tree based on (c) node.
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4.1. Experimental Environment and Experimental Database.
,eexperimental environment of this study is as follows: we use
a desktop PC to complete the experiments, and its configuration
is as follows: the CPU is Intel(R) Core(TM) i7-9700U, the main

frequency is 3.0GHz, thememory is 8G, the operating system is
Windows 10, and the development software is Visual C++ 6.0.

,e test dataset selected in this study is derived from the
classic datasets Mushroom and Connect in UCI (University

Table 4: Pseudocode of FP-MFIA.

Algorithm 3: ,e algorithm of FP-MFIA.
Input:,e FP-tree of transaction databaseD, the Header table of frequent item, the minimum support count s, the frequent item list LDF inD
Output: ,e MFI-list
Process:
MFI-list�Ø;
Preorder traversal of the FP-tree to obtain a simplified FP-tree, and initialize the MFI-list at the same time;
Traverse the MFI-list and simplify the FP-tree;
p�Header table[| Header table|]; //Analyze each node in the Header table in reverse order, p first points to the last node;
while(p exists){
p� p-> item_links; //p points to the first node in the FP-tree with the same item name
q� q-> first_MFI; //q points to the MFI-list node with the same item name as p in the MFI-list
while (q exists)
{According to p-> item_links and the node_links of the nodes in the FP-tree, find all the nodes nd1, nd2,...,ndh with the item name p-
> item_name;
for(i� 1; i≤ h; i++)
for(j� 1; j≤ h; j++)
If(i≠ j) then
{Convert ndi-> node_pre, ndj-> node_pre to bit vector;
nd� ndi;
n� nd-> node_pre∧ndj-> node_pre;
if(the number of “1” in nd> 1) then
{nd.count� ndi-> node_count + ndi-> node_count;//Calculate the support count for nd
q� q-> first_MFI;
If(nd.count≥ s)
{while(q-> next_MFI)
if(nd is not a subset of an element in the itemset pointed to by q）q� q-> next_MFI;
else break; }
If(q-> next_MFI� � null) q-> next_MFI� nd; }
}}}}

Table 3: Pseudocode for constructing MFI-list.

Algorithm 2: Algorithm of constructing MFI-list.
Input: FP-tree
Output: MFI-list
Process:
current�T://current points to the current node to be traversed, and its initial value points to the tree root T
InitStack(s); //initialize stack s
,ere are untraversed paths in the FP-tree
{while (current-> node_count≥min_sup)
{current points to a child node that has not been visited;
Push(s,current-> node_name);
}
//When there is no child node or the node_count value of the child node is less than min_sup
MFI� {collection of items in stack s};
Convert the MFI into the corresponding bit vector and link it to the corresponding maximum frequent itemset linked list
current-> node_pre�MFI;
While(current has child nodes in the current path)
{pre� current;
current points to its child node;
current-> node_pre� pre-> node_pre∪current-> node_name;//Take the frequent itemset composed of the union of the node_pre of its
parent node and the node_name of the node
}}
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of California Irvine). Table 6 gives the relevant parameters of
the selected database.

4.2. Algorithm Performance Testing and Analysis. To com-
prehensively evaluate the mining e�ectiveness of the FP-
MFIA algorithm on di�erent types of datasets, we conducted
experiments with di�erent support degrees on the above two
databases. First, the execution time of FP_MFIA, DMFIA,
and IDMFIA is tested in the condition of high support on the
two databases. Second, we, respectively, run the FP_MFIA,
DMFIA, and IDMFIA algorithms under the condition of low
support. However, since the DMFIA algorithm has less
support, its execution time exponentially increases, far

exceeding the current maximum range of the coordinate
axis. �erefore, in order to obtain a more intuitive experi-
mental comparison chart, we only compare the execution
e�ciency of the FP-MFIA and IDMFIA algorithms when the
support degree is small.

4.2.1. Test Analysis on theMushroomDatabase. First, we run
the three algorithms FP_MFIA, DMFIA, and IDMFIA on
the Mushroom database, and Figures 7 and 8, respectively,
exhibit their runtime on the Mushroom database. Figure 7
illustrates the results of the FP_MFIA, DMFIA, and IDMFIA
algorithms on the Mushroom database when the minimum
support is large (4 levels: 60%, 55%, 50%, and 45%). Figure 8
illustrates the results of them on the Mushroom database
when the minimum support is small (5 levels: 40%, 35%,
30%, 25%, and 20%).

As shown in Figures 7 and 8, the runtime of the FP-
MFIA algorithm in the mushroom database generally is less
whether themin_sup is large or themin_sup is small. For the
Mushroom database, due to its sparse distribution of fre-
quent itemsets, the FP-MFIA algorithm has a greater ad-
vantage for sparsely distributed databases. What’s more, we
can also see from the �gures that when min_sup is large, the

Table 5: Transaction database.

TID Items
T1 abcdep
T2 abcdf
T3 abcdm
T4 abcdi
T5 abcdho
T6 aef
T7 befn
T8 ae
T9 be
T10 ad

item_name item_links

a

b

c

d

e

f

root

Header table

a:8

b:5

c:5

b:2

f:1

d:1

f:1

e:2
e:2

d:5

f:1e:1

Figure 3: �e FP-tree corresponding to transaction database (D).

MFI-list

node_name length first_MFI

d

e

4

2

1111

10001 01001

Figure 4: MFI-list obtained after preorder traversal of FP-tree.
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e�ciency of IDMFIA and FP-MFIA is ideal, and the exe-
cution time of DMFIA is the longest. However, when the
minimum support is small, the execution e�ciency of the
FP-MFIA algorithm is signi�cantly superior to that of the
IDMFIA.

�e three algorithms of FP-MFIA, DMFIA, and IDMFIA
all use FP-tree to store transaction datasets. �e core
principle of the DMFIA algorithm is to scan the dataset only
once and use the breadth-�rst search method to analyze the
conditional FP-tree mining. But when there are too many
items in the dataset, DMFIA will generate lots of invalid
candidate itemsets, which will decrease execution e�ciency.
Although the IDMFIA algorithm adopts the top-down and
bottom-up two-way search strategy, it does not make full use

MFI-list

node_name length first_MFI

d

e

4

2

1111

10001 01001

f 2 100001 010001 000011

Figure 6: �e �nal MFI-list obtained.

Table 6: �e relevant parameters of the database.

Database Items �e number of the
items

�e length of each
item

Mushroom 119 8124 23
Connect 129 67557 43

item_name item_links

d

e

f

item_name item_links

e

f

d:1:ad

e:1:abcde

f:1:abcdf f:1:aef f:1:bef

Header table

e:1:abcde

f:1:abcdf f:1:aef f:1:bef

Header table

traversal
MFI-list

(a) FP-tree obtained
after preorder
traversal of FP-tree

(b) FP-tree obtained
after traversal MFI-
list

Figure 5: Preorder traversal of FP-tree and simpli�ed FP-tree obtained after traversing MFI-list.
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Figure 7: Runtime of FP_MFIA, DMFIA, and IDMFIA algorithms
on the Mushroom database (when min_sup is large).
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of infrequent itemsets for dimensionality reduction so that
there are still many useless itemsets in the maximum fre-
quent candidate itemsets. �is will also greatly reduce the
operating e�ciency to a certain extent. However, because
FP-MFIA adopts the one-way FP-tree structure andMFI-list
storage structure, only two scans of the FP-tree are required
by the FP-MFIA. Moreover, the structure of the MFI-list can
quickly release numerous unnecessary nodes in the FP-tree
after scanning it. In this way, not only the information
required by the maximum frequent itemsets can be quickly
mined, but also the space required for storing the maximum
frequent itemsets can be reduced, which greatly improves
the mining e�ciency. �erefore, compared with the two
algorithms of IDMFIA and DMFIA, FP-MFIA performs
more e�ciently.

4.2.2. Test Analysis on the Connect Database. At the same
time, we also conducted the same test experiments on the
intensive database Connect. Figure 9 shows the results of the
FP_MFIA, IDMFIA, andDMFIA algorithms on the Connect
database when the min_sup is large (4 bins: 99%, 98%, 97%,
and 96%). Figure 10 illustrates the results of the FP_MFIA,
IDMFIA, and DMFIA algorithms on the Connect database
when the min_sup is small (5 levels: 95%, 94%, 93%, 92%,
and 91%).

Observing the experimental results of Figures 9 and 10
on the Connect dataset, the same conclusion can be drawn:
under di�erent minimum support conditions, the overall
running time of the proposed FP-MFI algorithm is less than
the IDMFIA and DMFIA algorithms. However, since
connect is an intensive database, the execution performance
of the FP_MFIA, IDMFIA, and DMFIA algorithms on this
database is signi�cantly improved compared to their per-
formance on the Mushroom database. As can be found in
Figure 9, the running time of the DMFIA algorithm

suddenly increases when the support is at 97%. �e reason
may be that at this level of support, the frequent items in the
item Header table suddenly increase, and the dimension of
the largest frequent itemset is small, which causes the
DMFIA algorithm to calculate the support number for lots
of candidate itemsets.

In summary, through the test experiments on the
Mushroom and Connect datasets, we can �nd that no matter
in higher support conditions or the lower support condi-
tions, the execution e�ciency of the FP-MFIA is generally
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Figure 8: Runtime of FP_MFIA, DMFIA, and IDMFIA algorithms
on the Mushroom database (when min_sup is small).
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Figure 9: Runtime of di�erent algorithms on the Connect database
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superior to that of the IDMFIA and DMFIA algorithms.
With the decrease in support, FP-MFIA’s time efficiency is
obviously better than that of the IDMFIA algorithm.
However, the FP-MFIA also has some limitations. For ex-
ample, the candidate itemsets will becomemore andmore as
the scale of data continues to grow, resulting in a longer
execution time, which will affect the mining efficiency.

5. Conclusions

To improve the mining efficiency of intensive data, the
research introduces an FP-MFIA algorithm that can effi-
ciently mine the maximum frequent itemsets to deal with
long-pattern frequent itemset excavation. ,e FP-MFIA is
mainly optimized from the storage structure of the maxi-
mum frequent items. First, it adopts a one-way FP-tree
structure, which only has pointers from the root to the
leaves, so that only two scans of the FP-tree are required by
the FP-MFIA to obtain the information needed to mine the
maximum frequent itemsets.,ereby, it reduces the number
of generated maximum frequent item candidate sets and
times of traversing the FP-tree, which greatly improves the
space utilization. Second, a data storage structure MFI-list of
maximum frequent itemsets is redefined. After scanning the
FP-tree, it can immediately release numerous useless nodes
in the FP-tree, thereby reducing the space required to store
the maximum frequent itemsets and improving the mining
efficiency, especially for the mining of long-pattern frequent
itemsets. Finally, through comparative experiments, it can be
concluded that the algorithm FP-MFIA has higher time
efficiency than DMFIA and IDMFIA in terms of maximum
frequent itemset mining. However, the algorithm FP-MFIA
also has some limitations. For example, as the scale of data
continues to grow, the number of candidate itemsets also
increases, which will consume more running time. ,ere-
fore, a further in-depth research is needed.
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