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�e use of an automatic histopathological image identi�cation system is essential for expediting diagnoses and lowering mistake
rates. Although it is of enormous clinical importance, computerized breast cancer multiclassi�cation using histological pictures
has rarely been investigated. A deep learning-based classi�cation strategy is suggested to solve the challenge of automated
categorization of breast cancer pathology pictures. �e attention model that acts on the feature channel is the channel re�nement
model. �e learned channel weight may be used to reduce super�uous features when implementing the feature channel. To
increase classi�cation accuracy, calibration is necessary. To increase the accuracy of channel recalibration �ndings, a multiscale
channel recalibration model is provided, and the msSE-ResNet convolutional neural network is built. �e multiscale properties
�ow through the network’s highest pooling layer. �e channel weights obtained at di�erent scales are delivered into line fusion
and used as input to the next channel recalibration model, which may improve the results of channel recalibration. �e ex-
perimental �ndings reveal that the spatial recalibration model fares poorly on the job of classifying breast cancer pathology
pictures when applied to the semantic segmentation of brain MRI images. �e public BreakHis dataset is used to conduct the
experiment. �e network performs benign/malignant breast pathology picture classi�cation collected at various magni�cations
with a classi�cation accuracy of 88.87 percent, according to experimental data. �e diseased images are also more resilient.
Experiments on pathological pictures at various magni�cations show that msSE-ResNet34 is capable of performing well when
used to classify pathological images at various magni�cations.

1. Introduction

Breast cancer is the most common cancer in women [1], and
the incidence tends to be younger. Pathological detection is
regarded as the “gold standard” in the diagnosis of breast
cancer [2], and pathological detection is determined by
pathology. It is carried out under the microscope, and the

pathological grade is given by the observation of the
pathological section. Due to the large variability in the
pathological images [3], the observer’s experience and
subjective di�erences may a�ect the most the �nal diagnosis.
Benign tumors are noncancerous. �ey will not grow or
invade surrounding tissue. However, when they form near
vital organs, irritate a nerve, or restrict blood �ow, they can
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be highly dangerous.+emajority of benign tumors respond
well to treatment. +e only method to tell for sure is to get
the lump biopsied, even though the fact that tests such as
mammograms, ultrasounds, andMRImight provide hints as
to whether a mass is malignant.

Malignant tumors are carcinogenic tumors. Our bodies
constantly produce new cells to replace worn-out ones.
Occasionally, DNA gets damaged during the process,
resulting in abnormal cell formation. Instead of vanishing,
they continue to expand at a rate that the immunity is unable
to keep up with, leading to a tumor. Cancer cells can travel
from the tumor to other parts of the body via the circulatory
or vascular system.+e location of the underlying tumor and
whether it has spread are only two of the numerous variables
that affect how malignant tumors are treated. Detailed in-
formation about the tumor can be revealed by a pathology
report to aid with treatment planning, which may involve
surgery, radiotherapy, chemotherapy, targeted therapy, and
immunotherapy, commonly known as biological therapy.

Automatic classification algorithms for breast cancer
pathological images can help pathologists make more ac-
curate diagnoses. +e research on breast cancer pathological
image classification has made great progress in recent years,
and the research methods for this task can be divided into
+ere are 2 categories: one is algorithms based on manual
feature descriptors and machine learning, and the other is
algorithms based on deep learning.

Utilizing feature descriptors including binary patterns
(lbp, gray-scale co-occurrence matrices, and classification
techniques) such as random forests and support vector
machines, the BreaKHis breast cancer pathology picture
dataset [4] was produced. Using a majority vote method,
literature [5] integrated the outcomes of each classification
algorithm to get at an 87 percent detection accuracy for the
same dataset. However, high-quality qualities require spe-
cialist knowledge and effort, limiting this technology’s
application.

Deep learning classification beats standard machine
learning classification by adopting a network topology with
the convolution layer as the core.

For the first time, literature [6] employs 11-layer and 13-
layer deep neural networks to indicate the existence of
mitosis in breast cancer histopathology pictures. In total, 14-
layer convolutional neural networks have been utilized in the
literature [7] to categorize breast pathology images as regular
tissue, benign lesions, in situ carcinomas, or invasive ma-
lignancy. Literature [8] compared BreaKHis dataset studies
utilizing AlexNet-based models. Machine learning catego-
rization enhanced performance by 4–6%. Literature [9] used
a magnification-independent deep network to acquire an
83% identification rate; Scheer vector and VGGNet’s clas-
sification model provide an 87% recognition rate. +e work
requires preserving enough sturdiness for pathological
photos at varied enhancements due to the significant dif-
ferences in infected pictures at various magnifications. Deep
network training needs many training examples, yet path-
ological breast cancer pictures are scarce. With the growing
availability and incorporation of many data types, such as
genomics, microarray, and histopathologic data, cancer

therapy is moving toward precisionmedicine. It takes a lot of
time and experience to use and analyze a variety of high-
dimensional data formats for clinical or translational re-
search jobs. Additionally, combining different data kinds
requires more computing power than interpreting each type
separately and calls for modeling algorithms that can absorb
enormous amounts of complex characteristics. Machine
learning algorithms are increasingly being used to automate
these processes to help diagnose and detect cancer. Excit-
ingly, DL models may be able to make use of this complexity
to present insightful information and find pertinent granular
characteristics from a variety of data formats.

To improve the classification model’s effectiveness,
maximize the few available samples. +e channel recali-
bration model [10] focuses on feature channels. It suppresses
superfluous features through learned channel weights and
improves classification model performance. A multichannel
CNN model was constructed and proposed as a solution to
the identified problem using the sensitive lymph node
pathologic imaging datasets for breast cancer. +e model
employs stacked multichannel convolutional units, Internet
of +ings-based CNN modules, skip cross-layer intercon-
nections, a combination of classical and depth-wise sepa-
rable convolution layers, and summation and concatenation
operations. According to the results, the model does a good
job of identifying micrometastases as well as lymph node
metastasis.

+is article is in the channel to enhance CNN feature
utilization. A multiscale channel squeeze-and-excitation
(msSE) model is developed according to the refinement
model. It uses different max-pooling layers to gather mul-
tiscale features; channel recalibration is undertaken on each
scale feature. +e fused channel weights achieve multiscale
channel recalibration for input characteristics. Multiscale
features may improve the network’s feature information,
and channel recalibration can raise the classification model’s
performance. +e network’s training set includes breast
cancer pathology images at four magnifications, guaran-
teeing the classification model is robust to multiple em-
bellishments and meets clinical expectations.

2. Related Work

2.1. Residual Structure. One illustration of a multilayer
neural network’s unstable behavior is the vanishing gradient
problem (VGP). Networks are unable to return gradient
information to the model’s input layers. Gradients for
deeper layers in a multilayer network are calculated as the
sum of many gradients of activation functions. +ese gra-
dients will quickly disappear when they are tiny or zero. On
the other hand, if they are more than one, it may explode. As
a result, updating and computing become quite difficult. +e
partial derivatives for the variables of the NN, which are the
gradient’s constituent elements, grow exponentially tiny in
the VGP, practically negligibly changing the variables with
the gradient.

+e vanishing gradient problem of deep convolution
neural networks makes it difficult to train deeper network
models. +e residual structure proposed literature [11]
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solves this problem and enables deeper convolutional neural
networks to be trained efficiently.+e structure of regression
is shown in Figure 1.

+e calculation process of the residual structure can be
expressed as

y � F(x) + x, (1)

where x is the input feature of the convolutional layer, y is
the output of the residual structure feature, and F(x) is the
result after the convolutional layer mapping.

Suppose the residual structure is expected to fit the
mapping as H(x). Due to the existence of the additional
equivalent mapping, the mapping to be fitted by the
convolutional layer in the residual structure becomes
the mapping with residual (x) � H(x) − x. +is is easier to
learn than the original expected fitting mapping. +e
residual structure does not introduce additional param-
eters and can be trained through backpropagation. +e
residual network with the residual structure as the main
body increases the number of network layers at the
same time, which can avoid the gradient vanishing
problem.

2.2. Channel Recalibration Model. +e attention model
[12, 13] was first applied to natural language processing, by
introducing attention weights to make the network model
“attention” to useful In recent years, attention models have
been applied to the field of computer vision [14, 15], by
suppressing the uninteresting regions in the feature map, the
network’s attention is focused on the region of interest.
Different from focusing on the feature map +e channel
refinement model is a model of attention acting on the
channel domain of the feature map. It is proposed in SENet
[10] designed by the ILSVRC17 competition classification
task champion. +e channel recalibration model weights the
input features by channel, so that the network’s attention is
focused on useful features, and the channel weights can be
learned through training. +e channel recalibration model
can be combined with VGGNet [16], ResNet [11], Goo-
gLeNet [17], and other networks, and the residual structure
and join+e SE residual structure of channel recalibration is
shown in Figure 2.

+e channel recalibration model squeezes the input
feature U in channel order according to:

zc � Fsq uc( 􏼁 �
1

H × W
􏽘

H

i�1
􏽘

W

j�1
uc(i, j), (2)

where zc is the result of squeezing the feature of the first
channel in the input feature; Fsq(∗ ) is the squeeze function;
uc is the feature of the first channel c in the input feature, and
H andW are the height and width, respectively; uc(i, j) is the
value of the feature at uc the spatial position (i, j). +is
process can be regarded as a channel-by-channel global
pooling operation on the input features.

After the extrusion of each channel feature in the input
feature is completed, the weight of each channel is obtained
by exciting the extrusion result by the following formula:

s � Fex(z, W) � σ W2δ W1z( 􏼁( 􏼁, (3)

where s is the weight of the feature channel; Fex(∗ , ∗ ) is the
excitation function; z is the result of extruding the feature;
σ(∗ ) is the sigmoid function; δ(∗ ) is the ReLU function
[18]; W1 andW2 are the weights of the two fully connected
layers FC, respectively.

+e first fully connected layer in the excitation process
converts the number of feature channels depending on c
reduced to c/r, where the compression ratio, and the output
is only retaining values greater than zero after the ReLU
function. +e second fully connected layer restores the
number of feature channels to c, so as to be consistent with
the number of channels of the input feature.+e final weight
is obtained through the sigmoid function and the limit is
0∼1.0:

€xc � Fscale uc, sc( 􏼁 � scuc. (4)

In the above formula: €xc is the output characteristic of
the channel after the recalibration of the channel feature; is
the weight of the cth channel in the input feature;
Fscale(∗ , ∗ ) is a scaling function, which is used to multiply
the features of a specific channel with the corresponding
channel weight. Equation (4) realizes the recalibration of the
feature channel by multiplying the feature of a specific
channel with the corresponding channel weight, and the
whole process suppresses the features that are useless to the
classification result, thereby improving the classification
accuracy.

3. Proposed Algorithm Description

On the basis of the channel recalibration model, the input of
the channel recalibration model is changed from single-scale
features to multiscale features, and the feature channel
weights learned at each scale are fused to obtain the final
feature channel weights. Add multiscale +e msSE residual
structure of the channel recalibration model is shown in
Figure 3. Convolutional neural networks using multiscale
features are often used in tasks such as target detection and
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Figure 1: Residual structure.
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recognition [15, 19–21] and image semantic segmentation
[22–24]. Using feature information at multiple scales can
make the final result more accurate. In Figure 3, the mul-
tiscale features are combined with spatial pooling gold.

Pyramid [19] similar structure is obtained: the input
features are sent to the max pooling layer with a pooling
kernel size of 2 × 2 and a pooling stride of 2 to obtain
features of another scale. To obtain more scales, features
can be achieved by changing the number of max pooling
layers and related parameters. +e reason for using max
pooling layers to obtain multiscale features is that the max
pooling operation can retain the most significant feature
information and corresponding spatial information in the
feature map; the maximum. +e pooling layer has no
model parameters that need to be learned and can achieve
multiscale features while ensuring that as little compu-
tation as possible is introduced into the network. In
Figure 3, fusion represents the fusion process of channel
weights. Although channel attention appears to be eco-
nomical in terms of variables and FLOPs overhead, one key
problem is the scaling process, which involves broad-
casting the weighted channel vector and applying by
multiplying it element-wise to the input tensor. +is in-
termediary broadcasted tensor occupies the same di-
mension as the input, resulting in a significant rise in
memory complexity. As a result, the training process
becomes slower and more memory intensive. +e ap-
proach is highly expensive and augments the original
model with a sizable number of parameters and FLOPS.
Although in the big scheme of things, this overhead could
be relatively little, there have been numerous novel ways
that have outperformed SENets in terms of giving network
attention at a very low cost.+e method of maximum value
and splicing fuses the feature channel weights obtained at
different scales.

3.1. Additive Fusion. In Figure 3, the channel weight ob-
tained by the additive fusion method 2 is the element-by-
element addition of the channel weights under the two
feature scales, and then the obtained weights are multiplied
by the input features in the order of the corresponding
channels to achieve multiscale channel recalibration. A
process is as follows:

Ù2way add � Sc0 + Sc1( 􏼁 Us0. (5)

In the formula Ù2way add for 2 the results of multiscale
channel recalibration using additive fusion at each feature
scale,Us0 is the input feature, and Sc0 is the channel weight of
the input feature, Sc1 is the channel weight at another scale.

3.2. Maximum Fusion. Unlike additive fusion, maximum
fusion selects specific channels 2 the maximum value of the
weight under each scale is used as the weight of the channel.
At this time, the multiscale channel recalibration process is
as follows:

Ù2way max � Sc0, Sc1( 􏼁 Us0. (6)

In the formula Ù_(2way_max) for 2, the results of
multiscale channel recalibration using maximum fusion at
each feature scale; max(∗ , ∗ ) is the maximum function.

Select 2, respectively, in channel order the maximum
value of the channel weight under each scale is used as the
weight of the channel.

3.3. Splicing Fusion. When there are two scale features, the
splicing fusion method first splices the channel weights at
each scale according to a specific coordinate axis, and then
maps the result to the final channel weight through the
subsequent convolution layer. +e channel weight size is
N × C × 1 × 1, where the batch image size is and the number
of channels of the input feature is C +e specific imple-
mentation of splicing fusion can be divided into the fol-
lowing two types according to the selection of the splicing
coordinate axis.

(a) Take the second coordinate axis (axis1) as the
splicing coordinate axis, denoted as cat1. At this
time, the multiscale channel recalibration process
can be expressed as

Ù2way cat1 � Fconv1 Sc cat1( 􏼁 Us0, (7)

where Ù2way cat1 is the result of multiscale channel
recalibration achieved by splicing and fusion cat1 at
2 scales, Sc cat1 is the result of splicing the channel
weights obtained according to the second coordinate
axis, size is N × 2C × 1 × 1, F_conv1 (∗ ) for the
convolutional layer conv1 the mapping function, the
size of the convolution kernel is 1 × 1,the number of
input channels is 2C, and the number of output
channels is C.

(b) Take the third coordinate axis (axis2) as the splicing
coordinate axis, denoted as cat2. At this time, the
multiscale channel recalibration process can be
expressed as

Ù2way cat2 � Fconv2 Sc cat2( 􏼁 Us0, (8)

where Ù2way cat2 is the result of multiscale channel recali-
bration realized by splicing and fusion cat2 at two scales,
Sc cat2 is the result of splicing the channel weights obtained
in the two scales according to the third coordinate axis, size
is N × 2C × 2 × 1, Fconv2(∗ ) is the mapping function of the
convolution layer, where the size of the convolution kernel is
2 × 1, +e number of input and output channels are both C.

4. Experimental Results and Analysis

4.1. Dataset. Experimental dataset: BreaKHis dataset, in-
cludes 7909 breast cancer pathology pictures from 82 in-
dividuals (24 benign and 58 malignant). +e 700460
pathological photos in the dataset have 4 magnifications
(40x, 100x, 200x, 400x). Table 1 shows the dataset’s picture
distribution. Figure 4 shows benign/malignant breast tu-
mors from BreaKHis.
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4.2. Experimental Environment and Settings. +e accuracy
Acc (accuracy), the precision rate Pr (precision), the recall rate
R (recall), and the area under the ROC curve AUC are used as
the measurement indicators of the classification results.

+e formulas for calculating the rate and recall rate are as
follows:

Acc �
TP + TN

TP + FP + TN + FN′
,

Pr �
TP

TP + FP′
,

R �
TP

TP + FN
.

(9)

In the above equation, TP represents the true positive
example, FP represents the false positive example, and TN
represents the true negative example, and FN means false
negative example.

+e dataset was not augmented in the experiment. +e
ratio of the training set to the test set was divided into 85% and
15%, and the images included were randomly selected at the
beginning of the training. All comparative experiments used
official source code or public code, all the network model uses
the same image preprocessing method and training settings,
and the experimental data of each network is obtained by
averaging the results obtained by 5 times of training.

+e training images are preprocessed as follows: (1) +e
image size is adjusted to a fixed 224× 224; (2) +e image is
randomly rotated by 90°; (3) +e brightness, contrast, sat-
uration, and chroma of the image are randomly fine-tuned,
which makes the training. +e network can be more robust
to the staining differences between pathological images; (4)
normalize the images. Different from the training set, the

preprocessing method of the test set images only includes
adjusting the image size to 224× 224 with normalization
chemical processing.

+e initial parameters of all network models in the
experiment are obtained by random initialization, and the
loss function is binary cross entropy, using momentum.
+e weights are updated using the network’s stochastic
gradient (SGD) algorithm. +e momentum value is set to
0.9 and the starting training rate is set at 0.0001. +e
network’s retraining batch image size is 64, whereas the
test batch picture size is 128. Res-Net18-based network
the number of training iterations is 10,600, and the
number of network training iterations based on Res-
Net34 is 21,200. If the test accuracy does not improve after
every 1060 iterations, the learning rate is reduced to 0.1
times before.

Since the multiscale features are obtained by down-
sampling the input features and the convolutional layer in
the network will reduce the feature size, in order to keep the
feature size in a reasonable range, the experiment only se-
lects networks with feature scales of 2 and 3 for experiments.
Select the network with 2 feature scales as msSE-ResNet-
2way, and the network with 3 feature scales as msSE-ResNet-
3way. In splicing fusion, the network that applies the sig-
moid function to the output is added after its name adds
sigma to differentiate.

4.3. Experiments Based on ResNet18. Comparison and
analysis of msSE-ResNet18 and other networks, the ex-
perimental results of each network on the test set are shown
in Table 2, and the ROC curve is shown in Figure 5. In the
figure, FPR is the ratio of false positives, and TPR is true
positives the classification results of breast cancer patho-
logical images of different magnifications in the test set by
each network in the experiment are shown in Table 3. Table 4
shows the comparison of magnification-related classification
results for all networks.

It can be seen from Table 2 that the test accuracy of
ResNet18 is 84.53%, which is higher than the 83.56% of SE-
ResNet18. Literature [16] proposed a spatial channel reca-
libration model (spatial and channel Squeeze-and-Excita-
tion, scSE), which simultaneously performs spatial and
channel recalibration, and use the maximum value of the
weights obtained by the two as the feature channel weight.

(a) (b)

Figure 4: Benign and malignant breast tumor images. (a) Benign breast tumor image. (b) Malignant breast tumor image.

Table 1: Distribution of pictures under different magnifications
and categories.

Gain
Number of tumor images

Benign Malignant Total
40 Times 750 1644 2394
100 Times 773 1725 2498
200 Times 748 1668 2416
400 Times 706 1479 2184
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+e accuracy of scSE-ResNet18 is 83.90%. +e accuracy of
msSE-ResNet18-2way reaches 86.81%, and the test of msSE-
ResNet18-3way the accuracy is 86%, which is significantly
improved compared with other networks. +e comparison
of magnification-related classification results for all net-
works is shown in Figure 4.

+e ROC curve in Figure 5 further reflects the classification
performance of each network. +e AUC of msSE-ResNet18
with two scales is above 0.9, achieving better performance than
other networks.

+e experimental findings are shown in Table 3, and they
show that msSE-ResNet18-2way retains strong resilience to
diseased pictures at various magnifications; at magnifica-
tions greater than 40 times, msSE-Res-Net18-3way has the
same performance as msSE-ResNet18-2way comparable
classification performance. Since the task of the experiment
is to classify benign/malignant breast pathological images,
the classification accuracy is more important. +e msSE-
ResNet with multiscale channel recalibration is obtained
under each magnification. +e accuracy rate is higher than
that of other comparison networks, which means that msSE-
ResNet18 can more accurately find the malignant samples in

the test set, achieve a high recall rate under the premise of
ensuring high accuracy, and can find as many positive
samples as possible.

+e above experimental results show that the multiscale
channel recalibration model can recalibrate the input features
more accurately by combining the feature information at
multiple scales and can improve the performance of the
classification model while maintaining robustness to patho-
logical images under different magnifications awesomeness.

Comparison and analysis ofmsSEResNet18 using different
number of feature scales and fusion methods. +e experi-
mental results of msSE-ResNet18 using different number of
feature scales and fusion methods are shown in Table 3.

Shown in the table, Atr is the training accuracy and Ate is
the test accuracy.

It can be seen from Table 5 that the highest test accuracy
under the two scales is relatively close, the channel weights
under the two scales are suitable for fusion by the linear
addition method; the channel weights under the three scales
are suitable for selecting the splicing fusion method. Splicing
the selection of the splicing coordinate axis in the fusion will
affect the accuracy by about 1%. At this time, splicing with
the second coordinate axis (cat1) can achieve higher accu-
racy. In addition, applying the sigmoid function to the
output channel weight of the splicing fusion will significantly
degrade the classification performance, because the sigmoid
function greatly limits the range of values for the channel
weights learned by the convolutional layers.

4.4. Experiments Based on ResNet34

4.4.1. Comparison and Analysis of msSE-ResNet34 and Other
Networks. +e experimental results of each network on the
test set in the experiment are shown in Table 5, and the ROC
curve is shown in Figure 6. As shown in Table 6, all the
networks in the experiment are different from the test set
magnification of pathological images the multiscale channel
recalibration model can make the relationship between
channels more accurately captured. Experiments on path-
ological images of different magnifications prove that msSE-
esNet34 can be effectively applied to pathological images of
different magnifications classification tasks. In Section 4.4.2,

81 82 83 84 85 86 87 88 89

ResNet34

SE-RseNet34

scSE-ResNet34

msSE-ResNet34-2way

msSE-ResNet34-3way

Figure 5: Comparison of accuracy between msSE-ResNet34 and other networks.

Table 3: Comparison of magnification-related categorization re-
sults for all networks.

Model Number
ResNet18 1
SE-ResNet18 2
scSE-ResNet18 3
msSE-ResNet18-2way 4
msSE-ResNet18-3way 5

Table 2: Comparison of msSE-ResNet18 and other networks’
categorization outcomes.

Model Acc/% AUC

ResNet18 84.53 0.8878
SE-ResNet18 83.56 0.8791
scSE-ResNet18 83.90 0.8677
msSE-ResNet18-2way 86.81 0.9266
msSE-ResNet18-3way 86.00 0.9107

Computational Intelligence and Neuroscience 7



comparison and analysis of msSEResNet34 with different
number of feature scales and fusion methods the experi-
mental results of msSE-ResNet34 with different number of
feature scales and fusion methods are shown in Table 7.

From Table 7, it can be observed that the highest test
accuracy of msSE-ResNet under two different scales is only
0.81% different, with two classification results.

As can be seen from Table 5, with the deepening of the
number of ResNet layers, the test accuracy of most networks
in the experiment has been greatly improved. SEResNet34
achieved a test accuracy of 87.36%, which is higher than
86.47% of Res-Net34. Applied to the semantic segmentation
task of brain MRI images, the experimental results show that
the spatial recalibration model does not perform well on the

breast cancer pathological image classification task. +e test
accuracy of msSE-ResNet34-3way rises to the highest
88.87%, 2 the test accuracy of the network at 1 scale is
improved to 88.06%.

Table 4: Comparison of magnification-related classification results for all networks.

Model
40 Times 100 Times 200 Times 400 Times

Acc Pr R Acc Pr R Acc Pr R Acc Pr R

1 0.822 0.845 0.907 0.836 0.836 0.921 0.864 0.868 0.947 0.875 0.864 0.967
2 0.826 0.820 0.956 0.862 0.861 0.953 0.867 0.862 0.962 0.879 0.865 0.973
3 0.805 0.808 0.941 0.836 0.845 0.935 0.870 0.866 0.962 0.824 0.837 0.918
4 0.862 0.890 0.912 0.862 0.884 0.921 0.880 0.887 0.947 0.889 0.889 0.957
5 0.829 0.856 0.902 0.868 0.878 0.940 0.874 0.905 0.913 0.882 0.884 0.951

Table 5: Comparison of categorization results of fusion methods under different number of feature scales.

Number of scales Fusion method Atr% Ate%

2 Add 85.42 85.07
2 Max 83.55 82.13
2 Cat1(sign) 84.10 82.96
2 Cat1 85.38 84.64
2 Cat2(sign) 83.93 82.76
2 Cat2 84.61 82.88
3 Add 85.00 83.71
3 Max 83.45 82.22
3 Cat1(sign) 83.76 82.09
3 Cat1 85.61 84.28
3 Cat2(sign) 83.57 82.39
3 Cat2 84.50 83.25

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

ResNet34

SE-RseNet34

scSE-ResNet34

msSE-ResNet34-2way

msSE-ResNet34-3way

Figure 6: Comparison of AUC between msSE-ResNet34 and other networks.

Table 6: Comparison of categorization results between msSE-
ResNet34 and other networks.

Model Acc% AUC

ResNet34 86.47 0.9135
SE-RseNet34 87.36 0.9097
scSE-ResNet34 83.96 0.8722
msSE-ResNet34-2way 88.06 0.9308
msSE-ResNet34-3way 88.87 0.9541
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Table 6 shows the classification results of all networks
related to magnification. It can be seen that the accuracy
and accuracy of msSE-ResNet34-3way have been greatly
improved at all magnifications, especially at 40 times and
can reach a maximum of 90.1% at 400 times. +e clas-
sification accuracy of msSE-ResNet34-2way has been
steadily improved at various magnifications. In the ex-
periments under all magnifications, msSEResNet34 is
superior to other comparison networks in both precision
and accuracy.

+e aforementioned experiments demonstrate that
msSEResNet34 can best utilize the rich feature details in
the deeper network and that the multiscale channel re-
finement model can enable a more accurate correlation
between channels with the intensifying of the network

layers. Experiments on pathological images with multiple
magnifications demonstrate that msSE-ResNet34 can be
effectively applied to the classification task of pathological
images with different magnifications.

4.4.2. Comparison and Analysis of msSEResNet34.
msSEResNet34 with the different number of feature scales
and fusion methods the experimental results of msSE-
ResNet34 with different number of feature scales and fusion
methods are shown in Table 7.

It can be seen from Table 8 that the highest test accuracy
of msSE-ResNet under two different scales is only 0.81%
different, and the performance of additive fusion under two
scales is better than that under three scales.

Table 7: Comparison of magnification-related classification results for all networks.

Model
40 Times 100 Times 200 Times 400 Times

Acc Pr R Acc Pr R Acc Pr R Acc Pr R

1 0.822 0.845 0.907 0.836 0.836 0.921 0.864 0.868 0.947 0.875 0.864 0.967
2 0.826 0.820 0.956 0.862 0.861 0.953 0.867 0.862 0.962 0.879 0.865 0.973
3 0.805 0.808 0.941 0.836 0.845 0.935 0.870 0.866 0.962 0.824 0.837 0.918
4 0.862 0.890 0.912 0.862 0.884 0.921 0.880 0.887 0.947 0.889 0.889 0.957
5 0.829 0.856 0.902 0.868 0.878 0.940 0.874 0.905 0.913 0.882 0.884 0.951

Table 8: Comparison of classification results of each fusion method under different number of feature scales.

Number of scales Fusion method Atr% Ate%

2 Add 86.28 86.30
2 Max 85.65 85.97
2 Cat1(sign) 84.88 85.01
2 Cat1 86.86 86.28
2 Cat2(sign) 85.29 85.26
2 Cat2 87.40 85.90
3 Add 85.89 85.43
3 Max 86.44 86.87
3 Cat1(sign) 85.89 85.77
3 Cat1 86.59 86.36
3 Cat2(sign) 85.69 86.54
3 Cat2 87.29 87.09
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84.5

85

85.5

86

86.5

87
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Figure 7: Comparison of classification results of each fusion method under different number of feature scales.
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+e results obtained in Figure 7, when the network using
maximum fusion and splicing fusion at 3 scales is better than
2 scales in classification accuracy. Similar to the conclusion
obtained in the experiment based on ResNet18, when there
are two scales of features, the addition and fusion of the
performance of the method is better than other nonlinear
fusion methods, and the splicing fusion method or the
maximum fusion method should be preferentially selected
under the three scales. +e results differ by only about 0.5%,
and high classification accuracy can be achieved.

5. Conclusion

+e classification job of breast cancer pathology pictures is
investigated in this research, and a multiscale channel
recalibration model called msSE is proposed, as well as a
convolutional neural network called msSE-Res-Net using
Res-Net as the network architecture. +e fusion of feature
weights learned at different scales may significantly increase
the dependability of the feature channel weight learning
process. Multiscale features can enrich the features in the
network information and improve feature usage. +e
BreaKHis dataset experiments reveal that msSE-ResNet with
multiscale channel recalibration outperforms SE-ResNet
with a single feature scale, as well as the network framework
ResNet and themodel with spatial and channel recalibration.
scSE-ResNet results. +e experimental findings on breast
cancer pathology pictures at various magnifications dem-
onstrate that the developed msSE-ResNet can be utilized for
different magnifications since both the training set and the
test set of the network include breast cancer pathology
images at different magnifications. Breast pathological
pictures with multiples have strong resilience and may be
used to classify breast cancer pathological images more
effectively. Furthermore, further study is needed into the
selection of the compression ratio in the channel recali-
brationmodel, as well as the link betweenmultiscale channel
recalibration and classification accuracy for convolutional
layers at various places in the convolutional neural network.

Various computer vision and machine learning algo-
rithms have been employed for assessing pathological pic-
tures at a microscopic precision as a result of the
development of digital imaging methods over the past ten
years. +ese methods could assist in automating some of the
problematic workflow-related duties in the diagnostic sys-
tem. For application in clinical settings, a reliable and ef-
fective image processing method is required. Regrettably,
conventional methods fall short of expectations. As a result,
we are still a long way from using automated breast cancer
screening based on histological pictures in clinical settings.
+ese methods, despite their great success in medical im-
aging, require a lot of label data, which is still lacking in this
field of applications for a variety of reasons. Most impor-
tantly, annotating a dataset is quite expensive and needs a
great deal of knowledge. Future research can focus on issues
such as cell overlapping and uneven color distribution in
pathological pictures of breast cancer created using various
staining techniques.

Data Availability

+e data can be obtained from the corresponding author
upon request.
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