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It is vital to develop an appropriate prediction model and link carefully to measurable events such as clinical parameters and
patient outcomes to analyze the severity of the disease. Timely identifying retinal diseases is becoming more vital to prevent
blindness among young and adults. Investigation of blood vessels delivers preliminary information on the existence and treatment
of glaucoma, retinopathy, and so on. During the analysis of diabetic retinopathy, one of the essential steps is to extract the retinal
blood vessel accurately. �is study presents an improved Gabor �lter through various enhancement approaches. �e degraded
images with the enhancement of certain features can simplify image interpretation both for a human observer and for machine
recognition. �us, in this work, few enhancement approaches such as Gamma corrected adaptively with distributed weight
(GCADW), joint equalization of histogram (JEH), homomorphic �lter, unsharp masking �lter, adaptive unsharp masking �lter,
and particle swarm optimization (PSO) based unsharp masking �lter are taken into consideration. In this paper, an e�ort has been
made to improve the performance of the Gabor �lter by combining it with di�erent enhancement methods and to enhance the
detection of blood vessels. �e performance of all the suggested approaches is assessed on publicly available databases such as
DRIVE and CHASE_DB1. �e results of all the integrated enhanced techniques are analyzed, discussed, and compared. �e best
result is delivered by PSO unsharp masking �lter combined with the Gabor �lter with an accuracy of 0.9593 for the DRIVE
database and 0.9685 for the CHASE_DB1 database. �e results illustrate the robustness of the recommended model in automatic
blood vessel segmentation that makes it possible to be a clinical support decision tool in diabetic retinopathy diagnosis.

1. Introduction

In the healthcare industry, biomedical images are the pri-
mary data source and, simultaneously, utmost hard for
analysis. Arti�cial intelligence (AI) is a technique to auto-
matically analyze and prevent the elevated risks of devel-
oping chronic conditions and help patients avoid long-term
health problems. As these automated structures become
widespread in the healthcare industry, they may bring about
progressive changes for radiologists, clinicians, ophthal-
mologists, and even patients using imaging technology to

monitor the treatments. �us, it is vital to develop an ap-
propriate prediction model and link carefully for measurable
events such as clinical parameters and patient outcomes to
analyze the severity of the disease. �is permits clinicians to
obtain warnings about potential measures before they occur,
making more choices about how to progress with a decision
to prevent the disease’s progression.

�e retinal blood vessel is the only part that may catch a
straight noninvasively in vivo. Blood vessel plays a signi�-
cant role in automatic identi�cation as it contains the issue
of screening systems. Accurate segmentation and vessel
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length analysis, orientation, and thickness canmake clear the
assessment of retinopathy of prematurity, identification of
reduction arteriolar, and evaluation of vessel width for the
recognition of ailments such as diabetes, arteriosclerosis,
hypertension, and so on [1–3]. We can read about many
ideas to improve the blood vessel segmentation by com-
puting the contrast of retinal blood vessels and background.
Computerized evaluation of vasculatures has been exten-
sively recognized as the initial stage in the progress of a
computer-aided investigative scheme for ocular ailments.
Several suggested rules have been recommended for vessel
segmentation [4]. Few commonly suggested algorithms for
vessel extraction are discussed. Few authors have proposed a
vessel segmentation process using a matched filter. Images at
different scales are convolved with the filter, and the highest
output is noted at each pixel [5–7]. With an assumption of
elongated vessels, Staal et al. presented an idea of ridge-based
vessel segmentation in which image ridges are transformed
to control line elements [8]. It has recommended an adaptive
local multi-threshold probing algorithm. For multithreshold
probing, they have used different thresholds in series for
computation [8]. In the literature, it has introduced auto-
matic vessel tree segmentation by combining shifted filter
responses (COSFIRE) [9, 10]. /e literature suggests using
BCOSFIRE and generalized matrix learning vector quanti-
zation (GMLVG) to detect the blood vessel [11]. Mapayi
et al. have discussed and compared vessel segmentation
based on global thresholding [12]. Many filters are intro-
duced by various researchers for retinal blood vessel seg-
mentation, such as median, Gaussian, matched, Gabor,
Cake, steerable, Frangi, and many more [5, 13–19].

Afterwards, many extensions of the existing techniques
in several directions are recommended for blood vessel
segmentation by various researchers [20–22]. Few of the
various extended filters are discussed. /e original median
filter is extended as an improved median filter (IMF), hybrid
median filter (HMF), and weighted median filter (WMF) for
vessel segmentation [23]. Several expansions of matched
filter (MF) are utilized; for example, MF is integrated with
pulse coupled neural networks, and the Otsu algorithm is
applied for segmentation [24]. It has been suggested in the
literature to improve the matched filter through the ant
colony algorithm and through Clifford matched filter
[25, 26]. A zero mean Gaussian matched filter is introduced
based on a first-order derivative of the Gaussian filter [27].
An upgraded version of the matched filter is suggested
through an optimization technique [28, 29]. /e matched
filter is upgraded through another optimization technique,
that is, genetic algorithm [30]. Another recommended way
to improve the matched filter is using particle swarm op-
timization [31, 32].

Correspondingly, for the Gabor filter, there are many
expansions presented in the literature. A multi-scale, multi-
directional Gabor wavelet transform and created feature
vector consisting of pixel intensity and maximum response
achieved for Gabor filter at various scales are recommended.
Afterward, they utilized a classification algorithm known as
linear minimum squared error (LMSE) [33]. Two-dimen-
sional Gabor wavelet with a Gaussian mixture model is

presented to classify a pixel as a vessel or a nonvessel [34].
Two different approaches are compared for blood vessel
extraction. In the first approach, they have employed
Gaussian filtering for preprocessing, LoG filtering to en-
hance the retinal image, and adaptive thresholding for the
segmentation task. In the second approach, they have uti-
lized unsharp masking for preprocessing, Gabor wavelet to
enhance the retinal image, and global thresholding for the
segmentation task [35]. A technique is suggested for the
green channel noise reduction of the retina by employing a
low pass radius filter and followed by the Gabor filter and a
Gaussian fractional derivative for enhancement of blood
vessels [36]. Gabor filter is extended by integrating Gabor,
Frangi, and Gaussian filters with top-hat transform [37]. A
new technique is introduced to design a set of 180 Gabor
filters with variable scales and elongated variables by ap-
plying an optimization approach known as competitive
imperialism algorithm (CIA) for vessel segmentation [38]. A
new hybrid scheme is suggested by combining the existing
techniques in which multi-scale vessel enhancement
(MSVE), morphological operations, bottom-hat transform,
and image fusion are combined for blood vessel extraction
[36]. Gabor filter and Hessian method are used together for
enhancing the features. /en K-mean clustering is utilized
for vessel extraction [39]. A new improved curvelet trans-
form technique is suggested to detect thick and thin blood
vessels for extraction [40]. A hybrid method by combining
two different existing techniques such as lateral inhibition
and differential evolution is used for vessel segmentation
[41]. Existing supervised and unsupervisedmachine learning
techniques are utilized for vessel segmentation by employing
image features [42]. To enhance the performance of the
original Frangi filter, it is combined with the existing
probabilistic patch-based denoiser for vessel segmentation
[43].

Newly deep learning that is a supervised approach has
been effectively employed for biomedical image processing
that includes retinal blood vessel segmentation. Wang et al.
have suggested context spatial U-Net for the segmentation of
blood vessels [44, 45]. Chen et al. have discussed many deep
learning approaches for vessel segmentation in their review
paper, where better results are achieved [46]. Many machine
learning algorithms are available in the literature for various
disease detections [47–52]. However, deep learning appli-
cations depend on an enormously huge database. Moreover,
annotated data sets are not readily available compared to
other imaging fields. Annotation of medical data is a costly,
complicated, and lingering process and thus experts need
more time.

Additionally, an annotation may not always be possible
for rare health issues. Consequently, the availability of
medical data is a significant obstacle for deep learning ap-
proaches. Although deep learning methods have achieved
substantial achievement, decent theory for deep learning
algorithms is still absent. Models of deep learning offer good
results, and the researchers are utilizing continuously de-
prived of having an understandable knowledge of attaining
higher results and the work process. Another critical chal-
lenge is the legal association of black box utility. It can be a
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barrier because healthcare experts would not depend on it. If
the results achieved are wrong, then who could be ac-
countable. Because of this sensitive issue, hospitals may not
be convenient with the black box, that is, how it could draw
that particular result from the ophthalmologist.

/erefore, understanding deep learning techniques and
their hidden layers working for a given problem is a great
challenge for researchers. Furthermore, in the event of the
source of data changes, the problem occurs in network
response, which most researchers do not address. /at will
be the influence of modification in a data acquirement device
because this may give on to variations in features of images
like colour intensity levels or illumination./us, the absence
of generalize ability will harm the performance of deep
learning networks. Accordingly, it is concluded that deep
learning networks still deliver higher performance results
depending on huge image databases. Consequently, it needs
large storage and memory with excess training time for the
networks. /e insufficient availability of large biomedical
imaging data sets is another hurdle in developing a deep
learning network [53, 54].

Consequently, to enhance the performance of any model
whether supervised or unsupervised, the quality of the image
has a great impact on the performance model. Few factors in
the image like uneven illumination or camera position can
affect the image contrast, resulting in inadequate features in
the image. /us, image enhancement is a very important
part of preprocessing and the proper selection of en-
hancement techniques can improve the effectiveness of the
existing models to a great extent. As a consequence, it is
essential to research the relationship between image en-
hancement and the existing models. /us, in this work, an
unsupervised approach, that is, traditional Gabor filter, is
chosen to improve its performance by employing various
enhancement techniques.

Six different enhancement algorithms are used in the
proposed work. /e advantages and disadvantages of a
particular enhancement algorithm are difficult to describe
because of the reliable and consistent measures for the
evaluation of the superiority of the enhanced image. /us,
based on the experimental results, the best-integrated model
is derived.

After an extensive study of the literature, it is noted that
many existing techniques are taken into consideration for
modifying and improving their performances. /erefore,
existing methods can still be considered for fundus image
segmentation by upgrading them and boosting their com-
putational ability. Gabor filters are found to be effectively
suitable in the segmentation of retinal images because of
oriented features as the vessels of the retina are linked and
piecewise linear [34]. Furthermore, Gabor filters can be
adjusted to particular frequencies and thus can be adjusted
to enhance the blood vessel. Although from the literature it is
observed that there are many techniques available for vessel
extraction utilizing various filters and enhancement
methods, still, a lot can be done to ameliorate further.
Designing a particular enhancement technique is infeasible,
as it generates a visual artifact-free output. Selecting a
specific enhancement scheme is hard since parameters in

assessing output quality are not available. Furthermore,
usually enhancement algorithms rely on authentic param-
eter selection. /is prompted a recommendation a robust
enhanced Gabor filter by integrating it with various en-
hanced techniques such as gamma corrected adaptively with
distributed weights (GCADW) [55, 56], homomorphic filter
[57, 58], joint equalization of histogram (JEH) [59, 60],
unsharp masking filter, adaptive unsharp masking filter
[61, 62], and particle swarm optimization (PSO) based
unsharp masking filter [63, 64].

Additionally, it is noted in the literature survey that the
researchers have combined two to three existing techniques
for the improvement of original approaches. In this work, we
have presented an idea to improve blood vessel segmenta-
tion through illumination-robust Gabor filter by combining
it with six enhancement techniques. /e main contributions
of the suggested approach are covered in few steps as follows:

(a) Initially, the existing Gabor filter is used to enhance
the fundus image, and hysteresis thresholding is
applied for vessel segmentation.

(b) In the second step, different enhancement tech-
niques are combined individually with the Gabor
filter to make its illumination robust and to improve
its performance followed by hysteresis thresholding
for vessel segmentation.

(c) In the final postprocessing step, a morphological
cleaning operation is performed to clean undesired
pixels that may lead to more false positives.

/e suggested methods are assessed on DRIVE and
CHASE_DB1data sets, and based on the results, the best-
integrated model is finalized.

Table 1 shows the summary of the advantages and
disadvantages of various vessel segmentation methods.

2. Preliminary Concepts

2.1.Gabor Filter. Gabor filters are influential techniques that
have been extensively utilized for multi-scale and multi-
directional analysis in image processing. Because of its di-
rectional selectiveness ability to detect oriented features, it is
extended by proposed fine-tuning. As a result, precise fre-
quencies and scale are shown in filter performance as low-
level oriented edge discriminators. /e features from the
Gabor filter can be extracted from the original image as
described below [34]:

G(x, y) � f(x, y)⊗Pf(x, y), (1)

where f(x, y) is the original image and Pf (x, y) is the impulse
response of the 2-D Gabor filter. /e symbol ⊗ represents
the convolution sum.

2.2. Gamma Corrected Adaptively with Distributed Weights
(GCADW). GCADW utilizes cumulative distribution
function (cdf) and employed normalized gamma function to
it. /ey have achieved a modified transformation curve
where histogram statistics are available. Accordingly,
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substantial adjustment can be done in the lower gamma
parameter. /us, they have formulated adaptive gamma
correction (AGC) to process intensity in consecutive in-
crements of the original trend. AGC is defined as follows:

T(l) � lmax
l

lmax
 

c

� lmax
l

lmax
 

1− cdf(l)

, (2)

where l is the intensity of the input image, lmax is the
maximum intensity of the input and c is the varying adaptive
parameter. /e low intensity can be increased substantially
without decreasing the high intensity by applying AGC
technique. Additionally, weighting distribution (WD)
function applied is also employed for the modification of
statistical histogram to some extent for the reduction of
adverse effect. /e WD function is defined as follows:

pdfw(l) � pdfmax
pdf(l) − pdfmin

pdfmax − pdfmin
 

a

, (3)

where a is an adjustable parameter, pdfmax is the probability
density function with a maximum value of the statistical
histogram, and pdfmin is the probability density function
with minimum value. Considering the (3), the revised cdf is
approached as follows:

cdfw(l) �


lmax
l�0 pdfw(l)



pdfw

, (4)

where the sum pdfw is computed as follows:




pdfw � 

lmax

l

pdfw l( ). (5)

In conclusion, the value of parameter gamma derived
from cdf equation (3) is altered as follows:

c � 1− cdfw(l). (6)

2.3. Homomorphic Filter. Many suggested approaches are
available to enhance images utilizing a homomorphic filter
[57]. Information missing in dark regions can be identified
by equalizing the light variations onto the image. An image
can be denoted as a product of two components as seen in
the following equation:

I(x, y) � L(x, y)∗R(x, y), (7)

where L (x, y) is the illumination and R (x, y) is the re-
flectance components of the original image. /e filter
function for the homomorphic filter chosen is as follows:

H(u, v) � ch − cl(  1 − exp k
P(u, v)

P0
 

2⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦ + cl, (8)

where k controls the steepness and is taken as constant, P0 is
the frequency of cut-off value, the measured distance of the
origin Fourier transform is represented as P(u, v), and cl, ch

are the low- and high-frequency gain, respectively.

2.4. Joint Equalization of Histogram. Joint histogram
equalization is an approach where modification of histo-
grams and enhancement of contrast in digital images are
implemented [59]. /e entire joint histogram equalization
process is explained below.

By using a neighbouring window of Z2, the gray value
pixel g(p, q) is calculated and defined below:

g(p, q) �
1

z × z


k

m�−k



k

n�−k

f(p + m, q + n). (9)

Table 1: Summary of advantages and disadvantages of vessel segmentation methods.

Methods and References Data
set Advantages Disadvantages

Extended median filter [23] DRIVE Simple to implement Less accuracy
Blood vessels segmentation based on simplified PCNN and
fast 2D-otsu algorithm [24] DRIVE Performed better in small

vessels with high accuracy
Cannot remove pathological
regions with low specificity

Clifford matched filter [25] DRIVE High accuracy Low sensitivity

Using MF/ant (matched filter/ant colony) [26] DRIVE High accuracy Cannot remove pathological
regions with low specificity

Improved matched filter [29] DRIVE High accuracy Low specificity
Genetic algorithm matched filter optimization [30] DRIVE High sensitivity Low accuracy
Improved multi-scale matched filter using PSO algorithm
[31] DRIVE High sensitivity Low specificity and accuracy

Segmentation of retinal vessels by the use of Gabor wavelet
and linear mean-squared-error classifier [32] DRIVE — Very low accuracy

Gabor filters with the imperialism competitive algorithm
[37] DRIVE High sensitivity and specificity Low accuracy

Hybrid segmentation approach [38] DRIVE High accuracy Very low sensitivity
A hybrid method to enhance thick and thin vessels [39] DRIVE High sensitivity and specificity Low accuracy

A hybrid method for blood vessel segmentation [41] DRIVE — Very high accuracy, sensitivity,
and specificity

Frangi filter coupled with the probabilistic patch-based
denoiser [44] DRIVE High sensitivity Low accuracy

A context spatial U-Net for accurate blood vessel
segmentation [45] DRIVE High sensitivity and specificity Low accuracy
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/e joint histogram is as follows:

H � h(a, b) | 0≤ a≤C − 1, 0≤ b≤C − 1{ }, (10)

where the expression h(a, b) represents the existence of the
gray level pair numbers f(p, q) and g(p, q) around the
correspondent spatial location (p, q) of the images I and I

correspondingly. It signifies the count function. Because a

and b is considered whatever conceivable numeral value
among 0 and C − 1, the number of pixel pair groupings
feasible are C × C. /us, the joint histogram H will comprise
C × C entries.

By utilizing the count function, the cumulative distri-
bution function can be achieved as follows:

CDF(p, q) � 
i

m�0


j

n�0
h(m, n). (11)

Two-dimensional CDF value is utilized to produce the
output pixel intensity enhanced in contrast. /e equalized
value of the intensity pairs (p and q) in the output image can
be achieved through the histogram equalization method as
follows:

heq(p, q) � round
L − 1

MN − 1
CDF(p, q) − CDF (p, q)min(  .

(12)

2.5. Unsharp Masking Filter. Local contrast enhancement
can be done using unsharpmasking./is technique creates a
mask of the original image utilizing a negative image. Af-
terward, the original positive image is combined with the
unsharp mask to produce an image that is less blurry than
the original. Usually, a linear or nonlinear filter that mag-
nifies the high-frequency components of a signal is said to be
an unsharp masking filter.

2.6. Adaptive Unsharp Masking Filter. Lin et al. have sug-
gested an adaptive unsharp masking filter to enhance the
colour images [61]. /ey have improved the colour
brightness by stretching the colour channel and enhanced
the contrast by expanding the edge. Especially, a hyperbolic-
tangent function scale is established that regulates the gain,
and sharpness is enhanced./emodel relates to the intensity
of the original image and recognized edges.

Input pixel magnitude and image coordinate edge are the
two components of the hyperbolic scheme.

/e gain factor considered for the input-based com-
ponent is defined as follows:

λgpq
� 0.5 1 + tanh 3 − 12 × guv − 0.5


  , (13)

where p� 1, . . ., P and q� 1, . . ., Q represent width and
height of image, respectively, and λgpq

gain of pixel of I
channel, as the RGB image is initially converted to HSI
image. While gpq � 1/3(R + G + B)pq relates to the I channel
of HSI colour space, where R,G, and B correspond to the red,

green, and blue components of the colour image,
respectively.

/us, to gain adjustment on the detected edge, the
subsequent scheme is applied.

λdpq
� 0.5 1 + tanh 3 − 6 × duv


 − 0.5  , (14)

where λdpq
is gain factor defining strength of reconstructed

edge dpq.
By multiplying the above two schemes, the complete gain

adjustment scheme is obtained and described as follows:

λpq � λgpq
λdpq

. (15)

Additionally, the measurement of sharpness is evaluated.
It is computed from the measurement of the neighbourhood
pixel gradient as described below:

Ğpq �

�����������

Δx2
pq + Δy2

pq



, (16)

G �
1
N




Ğpq, ∀pq, (17)

where Δxpq � gpq − gp+1,q and Δypq � gpq − gp,q+1 repre-
sent the horizontal and vertical gradients across the image,
respectively, and N is the total number of pixels.

Additionally, an image is evaluated by its colourfulness
[65]. Capturing an object under uneven lighting conditions
may deteriorate the measurement./e colourfulness is given
as below:

∁ � σRGYB + 0.3 × μRGYB, (18)

where

σRGYB �

��������

σ2RG + σ2YB



, (19)

μRGYB �

��������

μ2RG + μ2YB



. (20)

/e colour is computed with respect to the standard
deviations σrg and σyb of colour differences Δrg and Δyb,
respectively, where

ΔRG � R − G, (21)

ΔYB � 0.5(R + G) − B, (22)

where μRG and μYB signify the means of ΔRG and ΔYB,
respectively.

2.7. Particle Swarm Optimization (PSO) Based Unsharp
Masking Filter. Particle swarm optimization (PSO) is
implemented to design the kernel and gain on an unsharp
masking filter [63]. /e authors have applied a symmetrical
kernel through PSO for extraction of the edge with an
optimum scale factor for the enhancement of colour image.
PSO is utilized to achieve filter kernel settings and after
maximizing the information’s content to minimize high
ranged pixels.
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3. Proposed Methodology

/e main aim of the proposed approach is to enhance retinal
Gabor transformed images for blood vessel segmentation.
/is work starts with a 2-D Gabor filter for enhancing the
retinal images to obtain the Gabor feature images. Subse-
quently, the Gabor feature images are enhanced by combining
various enhancement techniques such as GCADW, homo-
morphic filter, JEH, unsharp masking filter, adaptive unsharp
masking filter, and PSO unsharp masking filter. Segmentation
is executed by utilizing hysteresis thresholding. /e proposed
methodology covers several stages. /e proposed approach is
summarized in Figure 1 as blocks that elaborate on each step.

/e entire proposed segmentation process is described in
detail as follows.

3.1. Gabor Filter. /e approach activates by employing 2-D
Gabor filters on the retinal images to achieve the Gabor
transformed images./eGabor transformed images are having
object regions with enhanced boundaries. /e Gabor kernel
used in this work for producing Pf(x, y) is defined as follows:

ψu,v(z) �
‖ku,v‖

2

σ
exp −

‖ku,v‖z
2

2σ2
  exp iku,vz  − exp

−σ2

2
  ,

(23)

where the scale and orientation are determined by u and v,
respectively. z� (x, y) .represents the norm operator. /e
wave vector ku,v � kvejφu, where kv � kmax/λ

v and φu � πu/8.
/e parameter λ denotes the space among the filters in the
frequency domain. /e oscillatory part of the kernel is
defined inside the first square bracket term, while the second
term compensates the dc value of the kernel. /e values of
the Gabor kernel are selected as follows. λ�√2 for better
intensification near the transition regions. /e value of
kmax � π/2, width� 60, height� 60, and σ � π/3. With pa-
rameters kmax and λ, Gabor filters of eight orientations are
generated. Retinal Gabor transformed images are generated
by convolving the retinal images with Gabor filters. Only the
magnitude part is taken into consideration because the phase
part is time varying in nature. Figures 2(a) and 2(b) and
Figures 3(a) and 3(b) represent the original image and green
channel image of retina 2, retina 4 of the DRIVE data set, and

Original image 

Segmented 
image 

Original 

GCADW 
Enhancement 

Homomorphic 
Enhancement

Joint 
histogram 

equalisation 

Unsharp 
masking 

Gabor 
filter Hysteresis 

Thresholding 

Adaptive 
unsharp 
masking 

PSO unsharp 
masking 

Post 
procesing 

Segmented 
image Hysteresis 

Thresholding 
Post 

procesing 

Figure 1: Block diagram of the recommended methods.

6 Computational Intelligence and Neuroscience



retina 5 of the CHASE_DB1 data set, respectively.
Figures 2(c) and 3(c) illustrate the Gabor enhanced images of
retina 2 and retina 4 of the DRIVE data set and retina 5 of the
CHASE_DB1 data set, respectively. Afterward, hysteresis
thresholding followed by morphological operation for
cleaning is applied, and segmented images are obtained. All
the parameter values are chosen on an experimental basis.

3.2. Various Enhancement Techniques. In the subsequent
step, investigations are carried out with the suggested ap-
proaches by integrating the enhanced methods with the
Gabor filter. Generally, it is difficult to recommend one

specific contrast-enhanced method that produces an output
of free visual artifacts. Moreover, for verifying the quality of
the output of the image, there are no particular reliable
measures available in the literature. /erefore, choosing an
appropriate algorithm to enhance the images is challenging.
Accordingly, six enhancement methods are selected to
improve the Gabor features. /e algorithms of the suggested
methods are explained below:

(i) GCADW enhancement is computed with three vital
steps. /e detailed mathematical computations of
GCADW are described in (2)–(4) and (6). /e steps
of GCADW are summarized as follows:

(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

Figure 2: Images generated for retina 2 of the DRIVE data set by employing various enhancement techniques: (a) original, (b) green
channel, (c) Gabor enhanced, (d) GCADW enhanced, (e) homomorphic filter enhanced, (f ) JEH enhanced, (g) unsharp masking filter
enhanced, (h) adaptive unsharp masking filter enhanced, and (i) PSO unsharp masking filter enhanced.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

Figure 3: Images generated for retina 4 of the DRIVE data set by employing various enhancement techniques: (a) original, (b) green
channel, (c) Gabor enhanced, (d) GCADW enhanced, (e) homomorphic filter enhanced, (f ) JEH enhanced, (g) unsharp masking filter
enhanced, (h) adaptive unsharp masking filter enhanced, and (i) PSO unsharp masking filter enhanced.
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(a) Consider the image that is to be enhanced
(b) Analyze the histogram of the image
(c) In the next step, employ weighting distribution
(d) Finally, apply gamma correction and obtain the

enhanced image

Figures 2(d) and 3(d) represent the GCADW en-
hanced images of retina 2 and retina 4 of the DRIVE
data set and retina 5 of the CHASE_DB1 data set,
respectively.

(ii) /e second enhancement technique is the homo-
morphic filter. /e steps of the homomorphic filter
are described below:

(a) /e multiplicative component described in (7)
is converted to an additive component by ap-
plying the logarithm function

(b) Apply Fourier transform on retinal images for
converting the images into frequency-domain
transformation

(c) /e transformed retinal images are processed
through a homomorphic filter function as de-
scribed in (8)

(d) Take the inverse Fourier transform to obtain
homomorphic filtered enhanced retinal images

/e condition λh> λl> 0 must be followed while
selecting the values of low- and high-frequency
components. /e soft edge and detail information
may be eliminated if too small values are chosen for
λl. On the contrary, noise contained in high fre-
quency may increase if large values of λh are chosen.
In this work, the values are chosen as h� 0.8 and
λl � 0.6, respectively. Figures 2(e), 3(e), and 4(e)
represent the homomorphic filter enhanced images
of retina 2 and retina 4 of the DRIVE data set and
retina 5 of the CHASE_DB1 data set, respectively.

(iii) JEH enhanced technique deals with level pair of
intensity and defined by the field of count as
explained in (10), in which 256× 256 is the order of
the matrix. Utilizing (12), the equalized joint his-
togram is computed, and improved enhanced im-
ages are produced. /e description of the JEH
enhanced technique is as follows:
Figure 5(a) represents the intensities of a grayscale
subimage k of 8 bit and size 6× 6. By utilizing (11),
the average subimage M is accomplished, and
Figure 5(b) represents this./e size of the window is
considered as three because the higher size window
may blur the image, and according to the location,
the pixel pairs are generated. For instance, both
input and average images are represented in a pixel
pair (1, 1) with values (111, 76). Among the pixel
pairs, the minimum and maximum value specified
by CDF is (109, 81) and (167, 152), respectively. /e
joint equalized histogram value is achieved by (12).
For example, the CDF of (140, 139) pixel pair is 11.
/e histogram equalized is calculated as follows:

heq(140, 139) � round
11 − 1
35

× 255 

� round(0.285 × 255) � 72.

(24)

In the original subimage, the intensity value is
substituted as 140, that is, M at every occurrence of
the pixel pair (140, 139). In the rest of the original
subimage spaces, the pixel pairs such as (140, 141)

the value (140) is not substituted. In a similar
manner, the rest of the equalized joint histogram
values are computed. Figures 2(f) and 3(f ) represent
the JEH enhanced images of retina 2 and retina 4 of

(a) (b) (c) (d) (e)

(f ) (g) (h) (i)

Figure 4: Images generated for retina 5 of the CHASE_DB1 data set by employing various enhancement techniques: (a) original, (b) green
channel, (c) Gabor transformed, (d) GCADW enhanced, (e) homomorphic filter enhanced, (f ) JEH enhanced, (g) unsharp masking filter
enhanced, (h) adaptive unsharp masking filter enhanced, and (i) PSO unsharp masking filter enhanced.
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the DRIVE data set and retina 5 of the CHASE_DB1
data set, respectively.

(iv) /e unsharp mask enhancement filter regulates the
edge contrast and produces the illusion of a very
intensive image. /us, unsharp masking results in
edge image g(m, n) transformed as a derivative of
an input image f(m, n) as given below:

g(m, n) � f(m, n) − fsmooth(m, n), (25)

where fsmooth (m, n) is a smooth version of f(m, n).
/e final sharpening image obtained through un-
sharp masking is given as follows:

fsharp(m, n) � f(m, n) + k∗g(m, n), (26)

where k is a scaling constant. Values of k vary
between 0.2 and 0.7, with the higher values pro-
viding growing amounts of sharpening.
Figures 2(g) and 5(g) illustrate the unsharp masking
filter enhanced images of retina 2 and retina 4 of the
DRIVE data set and retina 5 of the CHASE_DB1
data set, respectively.

(v) /e adaptive unsharp masking enhancement ap-
proach enhances the quality of the image with
regard to the information volume, sharpness, and
colourfulness by using equations (17), (18), and (20)
as described in Section 2.6. Figures 2(h), 3(h), and
4(h) represent the adaptive unsharp masking filter
enhanced images of retina 2 and retina 4 of the
DRIVE data set and retina 5 of the CHASE_DB1
data set, respectively.

(vi) /e algorithm for designing PSO-based unsharp
masking filter enhancement technique is given
below:

(a) RGB input image
(b) RGB colour space is converted to HSV colour

space
(c) PSO iteration count is set as zero
(d) Consider kernel element and gain as a particle

and initialize the particle
(e) Repeat
(f ) kernel is generated from each particle
(g) Unsharp masking filter operation is carried
(h) Compute entropy penalized by over-range

ration

(i) Update the global best solution and particle
motion

(j) Particle position is updated until maximum
iteration is touched

(k) Return optimum solution, that is, global best
solution

(l) Finally, the edge extraction kernel and the
augmentation gain factor are tuned using the
PSO optimizer to yield contrast-enhanced im-
ages with minimum over-range artifacts.

Figures 2(i) and 3(i) represent the PSO unsharp masking
filter enhanced images of retina 2 and retina 4 of the DRIVE
data set and retina 5 of the CHASE_DB1 data set,
respectively.

Figures 4(a) and 4(b) represent the original image and
green channel image of retina 2 and retina 4 of the DRIVE
data set, and retina 5 of the CHASE_DB1 data set, re-
spectively. Figure 4(c) represents the Gabor enhanced im-
ages of retina 2 and retina 4 of the DRIVE data set and retina
5 of the CHASE_DB1 data set. Figure 4(d) illustrates the
GCADW enhanced images of retina 2 and retina 4 of the
DRIVE data set and retina 5 of the CHASE_DB1 data set.
Figure 4(f ) represents the JEH enhanced images of retina 2
and retina 4 of the DRIVE data set and retina 5 of the
CHASE_DB1 data set. Figure 4(g) illustrates the unsharp
masking filter enhanced images of retina 2 and retina 4 of the
DRIVE data set and retina 5 of the CHASE_DB1 data set.
Figure 4(i) shows the PSO unsharp masking filter enhanced
images of retina 2 and retina 4 of the DRIVE data set and
retina 5 of the CHASE_DB1 data set.

Figures 6–8 display the images of the retina 2 and retina 4
of the DRIVE and retina 5 of the CHASE_DB1databases
achieved from each enhancement technique integrated with
the Gabor filter. From all the figures, it is distinctly no-
ticeable that PSO unsharp masking filter integrated with the
Gabor filter generates noise-free enhanced image in which
the thick and thin vessels are visible.

4. Results and Discussion

/e proposed idea is analyzed and examined on DRIVE
(Digital Retinal Images for Vessel Extraction) and
CHASE_DB1 (Child Heart and Health Study in England)
databases. /e DRIVE data set contains 20 coloured
fundus images in each training and testing set, an
equivalent set of masks, and two manually segmented sets.

111 121 149 167 109 149 

151 138 136 147 115 121 

121 138 149 127 139 148 

120 140 125 117 125 122

113 120 165 143 137 132 

140 115 142 115 133 137 

(a)

76 103 133 152 81 120 

121 113 100 126 102 101 

103 123 127 98 110 137 

96 141 112 99 109 107 

98 90 144 130 135 107 

139 99 115 88 106 110 

(b)

Figure 5: Description of joint equalization of histogram: (a) subimage representation and (b) average subimage representation.
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/e first manual segmented image that first ophthal-
mologist provides is preserved as the ground truth image.
In supervised models for training the network, the
training data set is generally utilized. /e test data set is
utilized for the computation in this work as the proposed
method is an unsupervised method. /e ground truth

images of the test data set are utilized for analysis pur-
poses. /e CHASE_DB1 data set consists of ground truth
images of left and right eyes taken from 28 children.
Comparisons between segmented and ground truth image
are verified using metrics, that is, sensitivity (Sen), ac-
curacy (Acc), and specificity (Sp).

(a) (b) (c) (d)

(e) (f ) (g)

Figure 6: Images generated for retina 2 of the DRIVE data set by integrating the Gabor filter with different enhancement techniques:
(a) original Gabor transformed image, (b) GCADW integrated with the Gabor filter, (c) homomorphic filter integrated with the Gabor filter,
(d) JEH integrated with the Gabor filter, (e) unsharp masking filter integrated with the Gabor filter, (f ) adaptive unsharp masking filter
integrated with the Gabor filter, and (g) PSO unsharp masking filter integrated with the Gabor filter.

(a) (b) (c) (d)

(e) (f ) (g)

Figure 7: Images generated for retina 4 of the DRIVE data set by integrating Gabor filter with different enhancement techniques: (a) original
Gabor transformed image, (b) GCADW integrated with the Gabor filter, (c) homomorphic filter integrated with the Gabor filter, (d) JEH
integrated with the Gabor filter, (e) unsharp masking filter integrated with the Gabor filter, (f ) adaptive unsharp masking filter integrated
with the Gabor filter, and (g) PSO unsharp masking filter integrated with the Gabor filter.
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Sen �
TP

(TP + FN)
,

Acc �
(TP + TN)

(TP + TN + FP + FN)
,

Sp �
TN

(FP + TN)
,

(27)

where TP: true positive states as the correct identification of
a vessel, TN: true negative states as the correct identification
of a background, FP: false positive states as incorrect
identification of a vessel, and FN: false negative states as
incorrect identification of a background.

/e measure of ability for verifying the correct vessel
pixel is known as sensitivity. In contrast, the measure of the
ability to verify accurate nonvessel pixels is known as
specificity, and the accuracy displays the conventionality of
the segmentation result.

Tables 2 and 3 present the performance of blood vessel
segmentation using the original Gabor filter in terms of Sen,
Acc, and Sp for DRIVE and CHASE_DB1. Traditional Gabor
filter delivers Sen, Acc, and Sp as 0.6434, 0.9215, and 0.9470,

(a) (b) (c) (d)

(e) (f ) (g)

Figure 8: Images generated for retina 5 of the CHASE_DB1 data set by integrating Gabor filter with different enhancement techniques:
(a) original Gabor transformed image, (b) GCADW integrated with the Gabor filter, (c) homomorphic filter integrated with the Gabor filter,
(d) JEH integrated with the Gabor filter, (e) unsharp masking filter integrated with the Gabor filter, (f ) adaptive unsharp masking filter
integrated with the Gabor filter, and (g) PSO unsharp masking filter integrated with the Gabor filter.

Table 2: Performance matrices results of original Gabor filter on
the DRIVE database.

Fundus images Sen Acc Sp
FI01 0.677887 0.918439 0.942004
FI02 0.664339 0.925255 0.955022
FI03 0.672271 0.904431 0.930137
FI04 0.570534 0.934659 0.971549
FI05 0.639169 0.927534 0.957341
FI06 0.656184 0.921006 0.949561
FI07 0.657170 0.928000 0.955230
FI08 0.666138 0.914571 0.937958
FI09 0.686661 0.916338 0.936594
FI10 0.634372 0.932265 0.95898
FI11 0.634372 0.922985 0.953728
FI12 0.634372 0.918548 0.939569
FI13 0.634372 0.922872 0.956796
FI14 0.634372 0.912605 0.928476
FI15 0.634372 0.931861 0.951623
FI16 0.634372 0.918399 0.946777
FI17 0.634372 0.917223 0.943944
FI18 0.634372 0.915814 0.938357
FI19 0.634372 0.922488 0.944618
FI20 0.634372 0.925097 0.943015
Average value 0.643422 0.921519 0.947063
Note: FI represents the number of fundus images of the corresponding
database.

Table 3: Performance matrices results of original Gabor filter on
the CHASE_DB1 database.

Fundus images Sen Acc Sp
FI01 0.710047 0.904558 0.930882
FI02 0.682305 0.902526 0.926700
FI03 0.667443 0.916788 0.950170
FI04 0.699412 0.918843 0.941316
FI05 0.692741 0.901190 0.932334
FI06 0.682634 0.917574 0.939770
FI07 0.695286 0.904910 0.930149
FI08 0.695286 0.904910 0.930149
FI09 0.678926 0.921164 0.950061
FI10 0.691368 0.919804 0.937123
FI11 0.690519 0.904957 0.936737
FI12 0.691258 0.919311 0.917941
FI13 0.696819 0.910267 0.933915
FI14 0.692166 0.910005 0.932175
Average value 0.690443 0.911200 0.934958
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respectively, on DRIVE and 0.6904, 0.9112, and 0.9349,
respectively, on CHASE_DB1 databases. Tables 4 and 5
summarize the performance of GCADW integrated with
the Gabor filter for blood vessel segmentation. /e inte-
grated proposed method attains Sen, Acc, and Sp as 0.6594,
0.9301, and 0.9502, respectively, on the DRIVE database and
0.7041, 0.9200, and 0.9375, respectively, on the CHASE_DB1
database. Tables 6 and 7 summarize the performance of the
homomorphic filter combined with the Gabor filter for
blood vessel segmentation. /e integrated proposed method
attains Sen, Acc, and Sp as 0.6377, 0.9292, and 0.9466, re-
spectively, on the DRIVE database and 0.6489, 0.9174, and
0.9385, respectively, on the CHASE_DB1 database. Tables 8
and 9 summarize the performance of JHE integrated with

the Gabor filter for blood vessel segmentation. /e inte-
grated suggested approach accomplishes Sen, Acc, and Sp as
0.6846, 0.9505, and 0.9620, respectively, on the DRIVE
database and 0.7365, 0.9411, and 0.9501, respectively, on the
CHASE_DB1 database. Tables 10 and 11 summarize the
performance of the unsharp masking filter integrated with
the Gabor filter for blood vessel segmentation. /e inte-
grated recommended technique accomplishes Sen, Acc, and
Sp as 0.6408, 0.9512, and 0.9528, respectively, on the DRIVE
database and 0.6757, 0.9132, and 0.9334, respectively, on the
CHASE_DB1 database. Tables 12 and 13 summarize the
performance of the adaptive unsharp masking filter inte-
grated with the Gabor filter for blood vessel segmentation.
/e integrated proposed method accomplishes Sen, Acc, and

Table 4: Performance matrices results of GCADW integrated with
the Gabor filter on the DRIVE database.

Fundus images Sen Acc Sp
FI01 0.679450 0.938196 0.947585
FI02 0.674608 0.925476 0.954097
FI03 0.678351 0.929122 0.954675
FI04 0.673793 0.935613 0.970244
FI05 0.684191 0.929685 0.961264
FI06 0.643044 0.923909 0.954194
FI07 0.644136 0.938770 0.957396
FI08 0.658671 0.932624 0.947472
FI09 0.677910 0.923463 0.945119
FI10 0.630137 0.930834 0.957801
FI11 0.631023 0.924642 0.955479
FI12 0.676946 0.934908 0.945506
FI13 0.612728 0.921469 0.937949
FI14 0.684116 0.912605 0.928476
FI15 0.667044 0.930416 0.948405
FI16 0.620389 0.921463 0.951344
FI17 0.626346 0.937751 0.944616
FI18 0.664990 0.932448 0.943742
FI19 0.664718 0.930584 0.953729
FI20 0.696847 0.948388 0.945688
Average value 0.659471 0.930118 0.950239

Table 5: Performance matrices results of GCADW integrated with
the Gabor filter on the CHASE_DB1 database.

Fundus images Sen Acc Sp
FI01 0.715652 0.921977 0.945813
FI02 0.704742 0.917989 0.929782
FI03 0.695609 0.920585 0.926741
FI04 0.699744 0.890291 0.939458
FI05 0.693052 0.928501 0.938527
FI06 0.705556 0.915255 0.935383
FI07 0.708359 0.924627 0.934857
FI08 0.693451 0.911141 0.934172
FI09 0.696969 0.926043 0.953173
FI10 0.707692 0.924176 0.948024
FI11 0.708923 0.919948 0.941466
FI12 0.704802 0.923779 0.940930
FI13 0.713273 0.928199 0.934405
FI14 0.710256 0.927990 0.923165
Average value 0.704148 0.920035 0.937564

Table 6: Performance matrices results of homomorphic filter in-
tegrated with the Gabor filter on the DRIVE database.

Fundus images Sen Acc Sp
FI01 0.642459 0.910447 0.944741
FI02 0.634353 0.931709 0.944494
FI03 0.628193 0.924788 0.959878
FI04 0.626216 0.928484 0.952147
FI05 0.638631 0.937319 0.958194
FI06 0.649660 0.944162 0.952682
FI07 0.634286 0.939462 0.944454
FI08 0.641661 0.932704 0.947472
FI09 0.631430 0.925241 0.940213
FI10 0.634540 0.923662 0.944142
FI11 0.636221 0.946333 0.947808
FI12 0.631881 0.929728 0.950315
FI13 0.631964 0.926854 0.942059
FI14 0.648458 0.921683 0.948679
FI15 0.638458 0.921683 0.958679
FI16 0.639647 0.935233 0.933576
FI17 0.64563 0.911425 0.936851
FI18 0.631460 0.937980 0.940054
FI19 0.645855 0.921394 0.943233
FI20 0.644290 0.934790 0.943087
Average value 0.637764 0.929254 0.946630

Table 7: Performance matrices results of homomorphic integrated
with the Gabor filter on the CHASE_DB1 database.

Retinal images Sen Acc Sp
FI01 0.644795 0.949065 0.936870
FI02 0.643583 0.928927 0.933554
FI03 0.636338 0.926789 0.936815
FI04 0.639947 0.917553 0.943018
FI05 0.648564 0.913205 0.947289
FI06 0.645292 0.913339 0.937429
FI07 0.655333 0.919822 0.934125
FI08 0.653901 0.905724 0.930070
FI09 0.650733 0.919650 0.952101
FI10 0.657497 0.905404 0.938351
FI11 0.648734 0.904013 0.938093
FI12 0.649968 0.914724 0.944650
FI13 0.640965 0.911713 0.937150
FI14 0.669859 0.914765 0.930609
Average value 0.648964 0.917478 0.93858
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Sp as 0.7207, 0.9518, and 0.9604, respectively, on the DRIVE
database and 0.7357, 0.9535, and 0.9741, respectively, on the
CHASE_DB1 database. Tables 14 and 15 summarize the
performance of the PSO unsharp masking filter integrated
with the Gabor filter for blood vessel segmentation. /e
integrated proposed method accomplishes Sen, Acc, and Sp
as 0.7482, 0.95934, and 0.9801, respectively, on the DRIVE
database and 0.7594, 0.9612, and 0.9842, respectively, on the
CHASE_DB1 database.

In view of the DRIVE database, the suggested ap-
proaches report a substantial improvement in Sp and Acc
scores. However, the suggested approaches report moderate
Sen scores. Considering the CHASE_DB1 database, the
suggested approaches report a substantial improvement in

Sen, Acc, and Sp scores. It is also noteworthy here that in
terms of accuracy, the suggested approaches register a
substantial improvement for both the databases.

/e entire segmentation approach can be categorized
into under-segmentation, over-segmentation, or accurate
segmentation.

(i) If specificity shows a higher side and sensitivity
shows a lower side, then the vessel is under-
segmented that may result in the vessel being in-
accurately recognized

(ii) If specificity shows the lower side and sensitivity
shows the higher side, then the vessel is over-
segmented and may lead to nonvessel being rec-
ognized as a vessel

Table 9: Performance matrices results of JEH integrated with the
Gabor filter on the CHASE_DB1 database.

Fundus images Sen Acc Sp
FI01 0.745752 0.945233 0.950308
FI02 0.712943 0.943283 0.941410
FI03 0.722359 0.938871 0.944343
FI04 0.734211 0.941279 0.945253
FI05 0.730888 0.930656 0.947073
FI06 0.744306 0.938812 0.953431
FI07 0.739790 0.944063 0.949192
FI08 0.747950 0.938944 0.949204
FI09 0.734789 0.946909 0.954734
FI10 0.748618 0.935006 0.944861
FI11 0.731055 0.946087 0.959027
FI12 0.746762 0.946433 0.956740
FI13 0.735172 0.944196 0.957555
FI14 0.736517 0.936948 0.949115
Average value 0.736508 0.941194 0.950160

Table 10: Performance matrices results of unsharp masking filter
integrated with the Gabor filter on the DRIVE database.

Retinal images Sen Acc Sp
FI01 0.642745 0.959207 0.956494
FI02 0.634238 0.958333 0.950477
FI03 0.642644 0.949351 0.954470
FI04 0.638033 0.958249 0.953599
FI05 0.632061 0.958413 0.952844
FI06 0.649474 0.951926 0.956991
FI07 0.630450 0.942967 0.953198
FI08 0.637316 0.948850 0.957821
FI09 0.648731 0.953721 0.950917
FI10 0.639051 0.941742 0.940817
FI11 0.640097 0.958853 0.962328
FI12 0.632187 0.946134 0.952573
FI13 0.659457 0.958680 0.934602
FI14 0.645615 0.951776 0.956392
FI15 0.636682 0.959714 0.95736
FI16 0.644005 0.955084 0.956033
FI17 0.637276 0.949379 0.954395
FI18 0.648286 0.942240 0.959790
FI19 0.633002 0.925624 0.948454
FI20 0.645038 0.955596 0.948340
Average value 0.640819 0.951291 0.952894

Table 8: Performance matrices results of JEH integrated with the
Gabor filter on the DRIVE database.

Fundus images Sen Acc Sp
FI01 0.667269 0.948305 0.955836
FI02 0.679432 0.945257 0.961289
FI03 0.692271 0.954431 0.950137
FI04 0.680534 0.944659 0.971549
FI05 0.699169 0.937534 0.957341
FI06 0.686180 0.951006 0.969561
FI07 0.697170 0.948547 0.955238
FI08 0.696138 0.944571 0.957958
FI09 0.696661 0.956338 0.966594
FI10 0.634372 0.952265 0.95898
FI11 0.680312 0.962985 0.953728
FI12 0.696104 0.958548 0.959569
FI13 0.669814 0.952872 0.956796
FI14 0.732166 0.962605 0.968476
FI15 0.675489 0.951861 0.961623
FI16 0.682473 0.958399 0.976777
FI17 0.677388 0.947223 0.963944
FI18 0.67384 0.945814 0.968357
FI19 0.677834 0.942488 0.964618
FI20 0.699361 0.945097 0.963015
Average value 0.684698 0.950540 0.962060

Table 11: Performance matrices results of unsharp masking filter
integrated with the Gabor filter on the CHASE_DB1 database.

Fundus images Sen Acc Sp
FI01 0.641601 0.914316 0.933804
FI02 0.670786 0.924334 0.932685
FI03 0.659763 0.920059 0.931729
FI04 0.672605 0.914752 0.936606
FI05 0.672497 0.915543 0.939502
FI06 0.675362 0.911253 0.935985
FI07 0.669027 0.902999 0.922259
FI08 0.698382 0.908980 0.934595
FI09 0.686771 0.912538 0.931902
FI10 0.698150 0.914770 0.936312
FI11 0.680958 0.915039 0.936026
FI12 0.698290 0.903039 0.931026
FI13 0.669055 0.913874 0.932498
FI14 0.667872 0.914562 0.933582
Average value 0.675794 0.913289 0.933460
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(iii) If sensitivity and specificity are higher, then the
vessel is segmented accurately

From all the tables, it is inferred that:

(i) For the DRIVE data set, the proposed homomorphic
filter integrated with the Gabor filter technique
underperforms the traditional Gabor filter in terms
of all the performance measures. Similarly, the
proposed sharpen filter integrated with the Gabor
filter technique underperforms of sensitivity than the
original Gabor filter. However, the rest all the rec-
ommended approaches outperform the original
Gabor filter. /e highest performance measures are

achieved by PSO sharpen filter integrated with the
Gabor filter.

(ii) For the CHASE_DB1 data set, two suggested
methods homomorphic filter integrated with the
Gabor filter and unsharp masking filter combined
with the Gabor filter underperform the traditional
Gabor filter in terms of all the performance mea-
sures. However, remaining all the recommended
approaches outperform the original Gabor filter.
Like the DRIVE data set, the highest performance
measures are achieved by the PSO unsharp masking
filter integrated with the Gabor filter.

Overall, it can be deduced from the above discussion that
all the enhancement variations that are adopted for Gabor

Table 12: Performance matrices results of adaptive unsharp
masking filter integrated with the Gabor filter on the DRIVE
database.

Fundus images Sen Acc Sp
FI01 0.728404 0.952835 0.958943
FI02 0.724877 0.947196 0.962225
FI03 0.702186 0.953249 0.964470
FI04 0.716533 0.950525 0.968415
FI05 0.711223 0.95876 0.958583
FI06 0.719649 0.950552 0.955150
FI07 0.717170 0.947410 0.965238
FI08 0.736097 0.954036 0.958023
FI09 0.718266 0.953270 0.960487
FI10 0.728316 0.950265 0.956447
FI11 0.730081 0.953082 0.956807
FI12 0.723043 0.956661 0.95819
FI13 0.734215 0.950947 0.968519
FI14 0.707463 0.959728 0.964880
FI15 0.729155 0.940718 0.962421
FI16 0.710953 0.955808 0.967056
FI17 0.720151 0.950332 0.952475
FI18 0.713341 0.952477 0.962521
FI19 0.715501 0.951121 0.954244
FI20 0.728393 0.948643 0.954857
Average value 0.720750 0.951880 0.960497

Table 13: Performance matrices results of adaptive unsharp
masking filter integrated with the Gabor filter on the CHASE_DB1
database.

Fundus images Sen Acc Sp
FI01 0.716373 0.955950 0.993391
FI02 0.728609 0.952957 0.991640
FI03 0.731022 0.958210 0.994449
FI04 0.733234 0.958449 0.995169
FI05 0.737886 0.958862 0.961610
FI06 0.749893 0.952881 0.982098
FI07 0.734097 0.950622 0.983816
FI08 0.734952 0.954432 0.948331
FI09 0.735258 0.950659 0.931450
FI10 0.747998 0.946681 0.985081
FI11 0.736358 0.951839 0.924037
FI12 0.735460 0.957028 0.985096
FI13 0.747984 0.945325 0.981843
FI14 0.730824 0.955117 0.979578
Average value 0.735710 0.953500 0.974110

Table 14: Performance matrices results of PSO unsharp masking
filter integrated with the Gabor filter on the DRIVE database.

Fundus images Sen Acc Sp
FI01 0.746162 0.965569 0.979961
FI02 0.748538 0.958730 0.977710
FI03 0.730468 0.958861 0.975244
FI04 0.748574 0.955770 0.987287
FI05 0.748794 0.959573 0.980304
FI06 0.749458 0.954015 0.980577
FI07 0.734503 0.956558 0.979877
FI08 0.749806 0.959388 0.968673
FI09 0.756975 0.962064 0.988955
FI10 0.74559 0.963892 0.978787
FI11 0.741653 0.957203 0.979945
FI12 0.749106 0.957582 0.982605
FI13 0.749206 0.959318 0.977894
FI14 0.745921 0.956851 0.987419
FI15 0.756153 0.958874 0.968376
FI16 0.758354 0.958772 0.980668
FI17 0.748113 0.958524 0.978776
FI18 0.750263 0.958339 0.981894
FI19 0.753979 0.967158 0.987246
FI20 0.753445 0.959777 0.980127
Average value 0.748200 0.959340 0.980110

Table 15: Performance matrices results of PSO unsharp masking
filter integrated with the Gabor filter on the CHASE_DB1 database.

Fundus images Sen Acc Sp
FI01 0.759308 0.960156 0.994205
FI02 0.752015 0.954933 0.994897
FI03 0.765499 0.962807 0.985968
FI04 0.765182 0.965952 0.991941
FI05 0.757867 0.967832 0.978686
FI06 0.765903 0.956606 0.988225
FI07 0.752763 0.958306 0.981853
FI08 0.762151 0.963436 0.975938
FI09 0.750780 0.958976 0.977082
FI10 0.759728 0.968681 0.977371
FI11 0.756047 0.969477 0.979326
FI12 0.759391 0.954646 0.987873
FI13 0.759015 0.956353 0.978796
FI14 0.766664 0.95988 0.986658
Average value 0.759450 0.961280 0.984201
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Figure 9: Flowchart of the final algorithm.
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filter yield better performancemeasures either with regard to
Acc or Sen or Sp. Figure 9 illustrates the flowchart of the final
algorithm of the suggested approach.

/e segmented images of the retina 2 and retina 4 of the
DRIVE database and retina 5 of the CHASE_DB1database

achieved from different suggested approaches are repre-
sented in Figures 10–12, respectively.

/e explanations of both the algorithms are as follows.
First, read the colour image and extract the green channel of
the image. Next, initialize all the parameters of PSO-based

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 10: Segmented images achieved for various integrated techniques for retina 2 of the DRIVE data set: (a) ground truth image,
(b) original Gabor transformed image, (c) Gabor integrated with GCADW, (d) Gabor integrated with homomorphic filter, (e) Gabor
integrated with JHE, (f ) Gabor integrated with sharpen filter, (g) Gabor integrated with adaptive sharpen filter, and (h) Gabor integrated
with PSO sharpen filter.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 11: Segmented images achieved for various integrated techniques for retina 4 of the DRIVE data set: (a) ground truth image,
(b) original Gabor transformed image, (c) Gabor integrated with GCADW, (d) Gabor integrated with homomorphic filter, (e) Gabor
integrated with JHE, (f ) Gabor integrated with sharpen filter, (g) Gabor integrated with adaptive sharpen filter, and (h) Gabor integrated
with PSO sharpen filter.
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unsharp masking filter. Utilizing the global best solution, the
unsharpmask image is generated. In the next step, the Gabor
filter is applied, and a maximum Gabor enhanced image is
generated. In the last step, hysteresis thresholding is applied
with morphological cleaning for the vessel extraction.

To better explain the proposed idea’s superiority, we
have compared it with various state-of-the-art methods from
the literature and given the results of experiments in Ta-
ble 16. It represents the comparison with different suggested
approaches by using mentioned metrics: sensitivity,

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 12: Segmented images achieved for various integrated techniques for retina 5 of the CHASE_DB1 data set: (a) Ground truth image,
(b) original Gabor transformed image, (c) Gabor integrated with GCADW, (d) Gabor integrated with homomorphic filter, (e) Gabor
integrated with JHE, (f ) Gabor integrated with sharpen filter, (g) Gabor integrated with adaptive sharpen filter, and (h) Gabor integrated
with PSO sharpen filter.

Table 16: /e average results from DRIVE and CHASE_DB1 data sets were compared with some other approaches.

Approaches
DRIVE CHASE_DB1

Sen Acc Sp Sen Acc Sp
Cinsdikici and Aydın [26] — 0.929 — — — —
Zhang et al. [27] 0.712 0.938 — — — —
Rawi et al. [29] — 0.953 — — — —
Rawi and Karajeh [30] — 0.942 — — — —
Sreejini and Govindan [31] 0.713 0.963 0.986 — — —
Chaudhari et al. [32] 0.867 — — — —
Soares et al. [33] — 0.946 — — — —
Shabbir et al. [34] — 0.950 — — — —
Aguirre-Ramos et al. [35] 0.785 0.950 0.966 — — —
Yavuz and Kose [36] 0.677 0.957 0.978 — — —
Farokhian et al. [37] 0.693 0.939 0.979 — — —
Sundaram et al. [38] 0.690 0.930 0.940 0.710 0.950 0.960
Dash et al. [36] 0.756 0.952 0.981 0.770 0.950 0.970
Primitivo et al. [41] 0.846 0.961 0.970 — — —
Hashemzadeh and Azar [42] 0.783 0.953 0.980 0.773 0.962 0.984
Khawaja et al. [44] 0.802 0.956 0.973 — — —
Wang et al. [45] 0.807 0.956 0.978 0.842 0.970 0.982
Original Gabor filter 0.643 0.921 0.947 0.690 0.911 0.934
Proposed GCADW integrated with the Gabor filter 0.659 0.930 0.950 0.704 0.920 0.937
Proposed homomorphic filter integrated with the Gabor filter 0.637 0.929 0.946 0.648 0.917 0.938
Proposed JHE integrated with the Gabor filter 0.684 0.950 0.962 0.736 0.941 0.950
Proposed unsharp masking filter integrated with the Gabor filter 0.640 0.951 0.952 0.675 0.913 0.933
Proposed adaptive unsharp masking filter integrated with the Gabor filter 0.720 0.951 0.960 0.735 0.953 0.974
Proposed PSO unsharp masking filter integrated with the Gabor filter 0.748 0.959 0.980 0.759 0.961 0.984
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accuracy, and specificity for models presented in Cinsdikici
and Aydın [26], Zhang et al. [27], Rawi et al. [29], Rawi and
Karajeh [30], Sreejini and Govindan [31], Chaudhari et al.
[32], Soares et al. [33], Shabbir et al. [34], Aguirre-Ramos
et al. [35], Yavuz and Kose [36], Farokhian et al. [37],
Sundaram et al. [38], Dash et al. [36], Primitivo et al. [41],
Hashemzadeh and Azar [42], Khawaja et al. [44], and Wang
et al. [45]. /e results of all the proposed models are
summarized in Table 15. After a comprehensive study of
Table 16, it concludes that among all the suggested ap-
proaches, the PSO unsharpmasking filter integrated with the
Gabor filter delivers the highest accuracy, that is, 0.959 for
the DRIVE data set and 0.961 for the CHASE_DB1 data set.
Furthermore, it is observed that the suggested method de-
livers better results than many state-of –art-of-methods and
outperforms the existing Gabor filter technique.

5. Conclusions

In this work, six enhancement techniques are individually
combined with the Gabor filter to improve the performance
of the standard Gabor filter. /e proposed techniques are
assessed using DRIVE and CHASE_DB1 data sets. All to-
gether six algorithms are recommended for the improve-
ment of the traditional Gabor filter. /e parameters Sen,
Acc, and Sp are taken into account in order to determine the
best algorithm. Experimental results are compared with
state-of-the-art models. It is observed that the homomorphic
filter and unsharp masking filter integrated with the Gabor
filter underperforms compared to the standard Gabor filter
in terms of sensitivity on the DRIVE database. Similarly,
homomorphic and unsharp masking filters combined with
the Gabor filter underperform the standard Gabor filter in all
performance measures on the CHASE_DB1 database. /e
best results are attained with a PSO unsharp masking filter
with the Gabor filter by delivering an average value of Sen,
Acc, and Sp of 0.748, 0.959, and 0.9801 on the DRIVE data
set, respectively, and 0.759, 0.961, and 0.984 on the CHA-
SE_DB1 data set, respectively. /erefore, it is inferred that
adding different enhancement techniques before Gabor filter
boosts the performance of the traditional Gabor filter and
also improves the accuracy, specifically with respect to the
tiny vessels.

Consequently, it is observed that though deep learning, a
supervised approach is actively implemented for blood
vessel extraction in recent research and achieving better
results; still, the unsupervised traditional methods can be
enhanced to achieve precise vessel segmentation. Also, the
results of the suggested approach that is an unsupervised
approach outperform many state-of-the-art methods that
are coming under the group of unsupervised approaches.

Moreover, it will enable new practical applications,
where analysis of low-contrast images in real time is re-
quired, for example, robotic microsurgery of the eye.

A drawback of the suggested model is that even though
six enhancement techniques are combined with the Gabor
filter, but only one integrated model is able to perform better
as compared to the other integrated models. /is is because
enhancement of certain features might be accompanied by

undesirable effects that might be led to the loss of valuable
image information.

For future studies, we suggest considering different il-
lumination normalization techniques such as small-scale
retinex (SSR), multi-scale retinex (MSR), isotropic illumi-
nation, wavelet normalization, and so on combined with
deep learning approaches for vessel segmentation.
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