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1. Introduction

Alexandroff space is a topological space such that its col-
lection of open sets is closed under arbitrary intersection. In
1937, Alexandroff introduced these spaces with the name of
“Diskrete Räume” [1]. In [2], Steiner has named them
principal spaces. Alexandroff spaces are used and applied in
different domains like geometry, theoretical physics, and
diverse branches of computer sciences. After that, Alex-
androff spaces played an important role in digital topology
(cofinite spaces) (see [3–6]).

*e specialization quasiorder of an Alexandroff space is
defined by

x≤y⟺x ∈ y . (1)

Now, if ≤ is a quasiorder on space X then the set of all
supersetsB: � x↑: x ∈ X{ } (x↑: � y ∈ X: x≤y .) forms a
basis of an Alexandroff topology Y(≤ ) on X. In this case, the
closure x{ } is exactly the downset x↓: � y ∈ X: y≤ x . We
denote by v(x) � x↑ the minimal neighborhood of x. For
more information on Alexandroff spaces you can see [7–13].

In [14], Echi introduced a particular class of Alexandroff
spaces named primal spaces. (X, τ) is called a primal space if
there exists a map f: X⟶ X such that τ � Y(f), where
Y(f) is the collection of all f-invariant subsets of X (for more
information see [14, 15]). In [16], the authors characterizedmaps
f such that the primal space (X,Y(f)) is submaximal or door.

*is paper is devoted to characterizing Alexandroff
spaces which are submaximal, door, n-resolvable, Whyburn,
and weakly Whyburn. Some useful examples are presented

and commented and finally, all results on primal spaces are
deduced. In the first section of this paper, we will give
characterizations of Alexandroff spaces to be a submaximal,
door, and n-resolvable. *e second section is devoted to
introducing and characterizing topological spaces, called
quasi-Whyburn spaces, such that their T0-refections are
Whyburn. Particularly, the case of Alexandroff spaces is
totally deduced in this particular class of spaces.

2. Submaximal, Door, and n-Resolvable
Alexandroff Spaces

We know that a submaximal space is a topological space in
which all dense subsets are open.

*e following theorem characterizes submaximal spaces
[17].

Theorem 1. A topological space X is submaximal if and only
if for every Y⊆X, the subset Y∖Y is closed equivalently for
every Y⊆X and the subset Y∖Y is closed and discrete.

Now, before giving the first main result of this section,
some useful examples are presented and commented.

Example 1

(1) Let a, b, c, and d be distinct points and X � a, b, c, d{ }

equipped with the topology τ � ∅, X, a, b, c{ }, b{ },{

c{ }, b, c, d{ }, b, c{ }}. We can find the specialization
quasiorder as follows: a{ } � a{ }, d{ } � d{ },
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b{ } � a, b, d{ }, and c{ } � a, c, d{ } so that a≤ b, d≤ b,
a≤ c, and d≤ c.
We have (X, τ) is an Alexandroff space which is
submaximal.

(2) Consider the set N of natural numbers and for each
n ∈ N, let On � 0, 1, 2, . . . , n{ }. We equip the space N
with the topology τ � ∅,N, 1{ }{ }∪ On, n ∈ N .

*e Alexandroff space N, τ is not submaximal. In fact,
N∖ 2{ } is a dense subset which is not open.

*e previous examples give a motivation to investigate
conditions allowing Alexandroff spaces to be submaximal.

*e answer is given by the following theorem.

Theorem 2. Let X be an Alexandroff space. /en, the fol-
lowing statements are equivalent:

(1) X is submaximal
(2) /e specialization quasiorder is an order and every

chain in its graph has a length less than or equal to 2

Proof

(i) [(1)⟹(2)]. Suppose that X is submaximal. If x, y

are two elements of X satisfying x≤y and y≤ x then
x ∈ y and y ∈ x, which imply that x{ } � y . Using
the fact that every submaximal space is T0, we de-
duce that x � y and then the specialization quasi-
order is an order.
Now, suppose that x<y< z. If Y � x, z{ }, then
y ∈ Y∖Y and x ∈y⊆Y∖Y. Since x ∉ Y∖Y then it is
not closed.

(ii) [(2)⟹(1)]. If Y is a subset of X, we denote
Yc � a ∈ Y: a{ }≠ a{ } . Using 2), for every a ∈ Y∖Yc

and for any b ∈ a{ }∖ a{ }, b{ } is closed. Since X is an
Alexandroff space, then

Y � ∪
a∈Y

a{ }

� A∪ ∪
a∈Y−Yc

a{ }∖ a{ } ,
(2)

so that Y∖Y is closed and then X is submaximal. □

Corollary 1 (see [14], *eorem 4.1)
If (X, f) is a flow in set, then (X,Y(f)) is a submaximal

space if and only if f2 � f.

Definition 1. Let X be a topological space. X is called a door
space if any subset of X is open or closed.

Now, we state straightforward remarks.

Remark 1

(1) *e example cited in Example 1 (1)provides a space
that is not a door. Indeed, the subset a, c{ } is neither
open nor closed.

(2) Let X be the set (1/n), nN∗{ }∪ 0{ } equipped with the
topology defined as follows: for each
x ∈ X∖ 0{ }, v(x) � x{ } and v(0) � X.

Hence, every subset of X not containing 0 is open. Yet,
every subset of X containing 0 is closed.

*erefore, X is an Alexandroff door space.
Considering Alexandroff door spaces, the second main

result of this section is given by the following theorem. But,
first, we need to recall increasing and decreasing sets.

*e increasing hull of a set A in a quasiordered set
(X, ≤ ) is i(A) � x ∈ X: x≥ a for some a ∈ A{ }. A set A is
increasing if A � i(A). *e set i( x{ }) may be written as i(x).
Decreasing hulls and decreasing sets are defined dually. *e
closed sets in an Alexandroff space are just the decreasing
sets for the specialization quasiorder, and the open sets are
just the increasing sets.

Theorem 3. Let X be an Alexandroff space and ≤ is its
specialization order. /en, the following statements are
equivalent:

(1) X is a door space
(2) /e length of every chain in the graph of ≤ is not

greater than 2 and all chains of length 2 contain a
common point which must be a maximal point M or a
minimal point m

Proof

(i) [(2)⟹(1)]. Suppose that the common point is a
minimal point m. Let Y be a nonclosed subset of X.
So that Y is not decreasing in (X, ≤ ) equivalently
there is x ∈ Y such that x ∈ i(m) and m ∉ A. Since a
subset which not contains m is increasing, therefore,
it is open.
We work dually if the common point is a maximal
point.

(ii) [(1)⟹(2)]. By contradiction suppose that either
there exist a< b<d or a< b and c<d of length 2 with
no common point. In these cases, we have always
a, d{ } is not increasing and not decreasing, thus it is
not open and not closed which is a contradiction.
*is fact completes the proof. □

Corollary 2 (see [16], /eorem 4.3)
If (X, f) is a flow in set, then (X,Y(f)) is a door space if

and only if |f(Fix(f)c)|≤ 1.
Now, we will give a study of n − resolvable Alexandroff

spaces.
First, let us recall the definition of n − resolvable spaces.

If X is a topological space, then it is called
n − resolvable (n> 1) if there exist n-many mutually disjoint
dense sets of X. A 2-resolvable space is called a resolvable
space. Hewitt added also the condition “has no isolated
points” to the definition of resolvable spaces. Also, a to-
pological space is n − resolvable if and only if it is the union
of n-many mutually disjoint dense subsets.
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Stone [18] characterizes Alexandroff spaces which are
n-resolvable in the following theorem.

Theorem 4 (see [18]). Let (X, ≤ ) be a quasiordered set.
/en, we have equivalence between the following statements:

(1) X admit a partition into n mutually disjoint cofinal
sets

(2) ∀x ∈ X, x↑ has at least n elements

We note that, for every subset Y of an Alexandroff space
X, we have equivalence between the following items:

(1) Y is dense in X

(2) X � Y � ↓Y
(3) ∀x ∈ X, ∃a ∈ Y such that x≤ a

(4) Y is cofinal in (X, ≤ )

/is allows us to rephrase Stone’s result as follows.

Theorem 5. Let (X, τ) be an Alexandroff space and ≤ is its
specialization quasiorder. /en, the following statements are
equivalent:

(1) “≤ ” is n-resolvable
(2) ∀x ∈ X, x↑ contains at least n elements
(3) /ere is no maximal element in (X, ≤ )

(4) (X, τ) has no isolated points

We recall that the T0-reflection of a topological space X is
the quotient space denoted by T0(X): � X/ ∼ obtained from
the equivalence relation defined on X by x ∼ y if and only if
x{ } � y .

Corollary 3. Let X be an Alexandroff space. /en the fol-
lowing statements are equivalent:

(1) X is n-resolvable
(2) ∀x ∈ X, x↑ contains at least n distinct points
(3) Every maximal element x in the T0-refection T0(X)

arises from a cycle x � x1 <x2 <x3 < · · · < xn < xn +

1 � x containing at least n distinct points xi

Now, we shed some light on interesting examples.

Example 2

(1) Consider the setZ of all integers with the usual order
≤ . For any integer n≥ 2 let
Ak � j ∈ Z: j � kmod n . *en A0, A1, . . . , An−1
are mutually disjoint dense sets of the Alexandroff
space (Z,Y(≤ )), showing that this space is n-re-
solvable for every n≥ 2. Indeed, it is obvious that n↑
is infinite for each n ∈ Z.

(2) Let ≤ be the inverse order of N where N is the set of
all natural numbers. In the Alexandroff space
(N,Y(≤ )), every set A of X is dense if and only if
0 ∈ A. *erefore, (N,Y(≤ )) is not a resolvable
space. In fact, we note that |0↑| � 1.

3. Alexandroff Spaces Which Are Whyburn and
Quasi-Whyburn Spaces

LetX be a topological space and F be a subset ofX.*en, F is
called almost closed if and only if F∖F � x{ } for some x ∈ X.
We use the notation F⟶ x.

*e notion of Whyburn spaces was first introduced as
accessibility spaces by G.T. Whyburn in his famous paper [19].
Hence, a Whyburn space is a topological space X satisfying

Y⊆X,

Y≠Y,

x ∈ Y∖Y⟹∃B⊆Y s.t. B∖Y � x{ }.

(3)

A topological space X is called weakly Whyburn [20] if

Y⊆X,

Y≠Y⟹∃B⊆Y s.t. B∖Y is a singleton.
(4)

We denote the class of all Whyburn spaces (resp., weakly
Whyburn spaces) by AP-spaces (resp., WAP-spaces)
[21–23].

3.1. Quasi-Whyburn Spaces. A continuous map q from a
topological space X to a topological space Y is said to be a
quasihomeomorphism if U↦q− 1(U) defines a bijection
between the collection of all open sets of Y and the collection
of all open sets of X [24].

We can see easily that the canonical surjection
μX: X⟶ T0(X) is a quasihomeomorphism. More pre-
cisely, μX is an onto quasihomeomorphism, and in this case,
the following results are useful.

Lemma 1 (see [25]). Let μ: X⟶ Y be continuous onto the
map. /en, μ is a quasihomeomorphism if and only if μ is an
open map and q− 1(q(A)) � A for every open subset A of X;
equivalently, μ is a closed map and q− 1(q(A)) � A for every
closed subset A of X.

Lemma 2 (see [16]). A quasihomeomorphism μ: X⟶ Y is
onto if and only if μ− 1(A) � μ− 1(A) for every subset A of Y.

If X is a topological space, x ∈ X, and Y⊆X, we take the
notations in [16]. In that paper, authors denote by d0(x) the
subset y ∈ X: x{ } � y   and by d0(Y) the union of d0(a)

for all a ∈ Y.
Using these notations, we can find the following

properties:

(i) d0(Y) � μ−1
X (μX(Y))

(ii) d0(d0(Y)) � d0(Y)

(iii) Y⊆d0(Y)⊆Y and d0(Y) � Y

(iv) If Y is open or closed, then d0(Y) � Y

Now, we introduce the notions of d0-closed subsets, in a
given topological space, and quasi-Whyburn spaces as
follows.
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Definition 2. Let A be a subset of a topological space X.
*en,

(i) A is called d0-closed if d0(A) is closed, that is, if
d0(A) � A

(ii) If the T0-reflection of X is a Whyburn space, X is
called a quasi-Whyburn space or a QAP-space (or
also a T0-Whyburn space)

*e following theorem gives a characterization of quasi-
Whyburn spaces.

Theorem 6. If X is a topological space, then we have
equivalence between the following statements:

(1) X is a QAP-space
(2) For all non-d0-closed subsets A of X and for all

x ∈ A\d0(A), there is a subset B of X such that
d0(B)⊆d0(A) with B\d0(B) � d0(x)

Proof. (1)⟹ (2). Let A be a non-d0-closed subset of X and
x ∈ A\d0(A). *en, μX(x) ∈ μX(A)\μX(A). By hypothesis,
there is B⊆X such that μX(B)⊆μX(A) (which is equivalent to
d0(B)⊆d0(A)) satisfying μX(B)⟶ μX(x). Now, applying
μ−1

X , we have

d0(x) � μ−1
X μX(B)∖μX(B) 

� μ−1
X μX(B) ∖μ−1

X μX(B)( 

� μ−1
X μX(B)( ∖μ−1

X μX(B)( 

� d0(B)∖d0(B) � B∖d0(B).

(5)

(2)⟹ (1). Conversely, let A⊆X such that μX(A) is not
closed in T0(X) and consider a point x in X with
μX(x) ∈ μX(A)\μX(A). *en, x ∈ A\d0(A) with A non-
d0-closed. So, by hypothesis, there is a subset B of X such
that d0(B)⊆d0(A) (which is equivalent to μX(B)⊆μX(A))
satisfying B\d0(B) � d0(x). *us, μ−1

X ( μX(x) ) � μ−1
X

(μX(B))∖μ−1
X (μX(B)) � μ−1

X (μX(B)∖μX(B)). *erefore,
μX(B)⟶ μX(x). □

Definition 3. A topological space X is called quasiweakly
Whyburn space (or T0-weaklyWhyburn space) and denoted
by QWAP-space if its T0-reflection is a weakly Whyburn
space.

*e proof of the following result is similar to that of
*eorem 6.

Theorem 7. If X is a topological space, then we have
equivalence between the following statements:

(1) X is a QWAP-space
(2) For all non-d0-closed subset A of X, there is a subset B

of X with d0(B)⊆d0(A) and B\d0(A) � d0(x), for
some x ∈ X

3.2. Alexandroff Spaces Which Are Whyburn and Quasi-
Whyburn Spaces

Theorem 8. If X is an Alexandroff space, then we have
equivalence between the following statements:

(i) X is Whyburn
(ii) ∀x ∈ X, |↓x|≤ 2

Proof. Suppose that X is Whyburn and there exists x ∈ X

such that (↓x)∖ x{ } contains two distinct elements y and z.
Since x{ } is not closed and y ∈ x{ }∖ x{ }, there exists B ⊂ x{ }

such that B∖ x{ } � y . Yet, in that case, B � x{ }, which leads
to a contradiction because (↓x)∖ x{ } contains also z.

Conversely, suppose that each element of X has at most 2
predecessors.

Let Y⊆X such that Y≠Y. Using the fact that X is
Alexandroff, we have

Y � ∪ [↓t: t ∈ Y]. (6)

Let x ∈ Y∖Y and t ∈ Y satisfying x ∈↓t. Since |↓t|≤ 2,
then ↓t � t, x{ }. If we take B � t{ }, we can see that B ⊂ Y and
B∖Y � x{ }. We deduce that X is a Whyburn space. □ □

Corollary 4. Let (X, P(f)) be a functionally Alexandroff
space. /en, we have equivalence between the following
statements:

(i) (X, P(f)) is a Whyburn space
(ii) ∀x ∈ X, f2(x) ∈ x, f(x) 

Example 3

(1) Consider a given set X � a, b, c, d{ }.
Let τ � ∅, X, a, b, c{ }, b{ }, c{ }, b, d, c{ }, b, c{ }{ } be an
Alexandroff topology on X.
Suppose that X is Whyburn. Since b{ } is not closed,
then there exists B ⊂ b{ } such that B∖ b{ } � a{ }. *is
is an impossible fact because B∖ b{ } � a, d{ }. *ere-
fore, this Alexandroff space is not Whyburn.

(2) Let X � Z∪ ∞{ }. *e topology on X satisfying
n{ } � n,∞{ }, for every n ∈ Z and ∞{ } � ∞{ } is an
Alexandroff topology.

Clearly, for any nonempty subset A of X, we have
A � A∪ ∞{ }; then, the condition x ∈ A\A means that
x �∞, and thus, A⟶ x. We observe that, in this case, for
every n ∈ Z, |↓n| � | n,∞{ }| � 2 and |↓∞| � | ∞{ }| � 1. One
can illustrate this situation in Figure 1.

Remark 2

(1) Let (X, τ) be the Alexandroff space cited in Example
1 (1) and suppose that it is Whyburn. Since b{ } is not
closed, then there exists B⊆ b{ } such that B∖ b{ } � a{ }.
*is is an impossible fact because B∖ b{ } � a, d{ }.
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*erefore, this Alexandroff space is not Whyburn.
Moreover, for the same reason, we note that the
space cited in Example 1 (2) is not Whyburn.

(2) *e example cites in Remark 1 (2) provides a
Whyburn space.

Proposition 1. Let X be an Alexandroff space. /en, X is
weakly Whyburn if and only if X is Whyburn.

Proof. Clearly, any Whyburn space is weakly Whyburn.
Conversely, suppose that X is a WAP-space and there

exists x ∈ X such that |↓x|> 2.
If we take Y � x{ }, then Y is not closed, which implies

that there exists B ⊂ Y such that |B∖Y| � 1. *us, B � x{ },
and so |B∖Y|> 1 which is a contradiction. □

Corollary 5. Let X be a Whyburn space. /en, the following
statements are equivalent:

(1) X is an Alexandroff space
(2) X is a primal space

Proof. It is enough to see that an Alexandroff Whyburn
space is a functionally Alexandroff space. Hence, by *eo-
rem 8, |↓x|> 2 for any x ∈ X. Two cases arise as follows:

(a) If |↓x| � 1, we take f(x) � x, and thus
x{ } � ↓x � x{ } � fn(x), n ∈ N .

(b) If |↓x| � 2, then ↓x � x, y , and in this case, we take
f(x) � y. So, x{ } � ↓x � x, y  � x, f(x)  � fn

(x), n ∈ N}. Indeed, f2(x) ∈ x, f(x)  since f2(x)

� f(f(x)) � f(y) which is equivalent, by the
construction of f.

(i) y, if |↓y| � 1, and thus f2(x) � f(x)

(ii) z, if |↓y| � 2, and thus z ∈↓y\ y ⊆↓x\ y  � x{ },
and consequently, f2(x) � x □

Theorem 9. Let X be an Alexandroff space. /en, the fol-
lowing statements are equivalent:

(i) X is a QAP-space
(ii) ∀x ∈ X and ∀y, z ∈↓x, we have (↓x � ↓y)∨(↓x �

↓z)∨ (↓y � ↓z)

Proof. *e first remark that X is Alexandroff if and only if
T0(X) is Alexandroff and for any x, y ∈ X; we have
x≤y⟺μX(x)≤ μX(y).

(i) (i)⟹(ii). Let x ∈ X and y, z ∈↓x. *en,
μX(z), μX(y) ∈↓μX(x). Now, using*eorem 8, we get

(μX(x) � μX(y))∨(μX(x) � μX(z))∨ (μX(z) �

μX(y)).*erefore, (↓x � ↓y)∨(↓x � ↓z)∨(↓y � ↓z).
(ii) (ii)⟹(i). Let x ∈ X. By *eorem 8, it is enough to

see that |↓μX(x)|≤ 2. In this case, suppose that
↓μX(x)⊇ μX(x), μX(y), μX(z) . *en, y, z ∈↓x, and
thus, by hypothesis, the family μX(x), μX(y),

μX(z)} is not pairwise distinct, as desired. □

Example 4

(1) Figure 2shows the following: ↓x � x{ } and
↓0 � ↓1 � ↓2 � ↓3 � 0, 1, 2, 3, x{ }. Let a, b ∈↓t, then
two cases arise as follows:

∞

······
−4 −3 −2 −1 0 1 2 3 4

Figure 1: Alexandroff topology.

x

3

21

00′ ´0

Figure 2: QAP-space.

x

0′ 0 0′

Figure 3: Functionally Alexandroff space.

x

0 ′00′

12

3

Figure 4: X is not a QAP-space.

x

00´ ´0

Figure 5: T0(X) is not a functionally Alexandroff space.
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(i) If t≠x, then necessary ↓a � ↓t or ↓b � ↓t
(ii) If t � x, then a, b ∈↓t means that a � b � t and

thus ↓a � ↓b � ↓t

(2) Figure 4 shows the following:↓x � X,
↓0 � 0, 1, 2, 3{ }, and ↓0′ � 0′, 1′, 2′, 3′ . *en,
1, 1′ ∈↓x, but ↓0, ↓0′, ↓x  is a family of pairwise
distinct elements. *erefore, X is not a QAP-space.

T0(X) is defined by Figure 5which is not a
functionally Alexandroff space.

(3) Figure 6 shows the following:

↓x � X, ↓4 � ↓1 � ↓2 � ↓3 � 1, 2, 3, 4{ }, and thus,
for any a, b, c ∈ X, we have
(↓a � ↓b)∨(↓a � ↓c)∨(↓b � ↓c). *erefore, X is a
QAP-space.
T0(X) is defined by Figure 7 which is a func-
tionally Alexandroff space.

Theorem 10. Let X be an Alexandroff space. /en, the
following statements are equivalent:

(i) X is a QWAP-space
(ii) X is a QAP-space

Proof. Using Proposition 1 and the fact that a topological
space is Alexandroff if and only if its T0-reflection is
Alexandroff. We get it immediately.

X is a QWAP − space⟺T0(X) is aWAP − space

⟺T0(X) is a AP − space

⟺X is aQAP − space.

(7)

□
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