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Aiming at the problem of community detection in complex dynamic networks, a dynamic community detection method based on
graph convolution neural network is proposed. An encoding-decoding mechanism is designed to reconstruct the feature in-
formation of each node in the graph. A stack of multiple graph convolutional layers is considered as an encoder that encodes the
node feature information into the potential vector space, while the decoder employs a simple two-layer perceptron to reconstruct
the initial node features from the encoded vector information. ­e encoding-decoding mechanism achieves a re-evaluation of the
initial node features. Subsequently, an additional local feature reconstruction loss is added after the decoder to aid the goal of
graph classi�cation. Further, stochastic gradient descent is applied to solve the problem in the loss function. Finally, the proposed
model is experimentally validated based on the Karate Club and Football datasets. ­e experimental results show that the
proposed model improves the NMI metric by an average of 7.65% and e�ectively mitigates the node oversmoothing problem.­e
proposed model is proved to have good detection accuracy.

1. Introduction

With the development of information technology and the
increasing popularity of network media, the network
community carries the self-information of massive data
objects and the relationship between them [1]. How to divide
the subnetworks of complex networks in biology, com-
munication, �nance, and other �elds according to the
network structure and node characteristics, to realize ac-
curate community detection and further complete the ef-
fective mathematical modeling, evaluation, and analysis of
dynamic communities, has important academic research
signi�cance and socio-economic value.

Community detection is to identify the existing com-
munity structure from the complex network. As a collection
of speci�c objects, the community has a signi�cant node
aggregation structure and a node distribution form with
statistical characteristics [2], which provides the possibility
for accurate dynamic community detection. At present,

community detection algorithms can be roughly divided
into graph segmentation-based method [3], random walk-
based method, modularity-based method [4, 5], label
propagation-based method [6], node centrality-based
method [7], and neural network-based method. ­e existing
researches on community detection are often based on the
impact of static network structure on community division.
For example, Bouguessa et al. used the covariance of links
between nodes and interclass inertia to perform the initial
division of the network and determined the maximum
modular community structure by merging the initial groups
in the iterative process, but this method was limited by the
impact of di�erent resolution parameters on the correctness
of community division [8]. Cai et al. carried out multi-
objective optimization of network model based on the
evolutionary algorithm, but multiple iterations occupied a
lot of computing resources [9]. Ni et al. proposed a detection
structure for local overlapping communities, which im-
proved the e�ciency of local community detection [10].
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However, there was a problem of large deviation of repre-
sentative nodes, which often led to only the local optimal
solution. ,e above community detection methods based on
static network structure have a certain dependence on priori
data, and due to the lack of real-time computing ability, it is
limited by the influence of parameters on the detection
results.

With the continuous expansion of the dataset scale, how
to continuously reconstruct the node features according to
the increase of data dimension and realize the dynamic
detection of complex network communities is still a problem
to be solved. For example, Moscato et al. proposed an online
social network community detection algorithm based on
game theory, but the mathematical statistical model of
dynamic game based on individual behavior put forward
high requirements for memory space, and there was the
possibility of dimension disaster when solving [11]. In ad-
dition, with the development of graph neural network in
recent years, it has more advantages in extracting node
features and preserving graph structure, which has attracted
some researchers to use the graph neural network to solve
the problem of community detection. For example, Chen
et al. regarded community detection as an extended node
classification task, proposed a line graph neural network
(LGNN) model, and designed the adjacency matrix based on
polynomial function and nonbacktracking operators for
community detection [12]. However, the graph storage
method using an adjacency matrix needs to be traversed
when counting elements, which has high time complexity.
Luo et al. constructed a context path-based graph neural
network (CP-GNN) by using the high-order relationship
between nodes, which recursively embedded the high-order
relationship between nodes into the node with an attention
mechanism to distinguish the importance of different re-
lationships [13]. Based on graph convolutional neural net-
work (GCN) and label propagation technology, Wang et al.
constructed a balanced label set to reveal the underlying
community structure with topology and attribute infor-
mation [14]. However, as weak supervised learning algo-
rithms, the above two methods are relatively fragile to
abnormal data and are difficult to define relevant parame-
ters. ,e existing dynamic community detection methods
based on the graph neural network overemphasize the ability
to distinguish different graph structures and ignore the local
expression ability of nodes, resulting in the oversmoothing
problem [15, 16]. ,at is, the node feature representation in
the same connected component tends to converge to the
same value after multiple convolutions, making it difficult to
distinguish nodes.

With the growing importance of network dynamic data
detection under the development of information technology,
traditional detection methods for dynamic communities in
complex networks have limited the performance of dynamic
community detection due to the emergence of node over-
smoothing problems and the influence of a priori model
parameters. To address these problems, a method for
detecting dynamic communities in complex networks based
on deep self-coding networks is proposed. Compared with
the existing community detection methods based on the

graph, the innovations of the proposed method are as
follows:

(1) An algorithm framework of encoding-decoding
mechanism based on deep self-coding network is
proposed, which realizes the re-evaluation of the
features of the initial nodes, effectively solves the
problem of node oversmoothing, and improves the
accuracy of graph classification.

(2) From the perspective of community detection task,
the loss function related to community detection is
defined. It ensures the update of parameters in the
network model and improves the efficiency of
community detection algorithm.

,e following sections are arranged as follows: the
second section defines the problems studied; the third
section introduces the proposed dynamic community de-
tection method based on deep self-coding network; in
Section 4, experiments are designed to verify the perfor-
mance of the proposed community detection method; the
fifth section is the conclusion.

2. Problem Definition

Community detection refers to the discovery of densely
connected subnetworks in the graph structure. Liu et al.
defined the community as follows: (1) the nodes in the
community are densely connected; (2) the nodes in different
communities are sparsely connected [17]. ,e community
division under a basic network is shown in Figure 1.

In a dynamic network, each timestamp i corresponds to
the corresponding network structure Gi � (Vi, Ei), where Vi

and Ei represent the node set and edge set corresponding to
timestamp i, respectively. It is necessary to obtain the basic
community structure under each timestamp and sort it
according to the time series 1, . . . , t. In order to extract and
learn the network representation information comprehen-
sively, the snapshot iteration method will be used to reflect
the information of the dynamic network. Due to the large
amount of data of the snapshot information, the time
consumption of predicting the community based on the
global snapshot iteration method is too high. Although it is
reasonable and comprehensive, it is not efficient, so this
method is abandoned; in addition, community prediction
based on independent snapshot iteration has the same effect
as dynamic network community detection. Although it is
efficient, the dynamic time correlation is not strong, so it is
impossible to predict the community.,erefore, the second-

Figure 1: Community structures in networks.
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order snapshot iteration can ensure the rationality of dy-
namic information and reduce the time overhead to a certain
extent. ,e community structure contains many key points
with potential characteristics. Different matrices are used to
define different parts of the data, such as links and contents.
,is method will re-embed the shared matrix composed of
multiple information in the network at different times into
the shared feature matrix, so as to improve the effect of
community detection.

Definition 1 (dynamic community prediction). Given a
series of snapshot sequences of graphs G1, . . . , Gi, . . . , Gt

with n × n adjacency matrix P1, . . . , Pi, . . . , Pt and n × d

content matrix Q1, . . . , Qi, . . . , Qt, a shared matrix
W1, . . . , Wi, . . . , Wt is formed to predict the network
structure under future time t + Δt.

For the community prediction of dynamic network, the
network snapshot information needs to be iterated. When
predicting the community structure under the time t + Δt,
the sharing matrices W1, . . . , Wi, . . . , Wt+1, Wt of previous
snapshots need to be used to enhance the accuracy of
prediction results.

3. Dynamic Community Detection Based on
Deep Self-Coding Network

3.1. Node Feature Reconstruction Based on Encoding-
Decoding Mechanism. In the graph convolution neural
network, the node representation that captures the local
structure and feature information of the graph will be fed to
the global readout module to refine for graph-level repre-
sentation learning. However, the graph-level representation
ability and discrimination ability of traditional GCN are
limited by over-refining and globalization, ignoring the
preservation of local features, which will lead to the problem
of oversmoothing. In order to alleviate these problems, an
encoding-decoding mechanism is designed in the model to
reconstruct the feature information of each node in the
graph. ,e stack of multiple graph convolution layers is
regarded as an encoder that encodes the node feature in-
formation into the potential vector space, and the decoder
uses a simple two-layer perceptron to reconstruct the initial
node feature from the encoded vector information. ,e
encoding-decoding mechanism realizes the re-evaluation of
the features of the initial node. ,en, an additional local
feature reconstruction loss is added after the decoder to
assist the goal of graph classification and improve the ac-
curacy of graph classification.

According to the model diagram shown in Figure 2, the
encoder composed of K graph convolution layers aggregates
local adjacent information at different structural levels. After
the K-iteration of neighborhood aggregation, the output of
the encoder extracts the local structure information and
node feature information in the K-hop neighborhood. ,e
encoder encodes the node feature of each node into an
intermediate representation, and the decoder aims to map
the encoded node representation to the reconstructed fea-
ture vector 􏽢Z∈ R. From Figure 2, given the graph-level
representation k(K)G ∈ Rdo of the readout module of the

upper layer, the reconstructed features 􏽢Z can be calculated
according to the following formula:

􏽢Z � Dec 􏽘
t−1

i�1
k

(i)
v

⎛⎝ ⎞⎠. (1)

A two-layer perceptron is used as the decoder. It is worth
mentioning that the encoding-decoding mechanism is dif-
ferent from the graph self-encoder model [18–20]. ,e
decoder is to reconstruct the initial node features, rather
than a task-specific classifier to recover the adjacency in-
formation of the graph.

3.2. Community Detection Loss Function. Referring to the
LGNNmodel [21], this study defines the loss function for the
community detection task. In the community detection task,
the node label should follow the equivalent replacement
invariant property of the community [22]; that is, the di-
vided community is not affected by the specific meaning of a
specific label. From the output of Section 3.1, the predicted
probability 􏽢ai of the community to which each node belongs
is obtained through Softmax. Let A represent the set of labels
for all communities, and Ai represent the real probability of
the community to which each node belongs. ,erefore, the
loss function is defined as follows:

S � INF
π∈SA

− 􏽘
i∈R

π ai( 􏼁log 􏽢ai( 􏼁, (2)

where INF represents the infimum of the function, SA is the
permutation and combination set of all communities A, and
π is an permutation in SA. Assuming that F1: E⟶ A is the
function mapping from the initial feature matrix E of the
node to the real community A, F1: E⟶ 􏽢A is the function
mapping from the initial feature matrix E of the node to the
model predicted community 􏽢A, and ti represents the feature
vector of each node in the matrix, then the final loss function
formula can be obtained from the following formula:
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Figure 2: A three-layer model for graph classification.
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S � INF
π∈SA

− 􏽘
i∈R

F1 π xi( 􏼁( 􏼁log F2 π xi( 􏼁( 􏼁( 􏼁. (3)

,e ultimate goal of the loss function is to take the
minimum cross-entropy loss on all possible permutations,
so as to update the parameters in the network model.

3.3. Self-Coding Learning Process. Stochastic gradient de-
scent is used to optimize the loss function. Specifically, the
parameters c � M, M∗, u, u∗{ } of the algorithm framework
are updated in each iteration according to the following
contents:

Mij � Mij − β
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(4)

where β is the learning rate and (·)∗ indicates reconstruc-
tion. Due to the similarity of the inference processing be-
tween M, u and M∗, u∗, only the inference of the update rule
of parameter M, u is shown as follows:
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where ki � M · zi + u, and αi � (z/zkn
i )Sc(ti, g(ϕ(ti))) rep-

resents the characterization term of each node for the overall
error. In order to measure the difference between the input
data 􏽢T and 􏽢T

∗, the αi in the encoder is written as follows:
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z
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n
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(6)

where Relu(·) is the linear rectification function and Relu′(·)

is the derivative of Relu(·). In the decoder, vi � M∗ · k + u,
and the characterization item α∗i is as follows:

α∗i � 􏽘
r

i�1
M
∗
ij · αi

⎛⎝ ⎞⎠ · Tanh′ k
n
i( 􏼁, (7)

where Tanh(·) is activation function and Tanh′(·) is the
derivative of Tanh(·).

3.4. Algorithm Framework Description. Deep learning has
excellent data learning ability and representation ability.
,rough training multilayer neural network, the represen-
tation information learned in each layer is used as input data
and input into the next neural layer. ,erefore, a deep
automatic encoder with a multilayer automatic encoder is
constructed and trained in the first layer of automatic en-
coder by reconstructing the input matrix 􏽢Y. ,en, the best
potential representation K1 ∈ Rr1×N is obtained. Finally, the
next automatic encoding layer is trained by reconstructing
K1 from the above automatic encoder, and a new potential
representation K2 ∈ Rr2×N is obtained. ,en, the potential
feature matrix output by the hidden layer is reinput to the
decoding layer with the same layer number as the encoding
layer. ,e encoding and decoding layers have a symmetrical
structure.

By continuously optimizing the learning parameters,
remapping the compressed matrix to the size of the original
matrix, learning the community structure information
under multiple timestamps, and analyzing it, the evolution
trend of the future community can be obtained, so as to
predict the community network structure under timestamps
t + Δt. ,e workflow of this algorithm framework is shown
in Figure 3. By fusing the node topology and text infor-
mation under multiple timestamps, combined with time
analysis, the feature information containing community
evolution trend is formed, and the potential information is
extracted through representation learning.

Because the extracted potential representation contains
both the structure information of the current community
and the evolution information of the community, it can be
used to predict the evolution trend of the future community.
,e algorithm framework is shown in Algorithm 1. Steps 1
to 4 are to fuse the adjacency matrix P and content matrix Q

under multiple time snapshots, initialize the network, and
set the number of iterations ζ and the depth L of the self-
coding network. Steps 5 to 12 are to extract the dynamic
network information by using the deep self-coding network.
After the two parts of encoding and decoding in the self-
coding network, steps 13 and 14 are to reconstruct the
network information through the learned potential
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…
…

…
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…

…
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…
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DecoderEncoder
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Figure 3: Algorithm framework.
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representation. ,ese steps can predict the future com-
munity structure and carry out clustering operation, so as to
obtain the community structure of dynamic network.

4. Experiment and Analysis

,e hardware configuration of the experiment is as follows:
8 GB memory, i5-4200H dual-core processor, and Win-
dows 10 operating system.,e compiler used for algorithm
development is VisualStudio Code, the code is written in
Python language, its version is 3.6.2, and the Pytoch
framework is used. In order to measure the convergence
and detection accuracy of the proposed algorithm, the line
graph neural network (LGNN) algorithm proposed in
reference [12], the context path-based graph neural net-
work (CP-GNN) algorithm proposed in reference [13], and
the algorithm based on graph convolution network (GCN)
and label propagation technology proposed in reference
[14] are selected as a comparison to verify the performance
of the proposed model.,e description of each algorithm is
listed in Table 1.

4.1. Experimental Dataset. Two classical complex networks
such as Karate Club network (Karate) [23] and American
Football League network (Football) [24] are used for

experiments to verify and analyze the community division
performance of different algorithms. ,e following is a brief
description of each dataset:

(1) Karate Club. ,is network depicts the interpersonal
relationship between members of a karate club in an
American University. ,e members of the club are
divided into two factions due to differences on a
certain issue, as shown in Figure 4.

INPUT: Graph G1, ..., Gi, ..., Gt corresponding to continuous timestamp t1, ..., ti, ..., tt;
OUTPUT: Community structure At+Δt � A1, . . . , Ai, . . . , Ab􏼈 􏼉 under timestamp t + Δt;

(1) By extracting a variety of information from the dynamic graph G1, ..., Gi, ..., Gt, the information is fused into a time matrix
Y1, ..., Yi, ..., Yt;

(2) 􏽢Y←Y1, ..., Yi, ..., Yt;
(3) Set time matrix 􏽢Y � [P, Q], L is the number of neural network layers and ζ is the number of iterations;
(4) set O(0) � 􏽢Y;
(5) for i � 1 do ζ;
(6) for l � 1 do L;
(7) ,e stack self-coding network is constructed, and the encoder in the stack self-coding network is used to extract the feature of the

graph information;
(8) Obtain potential characterization information K(l)

(9) ,e parameters c � M, M∗, u, u∗{ }, 􏽢c←argmin
c

􏽐
N
i�1 ‖ti − t∗i ‖2 are optimized according to iterative update formula (4);

(10) set O(t) � K(l);
(11) End for
(12) End for
(13) Decode the extracted potential representation and output the predicted community structure K(L);
(14) Cluster K(L) and output the community detection results A1, ..., Ai, ..., Ab under the current network structure;

End

ALGORITHM 1: Community detection algorithm.

Table 1: Dynamic community detection algorithms.

Algorithm Description

Line graph neural network (LGNN) [12] ,e high-level graph algorithm is realized by sparse matrix multiplication and
message passing

Context path-based graph neural network (CP-
GNN) [13] ,e nodes of an input graph are classified by weak supervision

Graph convolution network (GCN) algorithm [14] Local parameters are shared and the receptive field is proportional to the number of
layers

,e proposed model ,e temporal information is effectively combined to transition oversmooth process
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Figure 4: Karate Club network.
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(2) Football. ,is dataset is the game relationship be-
tween football teams of different universities in the
United States in the 2000 season. ,e node repre-
sents the participating football teams, while the side
indicates that the two teams have played this season.

,e statistics of each dataset are listed in Table 2.

4.2. Experimental Evaluation Index andConvergenceAnalysis

4.2.1. Experimental Evaluation Index. ,e evaluation in-
dexes used in this experiment are accuracy, F1-score, NMI,
and modularity.

(1) Accuracy. It is a common evaluation index for node
classification. It evaluates the correctly predicted
sample ratio.

(2) F1-score. It is applicable to the evaluation index of
classification task. It takes into account the proportion
of samples predicted to be true that are actually true,
and the proportion of samples actually true that are
predicted true. ,e macro-F1 index is used in the
experiment. First, the F1-scores of precision and recall
of each data sample are calculated respectively, and
then all results are averaged to obtain the final result.

(3) NMI. It refers to normalized mutual information. It
measures the similarity between two clusters, and it
is an important evaluation index for community
detection. ,e higher the NMI score, the better the
detection effect. Supposing that Ztrue is the real
cluster and Zpred is the cluster prediction result, then
the formula is defined as follows:

NMI Zpred; Ztrue􏼐 􏼑 � 2
I Zpred; Ztrue􏼐 􏼑

H Zpred􏼐 􏼑 + H Ztrue( 􏼁
,

H Zpred􏼐 􏼑 � − 􏽘

􏽢z

p(􏽢z)log(p(􏽢z)),

I Zpred; Ztrue􏼐 􏼑 � 􏽘

􏽢z

􏽘
z

p(􏽢z, z)log
p(􏽢z, z)

p(􏽢z)p(z)
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

(4) Modularity. It is used to evaluate the quality of the
detected community. It is defined as follows:

Mo du �
1
2

􏽘
i≠ j

Pij −
pipj

2y
I bi, bj􏼐 􏼑􏼠 􏼡, (9)

where Pij is the element in the graph adjacency matrix, y is
the number of edges, pi � 􏽐jPij is the sum of degrees of the
i-th node, and bi is the community of the ith node. If bi � bj,
then I(bi, bj) � 1; otherwise, I(bi, bj) � 0. ,e higher the
modularity result, the more edges in the community and the
fewer edges between communities.

4.2.2. Convergence Analysis. ,e convergence of the pro-
posedmodelwill be analyzed on theKarateClub and Football

datasets. Since each iteration of the algorithmmainly updates
the relationship tightness between nodes, the convergence of
the algorithm is analyzed by comparing the difference of the
relationship matrix before and after updating with the
number of iterations. Based on the trusted nearest neighbor
graph, the indirect tightness of non-nearest neighbor nodes is
obtained through similarity propagation. In addition, con-
sidering the inheritance and update of information in the
iterative process of the algorithm, the similarity update rule
between two sections i and j is defined as follows:

X
t
s ij � λ 􏽥Xs i

􏽥Xs j􏼐 􏼑
T

+(1 − λ)X
t−1
s ij. (10)

,e first item is the nonzero element in the indirect
tightness 􏽥Xs i of the two nodes, that is, the highly trusted
nearest neighbor node of node i. In the above iterative
process, not only the connection information before the
update of the two nodes is retained, but also the indirect
tightness of the node pair is introduced by its common
nearest neighbor, and the parameter λ controls the pro-
portion of the two in the similarity update process. After
several iterations, the tightness between nodes tends to be
stable, and then, the square error ‖Xt+1

s − Xt
s‖F of the

similarity matrix before and after the iteration can be
recorded based on the updated node similarity matrix.
Figure 5 shows the change curves of the square error with the
number of iterations in the two datasets.

It can be seen from the figure that after about 13 iterative
updates, the tightness between nodes tends to be stable,
which verifies the convergence of the algorithm.

4.3. Experimental Results

4.3.1. Comparison and Analysis of Test Results. ,e com-
munity detection results are listed in Tables 3 and 4. On the
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Figure 5: Convergence analysis.

Table 2: Description of dataset.

Network Node Edge Community
Karate Club 34 78 2
Football 115 613 12
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experimental results of Karate Club dataset (Table 3), the
performance of the proposed model is significantly better
than all other methods in all evaluation indexes.

Because the LGNN algorithm [12] adopts the graph
storage method of adjacency matrix, it needs to traverse
when counting elements, which has high time complexity
and further affects the detection accuracy and performance.
,e CP-GNN algorithm [13] and GCN algorithm [14] due to
the relative vulnerability of weak supervised learning al-
gorithm to abnormal data and the oversmoothing problem
of the algorithm itself, the accuracy of clustering detection
results has been affected to a certain extent. It can be seen
from Table 3 that the proposed model is relatively optimal in
the experimental results of Karate Club dataset, especially in
the NMI index. Compared with the LGNN algorithm [12]
model, the NMI is increased by 9.98%. Compared with the
CP-GNN algorithm [13] model, the NMI is improved by
6.60%. Compared with the GCN algorithm [14] model, the
NMI is improved by 6.36%. In addition, the accuracy and
F1-score of the proposed model show that the proposed
method can detect the community more accurately. Com-
pared with the methods with oversmoothing problem (such
as the GCN algorithm [14]), the proposed model uses an
encoding-decoding mechanism to reconstruct the feature
information of each node in the graph, which can explain its
superior performance. It can be seen from the results of
Karate Club dataset that it is very important to consider the
reconstruction of node features in the process of algorithm
execution.

,e superiority of the proposed model can also be ob-
served in the experimental results of Football dataset (Ta-
ble 4). However, the NMI of LGNN algorithm [12] is similar
to that of the proposedmodel. One possible reason is that the
LGNN algorithm [12] uses a so-called “nonbacktracking”
operator, which can well preserve the spatial node infor-
mation across multiple steps. In contrast, the proposed
model may have slight data loss in the reconstruction of data
nodes by using the encoding-decoding mechanism, so it has
no significant advantage in the NMI index. Although the
other two algorithms (CP-GNN algorithm [13] and GCN
algorithm [14]) can better retain the long-term time features,

if more time map data are convoluted, then the embedded
features may become too smooth, so that the distance be-
tween all nodes becomes close. ,erefore, it cannot accu-
rately detect the community, resulting in a slight weakness in
the evaluation index. In the modularity index, the proposed
model performs best. Compared with the LGNN algorithm
[12] model, the modularity is improved by 26.42%. Com-
pared with the CP-GNN algorithm [13] model, the modu-
larity is improved by 19.29%. Compared with the GCN
algorithm [14] model, the modularity is improved by 15.19%.

4.3.2. Results and Analysis of Label Rate Impact. In order to
observe the influence of the training label rate on the ex-
perimental results, the experiment selects accuracy and NMI
indexes to evaluate all methods on the Football dataset. In
this experiment, the training label rates are 10%, 20%, 30%,
50%, and 70%, respectively. ,e experimental results are
shown in Figures 6 and 7.

As shown in Figure 6, in terms of accuracy index, with
the increase of training label rate, the model performance of
all methods is gradually improving. However, the accuracy
index of LGNN algorithm [12] is not ideal. ,e possible
reason is that the LGNNmodel affects the detection accuracy
of the model in the process of traversing elements through
the graph storage method of adjacency matrix. When the
training label rate is 70%, the accuracy index of the proposed
model is improved by 6.45% compared with the LGNN
algorithm [12]. Compared with the CP-GNN algorithm [13],
accuracy is improved by 5.32%. Compared with the GCN
algorithm [14], accuracy is improved by 3.13%. Experi-
mental results show that the proposed algorithm has higher
execution accuracy. Based on the graph convolution neural
network algorithm, the inherent oversmoothing problem of
the algorithm is overcome through the encoding-decoding
mechanism, so as to improve the detection efficiency and
accuracy.

Table 3: Community detection results for different algorithms on
the Karate Club dataset (%).

Algorithms Accuracy F1-score NMI Modularity
LGNN [12] 89.3 92.3 85.2 63.7
CP-GNN [13] 94.1 92.1 87.9 62.3
GCN [14] 95.4 94.8 88.1 64.9
,e proposed method 96.6 95.2 93.7 65.2
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Figure 6: Experimental results of accuracy index with different
training label rates.

Table 4: Community detection results for different algorithms on
the Football dataset (%).

Algorithms Accuracy F1-score NMI Modularity
LGNN [12] 60.1 60.9 49.7 31.8
CP-GNN [13] 58.9 61.2 43.6 33.7
GCN [14] 61.4 64.8 44.7 34.9
,e proposed method 64.2 67.0 50.3 40.2
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Figure 7 shows that when the training label rate increases
from 10% to 70%, the F1-score index of all algorithms
gradually increases. Because the typical graph convolution
neural network method belongs to the weak supervised
learning algorithm, it is relatively fragile to abnormal data
and difficult to define relevant parameters. ,erefore, with
the expansion of the scale of training label rate, the F1-score
index continues to slow down. Due to the setting of com-
munity detection loss function, the proposed model will
update the parameters in the network model during the
detection process, so it has better performance. When the
training label rate is 70%, the F1-score index of the proposed
model is 17.33% higher than that of LGNN algorithm [12].
Compared with the CP-GNN algorithm [13], F1-score is
increased by 16.56%. Compared with the GCN algorithm
[14], F1-score is improved by 7.32%.

5. Conclusion

Aiming at the problems that the traditional community de-
tection methods are greatly affected by priori parameters, a
complex network dynamic community detection method
basedondeepself-codingnetwork isproposed.,ebasic ideas
are as follows:① algorithm framework based on encoding-
decoding mechanism; ② local feature reconstruction based
ondecoding results;③ establishmentof communitydetection
loss function. Experimental results show that compared with
the original method, the proposed algorithm has detection
accuracy and realizes the effective detection of complex
network community structure. At present, the proposed
model canonly be tested ongraphs ofmoderate size, and it has
been proved that the proposedmodel is not enough for large-
scale graphs in terms of architecture and training algorithm.
,emain research direction in the next step is how to achieve
thecorrect compromisebetweenperformance, computational
complexity, memory consumption, training, and reasoning
time, and finally improve the performance.
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encoders without graph coarsening for fine mesh learning,” in
Proceedings of the 2020 IEEE International Conference on
Image Processing (ICIP), pp. 2681–2685, IEEE, Abu Dhabi,
United Arab Emirates, October 2020.

[19] Z. Wang, L. Wang, S. Liu, and G. Wei, “Encoding-Decoding-
Based control and filtering of networked systems: insights,
developments and opportunities,” IEEE/CAA Journal of
Automatica Sinica, vol. 5, no. 1, pp. 3–18, 2018.

[20] T. Li and L. Xie, “Distributed coordination of multi-agent
systems with quantized-observer based encoding-decoding,”
IEEE Transactions on Automatic Control, vol. 57, no. 12,
pp. 3023–3037, 2012.

[21] X. Xiong, K. Ozbay, L. Jin, and C. Feng, “Dynamic origin-
destination matrix prediction with line graph neural networks
and kalman filter,” Transportation Research Record: Journal of
the Transportation Research Board, vol. 2674, no. 8, pp. 491–
503, 2020.

[22] K. Guo, X. Huang, L. Wu, and Y. Chen, “Local community
detection algorithm based on local modularity density,”
Applied Intelligence, vol. 52, no. 2, pp. 1238–1253, 2022.

[23] W. W. Zachary, “An information flow model for conflict and
fission in small groups,” Journal of Anthropological Research,
vol. 33, no. 4, pp. 452–473, 1977.

[24] M. E. J. Newman, “Modularity and community structure in
networks,” Proceedings of the National Academy of Sciences,
vol. 103, no. 23, pp. 8577–8582, 2006.

Computational Intelligence and Neuroscience 9


