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Emotion recognition is a challenging problem in Brain-Computer Interaction (BCI). Electroencephalogram (EEG) gives unique
information about brain activities that are created due to emotional stimuli.*is is one of the most substantial advantages of brain
signals in comparison to facial expression, tone of voice, or speech in emotion recognition tasks. However, the lack of EEG data
and high dimensional EEG recordings lead to difficulties in building effective classifiers with high accuracy. In this study, data
augmentation and feature extraction techniques are proposed to solve the lack of data problem and high dimensionality of data,
respectively. In this study, the proposed method is based on deep generative models and a data augmentation strategy called
Conditional Wasserstein GAN (CWGAN), which is applied to the extracted features to regenerate additional EEG features. DEAP
dataset is used to evaluate the effectiveness of the proposed method. Finally, a standard support vector machine and a deep neural
network with different tunes were implemented to build effective models. Experimental results show that using the additional
augmented data enhances the performance of EEG-based emotion recognition models. Furthermore, the mean accuracy of
classification after data augmentation is increased 6.5% for valence and 3.0% for arousal, respectively.

1. Introduction

*ese days, emotion recognition based on EEG signals using
machine learning and deep learning has become very de-
batable in different fields of study.*e EEG data generated in
response to an emotional stimulus, compared with visual or
speech signals, are unique and cannot be hidden by indi-
viduals, even when they try not to show their emotions.
Additionally, neuroscientists are trying to find patterns of
brain activities for different states of emotions and deter-
mine if these patterns are common among different people.
Experimental results have shown there are neural signatures
for three emotions: positive, neutral, and negative [1].
Feature engineering as a way of pattern recognition is an-
other controversial issue that should be considered carefully
in training a model. So how to extract meaningful brain
activities from apparently meaningless and complex brain
electrical signals is a big challenge for BCI [2]. Many

methods have been proposed to improve performance in
many aspects, including preprocessing, feature extraction,
feature selection, and classification [3, 4].

Many EEG-based emotion recognition methods have
been studied in recent years. *e main focus of emotion
recognition is on feature extraction and classification.
Classifiers use features as input to identify the emotional
states. *ere are various methods for feature extraction,
such as the traditional method of feature engineering
based on many signal processing techniques and statistics,
or automatic feature engineering, which can be directly
extracted by neural networks. Many studies have been
done on both traditional and automatic feature engi-
neering to propose an effective EEG-based emotion
classification. Extracted features are given as input to
effective standard machine learning models like SVM
[5–10], KNN [10–12], etc. Lately, deep learning networks
have shown significant power in feature extraction and
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classification tasks, and many researchers have applied
different neural networks to EEG data [13–16] to enhance
accuracy.

*e lack of EEG training datasets, compared with visual
and audio datasets, is still one of the primary challenges in
EEG-based emotion recognition tasks based on deep
learning models. *ere are only a few public datasets for
EEG-based emotion recognition: SEED, DEAP, DREAMER,
MAHNOB-HCI3, and MPED [14]. In addition, the scale of
these datasets is much smaller than image datasets like
ImageNet. A machine learning model would be more ac-
curate if it could access more training data. Generating fake
EEG data is a common solution to solve the lack of data
problem. *is method is called augmentation. Lately, a
variety of different techniques have been used to generate
more data. For example, applying a geometric modification
to original data is commonly used for image data aug-
mentation. In EEG data augmentation, Gaussian noise is
usually added to data to create new data [13], but recently a
new method has been proposed to generate EEG realistic-
like data by using deep generative neural networks [17]. A
CWGAN network is proposed in [17] for the first time to
generate a vector of EEG features. *en, a technique is used
to check the quality of generated data and only high-quality
data are added to the trainset. Finally, SVM and DNN are
trained to classify the original and augmented training data
with binary classification. A 2-dimensional Arousal-Valence
model is used to identify emotions from complex and
nonstationary EEG data. *e experimental results have
shown that data augmentation improved the accuracy of
classifiers.

*e rest of the paper is organized as follows: Section 2
provides an overview of related work on generative and data
augmentation methods for EEG-based emotion recognition.
In Section 3, the implementation of the proposed method is
discussed in detail. Section 4 describes the DEAP datasets
and presents the details of our experimental settings. *e
experimental results and comparison of the proposed
method with different methods are presented in section 5.
Finally, in section 6, we present the conclusions of our work.

2. Related Work

Due to the high costs and challenges of EEG data collection,
most EEG public datasets are small and the number of
recorded data from different participants is limited. *is has
a great impact on the accuracy of implemented machine
learning models for prediction and classification tasks and
imposes a huge challenge in EEG data classification.
Working on a method to generate EEG fake data like real
data, is a controversial issue to solve the lack of data problem
in EEG-based emotion recognition tasks. In this paper, the
performance of emotion recognition models with the
standard machine learning models and deep neural net-
works are compared before and after data augmentation to
check whether data augmentation was effective or not. *e
experimental results indicate that data augmentation
method effectively improved the performance of models in
some cases.

Data augmentation for EEG-based emotion recognition
by adding Gaussian noise to the trainset is used in [13, 18].
New data augmentation with deep generative models is
proposed to generate EEG fake data for the first time in [17],
and the results have shown improvement in accuracy. *e
combination of three datasets, DEAP, DREAMER, and a
dataset that they collected themselves, is used to solve the
lack of data problem in emotion recognition tasks in [19]. In
the last few years, much research has been conducted by
deploying machine learning techniques to analyze EEG data
for emotion recognition. SVM classifier is proposed as a
classification model for the prediction of three emotional
states and EEG time-frequency features are used as input
data for implemented classifier [20]. In [21], authors have
used KNN as a classifier and amplitude of the signal as input
features to predict eight emotional states.

LSTM network is developed to recognize emotions from
EEG data and raw EEG signals of the DEAP dataset are given
to the network as input features. Feature extraction is done
automatically by the LSTMnetwork and a dense layer is used
for classification. *e average accuracy of implemented
network for arousal, valence, and liking is 85.65%, 85.45%,
and 87.99% respectively. *e proposed method reached a
high average accuracy in comparison with the traditional
techniques [15]. A multilayer group classification model
based on a stacked autoencoder (MESAE) has been pro-
posed to identify emotions. On the DEAP dataset [22], the
average accuracy of the model for binary prediction of
excitement and valence parameters was 77%, 76%, and
F-score 69% and 72%, respectively. Two convolutional
neural networks with new architectures are proposed for
biometric identification based on EEG signals in [23]. An
ensemble deep neural network is proposed to explore the
correlation between channels and contextual information of
recorded data from EEG frames. *e hybrid method is a
combination of CNN and RNN networks [24]. A deep
neural network has been proposed to detect emotions from
EEG signals using the DEAP dataset. Two types of neural
network architecture have been studied in this research:
CNN and DNN. Both models are highly effective in cate-
gorizing user emotions when training on preprocessed data
[1]. GELM model has been used to identify stable patterns
over time and evaluate the stability of the emotion recog-
nition model. Feature selection and classification of patterns
of emotions are evaluated in the SEED and DEAP datasets
[25]. A CWGAN network is proposed as a data augmen-
tation technique to generate EEG data in the emotion
recognition task. *e mean classification accuracy based on
the 2d-arousal-valence model on SVM and DNN for the
DEAP dataset is 48.9% and 47.5% respectively [17]. A
combination of three datasets, DEAP, DREAMER, and a
proprietary data set that they collected themselves, is pro-
posed in [19] to solve the lack of data problem in emotion
recognition tasks. *e total dataset is related to 60 partici-
pants, which is the largest number compared with other
datasets.*e accuracy of this method for valence and arousal
is 70.26% and 72.42%, respectively. As mentioned above, the
study of EEG-based emotional recognition has never
stopped. Although many deep learning methods have been
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developed to identify emotions from EEG signals, proposing
a suitable method is still in its infancy. Due to the limitation
of EEG data collection, the labeled EEG samples that can be
used for deep learning techniques for EEG-based emotional
recognition is a significant challenge, and proposing a so-
lution is still an issue.

3. DEAP Dataset

*e dataset includes brain electrical waves and physiological
signals recorded during the user’s response to an external
stimulus. DEAP is a collection of brain, environmental, and
facial signals while watching a music video [26]. In this
dataset, 40 music videos have been selected to evoke people’s
emotions as much as possible. *e number of participants in
the experiments is 32. Data have been recorded from 40
channels which include 32 EEG channels and 8 physiological
channels. *e period of each music video is 63 seconds,
which includes a 3-second preparation period for watching
each music video and one minute for watching. After
watching each music video, the participants give a score
from 0 to 9 in terms of Valence, Arousal, Dominance, and
Liking to each music video. *e score that each person gives
is considered as a standard criterion for each person. Par-
ticipants’ evaluation of each video is based on the two-di-
mensional arousal-valence model which is shown in Figure 1
[27].

Arousal: indicates the intensity of people’s feelings. *e
higher the value, the stronger the feeling, and the lower the
value, the weaker the feeling. *e scale ranges from calm to
excited [28].

Valence: indicates the degree of pleasure in the people’s
feelings. *e higher it is, the more positive and happier the
person feels, and the lower it is, the more negative and
sadder the person feels. *e scale ranges from unpleasant to
pleasant [28].

*e dataset description is given in detail in Table 1. In
each of the 32 participant files, the length of data recorded in
63 seconds is 8064 samples, sampled at a frequency rate of
128Hz. In each of the 32 files, there are physiological and
EEG signals recorded from 40 different channels for 40 trials
[27].

4. Implementation Details

Traditional feature engineering is one of the oldest solutions
for analyzing EEG signals. Depending on the type of
problem, features that describe a particular pattern of the
signal have been identified and extracted. Feature identifi-
cation to describe any pattern in brain signals is itself a
complex branch of data analysis. According to previous
research and their results [22], appropriate features for
identifying emotions have been selected and extracted.
Feature extraction reduced the dimensions of recorded EEG
data. After feature extraction, a data Augmentation method
is proposed to generate more data from real EEG data to
extend the dataset and overcome the lack of data which leads
to overfitting and incorrect prediction of classification
models. *e general process of recognizing emotions based

on traditional feature engineering is shown in Figure 2.
Finally, SVM and DNN are used as a classifier to validate the
result of augmented data on extracted features.

4.1. Data Preparation. Emotions themselves are a complex
issue and relate to many things that are still unknown.
Although emotion recognition from EEG signals is an in-
teresting issue, it is too hard to figure out what exactly is
going on in a human’s mind by analyzing brain activities.
Electrical brains might produce different patterns in people’s
brains in response to the same emotional stimuli. *e
perplexing EEG dataset is shown in Figure 3.

4.1.1. Data Preparation. As shown in the tree diagram in
Figure 3, the recorded data is large and confusing. *e first
step before solving a problem is a clear definition of the
problem. *e key point is to clarify what exactly is going to
be solved. *e first question that arises at first glance is
whether we are going to examine and analyze the emotions
of one person in different experiments or whether emotions
are to be identified between different people. It is important
to consider that the emotions of different people in response
to the same stimuli may create different emotional patterns

Valence

Arousal

Positive

Negative

Calm Exited

Calm Joyfull

Depressed Angry

Natrural

Figure 1: A 2-dimensional arousal-valence model.

Table 1: Dataset description.

Row
index Data Value

1 Number of participants 32
2 Stimulus Music video
3 Number of videos 40
4 Duration of each video 60 second
5 EEG recorded data 32 channels
6 Physiological data 8 channels

7 EEG data point for each
participant from 32 channel 32× 8064

8 Labeling method Done by participants after
watching the music video

9 Labeling technique SAM
10 Label’s scale 0 to 9

11 Labels Arousal, valence, liking,
dominance
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in the brain and it is difficult to find a common pattern
between them. In this paper, the identification of emotions
between different people has been studied and recorded data
from all participants in 40 experiments have a total number
of 1280 samples. *e first preprocessed and rearranged
dataset before any exploration is shown in Figure 4.

*e dimension of data is still high and takes a long time
to be explored and analyzed. Besides, memory usage for this
dimension of data is too high. *us, after rearranging the
data, it is time to reduce data dimensionality by doing some
feature engineering.

4.1.2. Feature Extraction. In general, feature extraction from
EEG signals is one of the most important issues in signal
processing. Extracted features from a signal describe the
behavior of a signal, and each feature gives special infor-
mation about data. *erefore, extracting features that can

accurately describe signal behavior increases the learning
power of machine learning models. If the features extracted
from the signal can be easily divided into different classes

Data Preparation

Feature Extraction

Data arrangement
for classifier’s 

input

Relabeling Target
(Encoding Target)

Implementation of CWGAN 
for Data Augmentation

Evaluation Quality of 
generated data

Generate different number 
of EEG data and add to 

training dataset

Classification

Data Preparation Data Augmentation Classification

Figure 2: *e flowchart of the proposed system.

DEAP Dataset

S1 s2 s3

T1 T2 T40

...

... ... ...T1 T2 T40 T1 T2 T40

CH1 CH2 CH32 CH1 CH2 CH32 CH1 CH2 CH32...... ...

Figure 3: Tree representation of DEAP dataset.
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EEG Recorded Data From 32 channel
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EEG Recorded Data From 32 channel
(32 × 8064)

Figure 4: Rearranged DEAP dataset.
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and the boundary between them is clearer, the machine
learning model would be able to learn better. *e main
purpose of feature extraction is to extract more important
information hiding in massive data. Additionally, the feature
extraction process also significantly reduces the required
resources for data analysis and processing high dimensional
data by reducing data processing volume. Time complexity
and resource usage is a controversial issue in data analysis
and deep neural network-based research. Recently, different
techniques have been proposed for feature extraction from
EEG signals. So, what is given to a model as input is im-
portant. In this paper, many features are extracted from EEG
signals as input for machine learning models. *e extracted
features [22] are shown in Table 2.

All features have been extracted with the help of python
libraries and extracted features collocated in a 2d array
which is ready to be given to machine learning models.
Extracted features describe how brain signals change due to
different emotional states. *e meaning of each extracted
feature is explained accordingly:

(i) Average PSD: Answers the question “How much of
the power of a signal is in a frequency band?”.

(ii) Zero-Crossing Rate (ZCR): It is the number of times
the signal changes from positive to negative and vice
versa.

(iii) Mean: *e value speaks about the mean value of the
distribution of data.

(iv) Variance: It shows how the data are spread from the
mean of data.

*e description of each frequency and what happens in
different frequency bands are explained in Table 3.

EEG recorded data in 6 (s) from a single channel and
EEG data in different frequency bands such as *eta, Slow-
Alpha, Alpha, Beta, Gamma are shown in Figures 5–9 and
10.

Average PSD in *eta, Low-Alpha, Alpha, Beta, and
Gamma for each 32 EEG channels are shown in
Figures 11–14 and 15, respectively.

*e difference of average PSD in*eta, Alpha, Beta, and
Gamma bands for 14 EEG channel pairs between right and
left scalp are shown in Figures 16–18 and 19, respectively.

Mean, variance and Zero Crossing Rate for 32 EEG
channels in 60 are shown in Figures 20, 21, and 22.

4.1.3. Data Arrangement for Classifier’s Input. After feature
extraction, the extracted features should be arranged in an
appropriate format in order to be used as input data of
classifiers.

(1) Features matrix. *e EEG features matrix is shown in
Figure 23. *e rows represent the total number of 32 par-
ticipants in 40 experiments (1280:32× 40). *e columns
represent the extracted features from EEG signals (344).

(2) Labels matrix. Based on the scoring value of the par-
ticipants, the values of the labels ranging from 0–9 are

recorded as continuous values. *e number 5 has been
chosen as the threshold for labeling the upper and lower
classes. Hence, scores above 5 are considered as 1, which
means high and scores less than or equal to 5 are considered
as 0, which means low. *erefore, according to Table 4, the
labels are divided into two separate classes, 0 (Low) and
1(High).

(3) Splitting of Train and Test Data. To train the proposed
model and test if it works properly, the entire available
dataset must be divided into two parts: the trainset and the
test set. *e number of train and test sets is 1152 and 128,
respectively.

4.2. Data Augmentation. Data augmentation is the process
of generating new samples by transforming training data to
improve the accuracy and robustness of classifiers [29].
Unfitting methods of increasing data to improve the per-
formance of the model not only do not improve the learning
ability of the model but also worsen the result and reduce the
predictive power of the model. An appropriate data aug-
mentation method must be chosen based on data properties.
Two common data augmentation methods were formerly
used in image processing: geometric transformation and
noise addition. Geometric transformations, such as shift,
scale, rotation/reflection, etc., are not a good choice for
augmenting EEG data because it is nonstationary signal and
changes over time.*e extracted features in the time domain
or frequency domain are still time series, so the rotation or
shifting of these time series would destroy the features, so it
cannot be a suitable technique for this kind of data.
Compared with geometric transformation, adding noise is a
better choice but not the best method for augmenting EEG
data. *ere are a variety of noises that can be added to data,
such as Gaussian, Poisson, Salt, Pepper, etc., but since EEG
data is nonstationary, we cannot add any type of these noises
to data because it might change the features of EEG data
locally. *e most frequently used noise for EEG data aug-
mentation based on previous research is Gaussian noise that
is added to each feature of the EEG time series to create new
data from original data [18]. In our work, we considered
using GANs as a very new EEG data augmentation method
for generating new data.

4.3. GANs. Due to the cost of data collection, most EEG
datasets have a small amount of EEG data. Lack of data
makes it difficult to predict emotional states with deep
learning models that require sufficient training data. In this
study, the data enhancement method has been used to solve
the lack of data problems in the emotion recognition task.
Experimental results have shown that more data can ef-
fectively improve the performance of emotion recognition
based on deep learning models. Recent work on generative
models such as Generative Adversarial Networks (GAN)
and Variational Autoencoders (VAEs) have shown that they
generate new data like real data. Evidence has also shown
artificial data generated by a generative model can be used to
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Table 3: EEG Frequency band.

Frequency Frequency
range Description Occurrence

Delta
Delta <4/5 Delta frequency band waves have the highest

amplitude and the lowest frequency.

It is a wave shape that appears in a relaxed state like deep
and unconscious sleep. It describes a person in a state of

anesthesia and unconsciousness. Similar EEG
frequencies appear in epileptic seizures, loss of

consciousness, and some coma states.

*eta
3/5< theta
<7/5

*eta frequency band waves are a fast irregular
activity.

*eta waves are associated with natural consciousness
or thinking and anxiety and concentration. Beta is
usually seen with a symmetrical distribution on both
sides of the brain but is more pronounced in the frontal
lobe. It may not be present or reduced in areas where the

cortex is damaged.

Alpha
7/5< alpha
<13

Alpha frequency band waves are generated by the
simultaneous electrical activity of large groups of

neurons.

*ey are usually found with the eyes closed but still
awake in signals recorded from the scalp more than the
occipital lobe during periods of relaxation. Open eyes

also reduce drowsiness and sleepiness. It mostly
indicates a state of consciousness

Beta
12< beta <25 Beta frequency band waves are a fast irregular

activity, where the cortex is damaged.

Beta waves are associated with natural consciousness or
thinking and anxiety and concentration. Beta usually
occurs on both sides of the brain with a symmetrical
distribution but is mainly seen in the frontal lobe. It may

not be present or reduced in areas

Gamma
26< gamma
<70

Gamma waves are thought to be a sign of the
active exchange of information between the

cerebral cortex and other areas.

Gamma waves are usually generated in the brain when
people are conscious and when the eyes move rapidly.
Gamma and beta waves may overlap within the range of
natural frequencies, and the exact boundary between
these two frequency bands is not clear and yet is a

judgment for experts.
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Figure 5: EEG recorded data in 6 (s) from a single channel.

Table 2: Extracted features.

Index Features type Channel Frequency (Hz) Features No. of
features

1 EEG power
features

Fp1, AF3, F3, F7, FC5, FC1, C3, T7,
CP5, CP1, P3, P7, PO3, O1, Oz, Pz,
Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz,
C4, T8, CP6, CP2, P4, P8, PO4, O2

*eta (4–8) slow-alpha
(8–10) alpha (8–12) beta
(12–30) gamma (30–45)

Average PSD 160

2 EEG power
differences

(Fp2- Fp1), (AF4- AF3), (F4-F3), (F8-
F7), (FC6-FC5), (FC2-FC1), (C4-
C3), (T8-T7), (CP6- CP5), (CP2-

CP1), (P4- P3), (P8-P7), (PO4- PO3),
(O2- O1)

*eta alpha beta gamma

Difference of average PSD in theta,
alpha, beta, and gamma bands for 14
EEG channel pairs between right

and left scalp

56

3
EEG time-
domain
features

Fp1, AF3, F3, F7, FC5, FC1, C3, T7,
CP5, CP1, P3, P7, PO3, O1, Oz, Pz,
Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz,
C4, T8, CP6, CP2, P4, P8, PO4, O2

— Mean variance zero-crossing rate 128

6 Computational Intelligence and Neuroscience



increase data, to improve classifier accuracy and prevent
overfitting by increasing generalizability [17].

Figure 24 shows how GAN works. Generally, GAN
consists of two main components including generator and
discriminator that are trying to defeat each other. *e input
of the generator network is random noise, and the dis-
criminator gets two inputs; generated fake data and real data.

It should compare the generated data with real data to
recognize whether it is fake or real. *e purpose of the
generator and discriminator is to fool each other. *e
generator tries to produce high quality which is like real data
to fool discriminator. *e discriminator tries to detect fake
data. *is process continues until the generator produces
data that the discriminator cannot recognize whether it is
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Figure 6: EEG recorded data in the *eta frequency band in 6 (s) from a single channel.
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Figure 7: EEG recorded data in the Slow-Alpha frequency band in 6 (s) from a single channel.
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Figure 9: EEG recorded data in the Beta frequency band in 6 (s) from a single channel.
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fake or real and consider the generated data as real data.
GANs are not able to produce labeled data.

4.4. CWGAN Implementation. In [17], the CWGAN net-
work was proposed as a new data augmentation technique to
produce EEG data without any judgment about its quality.
In this work, not only does the proposed CWGAN produce

EEG features, but also the quality of produced data is
considered. *erefore, CWGAN is used to generate features
that have been previously extracted. Besides, a supple-
mentary condition is considered in generating data to
produce labeled data. *en, the quality of produced data is
evaluated, and high-quality data is added to the train set.*e
proposed CWGAN consists of two networks: a generator
and a discriminator. *ese two networks work together to
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Figure 10: EEG recorded data in Gamma frequency band in 6 (s) from a single channel.
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Figure 16: Difference of average PSD in theta frequency band.
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Figure 17: Difference of average PSD in alpha frequency band.
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Figure 18: Difference of average PSD in gamma frequency band.

10 Computational Intelligence and Neuroscience



Pair Channels

(F
p2

-F
p1

)

0.4

0.0

0.0

0.2

0.4

0.6
Av

e P
SD

 D
iff

er
en

ce
0.8

(A
F4

-A
F3

)

(F
4-

F3
)

(F
8-

F7
)

(F
C6

-F
C5

)

(F
C2

-F
C1

)

(C
4-

C3
)

(T
8-

T7
)

(C
P6

-C
P5

)

(C
P2

-C
P1

)

(P
4-

P3
)

(P
8-

P7
)

(P
O

4-
PO

3)

(O
2-

O
1)

Figure 19: Difference of average PSD in beta frequency band.
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Figure 20: Mean of EEG recorded data for each channel in 60 (s).
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Figure 21: *e variance of EEG recorded data for each channel in 60 (s).
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Figure 22: Zero crossing Rate of EEG recorded data for each channel in 60 (s).
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generate realistic-like EEG features. *ey constantly try to
defeat each other. *e generator gets a Gaussian noise and a
label as input and the discriminator gets two pairs of labeled
generated and real data. *e generator tries to generate fake
data with the same distribution of real data to deceive the
discriminator and the discriminator tries to distinguish if the
given data is real or fake. *e proposed CWGAN works well

if the generator can deceive the discriminator. *e archi-
tecture of CWGAN is shown in Figure 23. *e main dif-
ference between GAN and CWGAN is that CWGAN
produces labeled data.

4.4.1. Generator. As shown in Figure 25, the generator is
designed as a simple deep neural network that gets noise
and labels as input and produces fake data from the given

Z

yr
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yr
G

Xg

yr

Xr

Xg

yr

Xr

yr

D

Z: Noise
G: Generator
D: Discriminator
Xg: Generated Data
Xr: Real Data
yr: Real Label

Figure 23: CWGAN network diagram.

Table 4: Encoded target.

Row_ Index Arousal Valence
1 0 1
2 1 1
3 1 0
. . . . . . . . .

1280 0 1

Random
Noise 

Real Data

Generator

Discriminator

Fake Data

Fake Data

Real Data

?

Figure 24: GAN network diagram.

(Noise, Label) (Fake Data, Label)

Figure 25: Generator network.
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Figure 26: Discriminator network.
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Figure 27: *e Loss function of CWGAN networks during
training.
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noise. Initially, the quality of generated data is adequate.
After a few epochs on the generator training process, the
generator learns to produce high-quality data to deceive
the discriminator. *e learning phase is then complete.

4.4.2. Discriminator. It is designed as a simple deep neural
network that gets two pairs as input, labeled fake data
which is produced by the generator, and labeled real data.
*e discriminator must distinguish whether the two pairs
of given data have the same distribution or not. If it dis-
covers that the distributions of given data are the same, it
shows the generator succeeded in deceiving the discrimi-
nator by producing high-quality data and the training

phase is complete. *e discriminator network is shown in
Figure 26.

After preparing the training data, the train set is ready to
be given as input of the proposed CWGAN to generate more
fake data. So, after some preprocessing and normalization on
the prepared training set, it is given to the network. *en, by
setting the hyper-parameters of CWGAN, it is ready to
generate fake data. *e quality of the generated data is
determined by comparing the distribution diagram of real
and generated data and by loss function. *e number of
training steps is set to 500, and the data generated after 500
steps have high quality. Hyperparameters of the generator
and discriminator, i.e., the Epoch number, Batch size, and
Learning Rate, are 10, 32, and 0.0002, respectively.

Table 5: SVM classification results.

Augmented data real data + fake data NO. test data Arousal mean accuracy
STD (%)

Valence mean accuracy
STD (%)

1152 + 0 128 64.3 % ± 2.3 60.1 % ± 5.2
1152 + 1152 128 68.2 % ± 4.7 64.3 % ± 4.8
1152 + 5000 128 62.4 % ± 3.8 59.6 % ± 3.1

Table 6: DNN classification results.

Augmented data real data + fake data NO. test data Arousal mean accuracy
STD (%)

Valence mean accuracy
STD (%)

1152 + 0 128 65.4 % ± 3.4 64.3 % ± 4.3
1152 + 1152 128 65.2 % ± 4.2 62.3 % ± 4.7
1152 + 5000 128 71.9 % ± 4.8 67.4 % ± 5.2

Table 7: Comparison of proposed work with similar work on SVM classifier.

Model Features NO. Augmented
data

Classification
type

Mean
accuracy STD

Arousal Valence
M.Acc STD M.Acc STD

Proposed
model

344 extracted
features 0 Binary — — 64.3% % ±

2.3 60.1% % ±
5.2

Proposed
model

344 extracted
features 2 × real data Binary — — 68.2% % ±

4.7 64.3% % ±
4.8

Proposed
model

344 extracted
features Real data + 5000 Binary — — 62.4% % ±

3.8 59.6% % ± 3.1

[1] DE 0 Categorical 45.4% 8.2% — — — —
[1] DE 5000 Categorical 48.9% 8.4% — — — —
[1] PSD 0 Categorical 42.7% 9.6% — — — —
[1] PSD 5000 Categorical 45.0% 8.9% — — — —

Table 8: Comparison of proposed work with similar work on DNN classifier.

Model Features NO. augmented
data

Classification
type

Mean
accuracy STD

Arousal Valence
M.Acc STD M.Acc STD

Proposed
model

344 extracted
features 0 Binary — — 65.4% % ± 3.4 64.3% % ± 4.3

Proposed
model

344 extracted
features 2 × real data Binary — — 65.2% % ± 4.2 62.3% % ± 4.7

Proposed
model

344 extracted
features Real data + 5000 Binary — — 71.9% % ±

4.8 67.4% % ±
5.2

[1] DE 0 Categorical 44.9% 4.0% — — — —
[1] DE 5000 Categorical 46.9% 4.8% — — — —
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4.4.3. Evaluation Quality of Generated Data. Evaluation of
generated high-dimensional EEG data is challenging for
researchers. One of the main challenges of using the
CWGAN network to generate EEG data is that the quality of
generated data cannot be easily identified. Image data can be
easily evaluated by visual observation and comparison, but
another solution must be sought to evaluate the similarity of
produced EEG data with real EEG data. One of the most
common methods for comparison is to compare the dis-
tribution of generated data with original data. Another
technique is to observe the changes in the loss function
diagram for the generator and the discriminator during the
training phase.

Figure 27 describes the changing process of the loss
function of the discriminator and generator during training.
It shows the process of the CWGAN training phase and the
quality of produced data. Initially, the generator begins to
generate random data from the noise given to it as input. As
shown in Figure 27, the loss of the generator is high, and the
loss of the discriminator is low, whichmeans the generator is
not able to generate high-quality data and deceive the dis-
criminator.*e low loss value for the discriminator means it
can distinguish that the given data is fake. *e optimum
point for high-quality data generation is a low generator loss
and a high discriminator loss. When the diagram converges
to this point and the changes in loss value become stable, the
training phase is complete, and the generated data seems to
have a high quality. Also, the distribution of generated and
real data must be compared. If they were similar enough, it
means that CWGAN was able to generate high-quality data.
*e distribution of the data is shown in Figure 28, where Z1
and Z2 are the extracted features by PCA with the largest
eigenvalues.

Due to the high dimensionality of EEG data, comparing
its distribution plot is very difficult. Hence, PCA is applied to
generated and real features to reduce the dimension of data
for better visualization and comparison. As shown in Fig-
ure 18, after 500 training steps, the data generated by
CWGAN and its scatter distribution in two-dimensional
space are like the real data. Training can be stopped when the
scatter plot of generated data becomes equal to the original
data and there is little change in the next steps. For image
data, its quality can be easily determined by observing and
comparing the generated data with original data. Output of
this network is ultimately a CSV file that stores a set of
generated features and a file that contains the generated
labels, which are also formatted as a CSV file.

4.4.4. Adding Generated Data to Train Set. In the next step,
generated data is appended to the training set. Various
numbers of data have been generated and added to the
training set, but only some of them were able to improve the
results of classification.

4.5. Classification. For data classification, a support vector
machine and a deep neural network have been applied to
train various sizes of augmented data, and results have
shown that in some cases, classification accuracy improved.

Contrary to our expectation that increasing data improves
classification accuracy, in some cases increasing data not
only did not improve accuracy but reduced it.

To implement a stable and efficient deep neural network,
a different number of layers and neurons have been tested to
reach a high-quality design. Finally, this architecture has
yielded the best results. *e first layer, which is the input
layer, contains 512 neurons, and the hidden layers have 256
and 128 neurons, respectively. After the last hidden layer, a
dropout layer is placed to prevent overfitting. *e last layer
consists of a neuron for binary prediction with the sigmoid
activation function, and the middle layers have the Relu
activation function.

*e network architecture is simple and easy to imple-
ment. Lowmemory consumption and execution time are the
issues considered in this research. Support vector machine,
which is one of the most powerful machine learning algo-
rithms with easy implementation, high training speed, high
predictability, and high stability, is considered for classifi-
cation. Different kernels have been tested, and it was con-
cluded that the linear kernel was the best in this case.

5. Result

For an appropriate training phase, a different number of
augmented data and the design of network have been tested.
Experimental results are listed in Tables 5 and 6.

As shown in Tables 5 and 6, data augmentation is more
efficient in neural network models than standard machine
learning models. Data augmentation improved the predic-
tion accuracy of both SVM and DNN classifiers. It was clear
that by doubling the data, SVM accuracy improved up to
3.9%, but DNN did not improve at all.*e reason is obvious;
Deep neural network models require more data than tra-
ditional machine learning models. On the one hand, by
adding toomuch data to the original dataset, not only did the
accuracy of SVM not improve, but it got worse. On the other
hand, adding too much data significantly improved DNN
prediction accuracy. DNN prediction accuracy improved up
to 6.7%, which is surprisingly noticeable. In conclusion, the
data augmentation task, especially in EEG data, is compli-
cated, and so many issues need to be considered. In this
experiment, a great number of data have been generated and
added to the original dataset, but not all of them effectively
yielded the expected result. *is means more data does not
assuredly improve accuracy. *e more important concern in
this task is the reliability of the classifier’s accuracy. A
comparison of the proposed method with previous work is
shown in Tables 7 and 8.

6. Conclusion

In this study, two challenges were the priority in identifying
emotions from EEG signals. *e first one is the high di-
mensionality problem of EEG signals, and the second one
lacking EEG data. To solve these problems, feature extrac-
tion and data augmentation with generative adversarial
networks were, respectively, proposed. *e implemented
method had a better accuracy on DNN, compared with SVM
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classifier, which means lack of data is more important for
neural network models than traditional machine learning
models. *e distribution of extracted and generated features
has shown that features are heavily cluttered and there is no
clear border between the features of different classes. *is
leads to low classification accuracy, and it is more evident in
SVM than DNN.

7. Future Work

In this paper, the most important tasks were EEG data
generation and feature extraction. *e experimental results
have shown that extracted features have a key role in the
classifier prediction and learning phase. If extracted features
have the potential to clearly describe the patterns of signal in
different classes, the ability of the classifier increases in
prediction and the model works more accurately. *erefore,
in future work, feature extraction techniques are considered
as the priority of our research criteria. *e next problem that
leads to the wrong prediction is relabeling data. *e binary
encoding for the target is one of the reasons of the model’s
false prediction and low accuracy. For instance, in target
encoding, 5.1 is considered as 1, and 4.9 is considered as 0.
*ese two labels are very close to each other and seem to
have the same pattern, but they are considered in two
different classes of prediction, and it is easy for a model to
become confused in prediction, and the false prediction rate
increases.

Data Availability

To gain access to the dataset and download the files, please
visit links below in order to obtain a username and a
password: https://www.eecs.qmul.ac.uk/mmv/datasets/
deap/download.html https://anaxagoras.eecs.qmul.ac.uk/
request.php?dataset�DEAP.
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