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With the rapid development of the Internet, the massive amount of web textual data has grown exponentially, which has brought
considerable challenges to downstream tasks, such as document management, text classi�cation, and information retrieval.
Automatic text summarization (ATS) is becoming an extremely important means to solve this problem. �e core of ATS is to
mine the gist of the original text and automatically generate a concise and readable summary. Recently, to better balance and
develop these two aspects, deep learning (DL)-based abstractive summarization models have been developed. At present, for ATS
tasks, almost all state-of-the-art (SOTA) models are based on DL architecture. However, a comprehensive literature survey is still
lacking in the �eld of DL-based abstractive text summarization. To �ll this gap, this paper provides researchers with a com-
prehensive survey of DL-based abstractive summarization. We �rst give an overview of abstractive summarization and DL.�en,
we summarize several typical frameworks of abstractive summarization. After that, we also give a comparison of several popular
datasets that are commonly used for training, validation, and testing. We further analyze the performance of several typical
abstractive summarization systems on common datasets. Finally, we highlight some open challenges in the abstractive sum-
marization task and outline some future research trends. We hope that these explorations will provide researchers with new
insights into DL-based abstractive summarization.

1. Introduction

In the digital era, cloud resources, such as webpages, blogs,
news, user messages, and social network platform, have
accumulated gigantic amounts of textual data, and they are
increasing exponentially every day. In addition, various
articles, books, novels, legal documents, scienti�c papers,
biomedical documents, and other archives also contain rich
textual content. As a result, information overload is be-
coming more and more serious. Almost every day, users
must spend a lot of time browsing all kinds of cumbersome
texts and �ltering out redundant information, which dra-
matically reduces their e�ciency [1–11]. �erefore, how to
quickly locate the information needed from the text re-
sources, then summarize and compress it, has become an
urgent and fundamental problem to be solved. Manual
summarization requires browsing all the content and then

summarizing, which is very expensive and easily lost in
massive data. Automatic text summarization (ATS) provides
an e�ective way to solve this problem [12–21].

ATS aims to automatically generate a concise and
readable summary containing the core contents of the input
text. It is becoming more and more important for solving
how to obtain required information quickly, reliably, and
e�ciently. Due to the complexity of input text, ATS has
become one of the most challenging tasks in the �eld of
natural language processing (NLP) [22–34]. As early as 1958,
Luhn [35] began the study of ATS. �ey proposed to au-
tomatically extract the summaries from magazine articles
and technical papers. In 1995, Maybury [36] constructed a
system that can select key information from an event da-
tabase and de�ned a high-quality summary as the most
essential content extracted from the input document. In
2002, Radev et al. [37] also de�ned the summary as a
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combination of sentences generated from multiple (or one)
input documents, which contains the core contents of input
documents. .ey emphasized that the length of the gener-
ated summary is no more than half of the input or even less.
.ese previous descriptions capture many essential char-
acteristics of the ATS tasks, that is, the summaries should
cover the core contents of the input document and be
concise.

Generally, there are two prominent summarization
systems based on the way the summaries are generated:
extractive summarization [38–41] and abstractive summa-
rization (ABS) [42–53]. Extractive systems directly extract
sentences or phrases from the original document to form a
summary, including graph-based methods (e.g., LexRank
[54]), centrality-based methods (e.g., Centroid [55]), and
corpus-based methods (e.g., TsSum [56]). Abstractive sys-
tems need to first understand the semantics of the text, and
then employ the algorithm of natural language generation
(NLG) to generate a more concise summary using para-
phrase, synonymous substitution, sentence compression,
etc. .erefore, compared with extractive summarization, the
concept of ABS is closer to the process of handwritten
summaries [57]. However, for a long time, due to the
limitations of traditional methods in textual representation,
understanding, and generation ability, the development of
ABS is slow, and the effect is also worse than that of ex-
tractive summarization [58].

Recently, with the continuous improvement of neural
network theory and technology, deep learning (DL) has
become one of the most effective and promising methods,
and has achieved SOTA effect on a lot of tasks [59–66], such
as image processing, computer vision (CV), NLG, NLP, etc.
In 2015, Rush et al. [67] first transferred deep learning
technology to ABS. .ey constructed an ABS model based
on encoder-decoder architecture. After that, various im-
proved ABS models were developed, all of which were deep
neural networks built under the encoder-decoder archi-
tecture. To this day, the research community’s enthusiasm
for DL-based ABS has been unabated, and many excellent
methods have emerged. Moreover, the results of DL-based
ABS are still constantly being refreshed.

As more and more researchers devote themselves to ABS
research, an overview is urgently needed to help them
quickly and comprehensively understand the achievements
and challenges in this field. In this work, we aim to fill this
gap. Table 1 shows the main directions of our efforts in this
paper. To this end, we focus on DL-based ABS tasks and
review their development process. We also summarize some
popular basic frameworks and improved methods. .en, we
analyze the performance of the existing models and ob-
jectively describe their advantages and shortcomings.
Moreover, we compare their results on large-scale public
datasets using some popular evaluation metrics. Finally, we
highlight some open challenges in the ABS task and outline
some future research trends. Specifically, compared with
some similar work, we further expand the following four
aspects: (1) From the perspective of methodology, we classify
some popular models in recent years; (2) we define a new
type of model, which deals with the problem of factual

errors, and conduct in-depth analysis on them; (3) we
summarize the ROUGE scores of all SOTA models in the
past 5 years, and visually show the development process of
summarization technology based on deep learning; (4) and
we discuss the possible hotspots of future research from the
perspective of application.

.e main contributions of our work are as follows:

(i) We provide a systematic overview of the DL-based
ABS approaches and detail several popular frame-
works under the encoder-decoder architecture.

(ii) We classify the DL-based ABS, elaborate the
framework of each class, and analyze the advantages
and disadvantages.

(iii) We provide a comprehensive overview of com-
monly used datasets and evaluation metrics in the
ABS tasks. We also report the performance analysis
results of different models on large-scale datasets,
which should be helpful for researchers to choose a
suitable framework and model according to their
own needs.

(iv) We discuss several directions worth studying and
provide some new perspectives and inspirations for
future research and application of ABS.

2. Preliminaries

2.1. Problem Formulation. ABS is an intersecting task of
natural language understanding (NLU) and NLG. It needs to
perform semantic analysis on the input document first, and
then employ some NLG techniques to generate short
summary sentences. Specifically, given one or more input

Table 1: .e main directions of our efforts in this paper.

Gaps/limitations .e way to address in this paper

Comprehensive
classification

From the perspective of methodology,
we classify some popular models in

recent years, which is more convenient
for readers to distinguish and select

appropriate models.

Summary of the new
methods

.e summary of new methods has
always been a very vague problem.�is
paper is driven by application and
classifies new technologies that have

appeared in the past three years, which is
more in line with readers’ expectations

for new technologies.

Analysis of results (not
limited to papers but
also competition results
and public large-scale
models)

To the best of our knowledge, we are the
first to systematically present all SOTA
results for that year, including public
literature, competition data, and
published large-scale pretrained

models, at a time granularity of years.

Summary from an
application perspective

.e biggest purpose of this article is to
help readers better choose a suitable

summarization model, so we discuss the
possible hotspots of future research

and some limitations from the
perspective of application.
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documentsD consisting ofmany tokens (w1, w2, · · · , wn), ABS
aims to generate a shorter description Y � (y1, y2, · · · , ym)

that captures the gist of D, and usually m<n/2. Among them,
all tokens come from a pre-defined fixed vocabulary V.

Figure 1 depicts a general architecture of DL-based ABS,
which is mainly composed of three steps: preprocessing,
semantic understanding, and summary generation. In the
preprocessing step, some linguistic technologies are mainly
used to structure the input text, such as sentence segmen-
tation, word tokenization, and stop-word removal, etc. In
the semantic understanding step, a neural network is con-
structed to recognize and represent the deep semantics of the
input text. .is step occurs in the vector space, and finally
generates a fusion vector for the next step. In the summary
generation step, the generator makes appropriate adjust-
ments to the fusion vector provided in the previous step, and
then maps the vector space representation to the vocabulary
to generate summary words.

2.2. Deep Neural Networks. Deep neural networks (DNNs)
are the foundation of deep learning, which use sophisticated
mathematical methods to train various models. It contains
many hidden layers, so it is sometimes called a multi-layer
perceptron (MLP). In this section, we introduce several
DNNs commonly used in ABS, including recurrent neural
networks (RNN), convolutional neural network (CNN), and
graph neural network (GNN).

2.2.1. Recurrent Neural Network. .e proposal of RNN is
based on an intuitive understanding that “human’s cog-
nition is based on experience and memory.” In RNN, there
is a sequential relationship within the sequence, and ad-
jacent items depend on each other. .e network predicts
the output of the next time step by combining the char-
acteristics of the input at the previous and the current
timestep. Specifically, the hidden layer nodes of RNN are
connected to each other. .e hidden layer input is com-
posed of the output of the input layer and the previous
hidden layer. .e structure of RNN is shown in Figure 2
[68]. Given an input sequence D � (w1, w2, · · · , w|D|),
where wt (t≤ |D|) denotes the input token at timestep t,
RNN can output the vector representation of D, which is
h � (h1, h2, · · · , h|X|).

RNN is very effective in processing sequential data. It
can mine temporal and semantic information in data.
.erefore, the RNN-based DL models have made
breakthroughs in solving some challenging problems in
NLP, such as information extraction (IE), recommender
system, machine translation, text summarization, and
timing analysis. However, when the sequence is too long,
RNN begins to appear gradient explosion and disappear.
To alleviate this problem, Cheng et al. [68] constructed a
novel neural network called Long Short Term Memory
(LSTM). Different from RNN, LSTM selectively stores
information through the input, forget, and output gates,
which largely solves the problem of long-term depen-
dencies. On the basis of LSTM, Cho et al. [69] further
simplified the network structure. .ey used an update gate

to replace the input and forget gates and proposed a novel
Gate Recurrent Unit (GRU). Furthermore, by increasing
the flow of information from back to front, the bidirec-
tional RNNs are proposed, denoted as: Bi-RNN, Bi-LSTM,
and Bi-GRU.

2.2.2. Convolutional Neural Network. CNN [70] is a deep
feedforward neural network composed of many convo-
lution operations. .e neurons in CNN are arranged in
three dimensions, that is, depth, width, and height.
Neurons in different layers are no longer fully connected
but connected between a small area. .e most notable
features of CNN are equivariant representations, sparse
interactions, and parameter sharing, providing a way for
neural network models to handle inputs of varying sizes.
.e basic CNN consists of three structures: convolution,
activation, and pooling. CNN employs the convolution
kernel to extract features from the data object, and uses
maximum pooling on the extracted features at intervals,
which can obtain different levels of features from simple
to complex. .e convolution filter and pooling opera-
tions can not only identify the important characteristics
of the input matrix but also greatly simplify the com-
plexity and reduce the parameters. One of the convo-
lution blocks is composed of consecutive M
convolutional layers and b pooling layers. In a CNN, N
convolutional blocks can be stacked consecutively, and K
fully connected layers are connected at the end. Gen-
erally, M is set to 2–5, b is 0 or 1, N is 1–100 or more, and
K is 0–2. .e structure of a commonly used typical CNN
is shown in Figure 3. As the core technology of CV, CNN
plays an essential role in the image field. Classical CNN
includes Lenet, Alexnet, GoogleNet, VGG, etc. In recent
years, CNN has been expanding in face recognition,
machine translation, motion analysis, and NLP, and has
achieved good results.

2.2.3. Graph Neural Network. GNN [71] is a neural network
that specializes in processing graph data. A basic idea of
GNN is to embed nodes according to the local neigh-
bourhoods. Intuitively speaking, the characteristics of each
node and the nodes connected to it are aggregated through a
neural network. .e schematic diagram of GNN is shown in
Figure 4 [71]. .e embedding of node v in the k-th layer is
calculated as follows [71]:

h0v � xv, (1)

hk
v � σ Wk 􏽘

u∈N(v)

hk−1
u

|N(v)|
+ Bkh

k−1
v

⎛⎝ ⎞⎠, ∀k> 0, (2)

where h0v is the embedding of node v at 0-th layer, hk
v is the

embedding of node v at k-th layer, and N(v) is the set of
neighbour nodes of v. At present, there are mainly four types
of GNN, namely, graph convolution networks (GCNs),
graph attention networks (GANs), gated graph neural
network (GGNN), and graph generative network (GGN).
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3. Methodologies

In this section, we review and summarize the development of
ABS from the perspective of methodology.

3.1. Seq2Seq Framework. .e Seq2seq (sequence-to-se-
quence) framework, also known as the encoder-decoder
framework, is widely regarded as the most efficient method
in converting text from one form to another, such as speech
recognition, question answering system, machine transla-
tion, etc. .ese models employ an encoder to identify,
understand, and parse the input sequence, and use the high-
dimensional dense feature vector to characterize it. .en, on
the decoder side, the feature vectors of the input items are
used to generate the output items gradually. Figure 5 shows

the basic encoder-decoder framework. .e encoder-decoder
framework is the most basic and core framework of DL-
based ABS models. And, the encoder and decoder are
constructed using various neural networks. A large number
of research results are put forward based on encoder-de-
coder architecture [22–24], which makes the performance of
the ABS models continuously improved.
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3.2. Encoder-Decoder Systems with Basic Attention
Mechanism. In 2015, Rush et al. [67] applied the encoder-
decoder framework to the ABS for the first time. .ey
proposed a novel ABS model with an attention mechanism.
.e model is mainly composed of the feed-forward neural
language model (FFNLM), which is a parameterized neural
network. .e most significant advantage of their system is
the use of a more powerful attention-based encoder (vs. Bag-
of-Words encoder) and a beam search strategy [72] (vs.
greedy decoding) to generate summaries.

After that, Chopra et al. [73] further proposed a con-
volutional RNNmodel for ABS, which is an extension of the
method proposed by Rush et al. [67]. .e encoder of their
model adopts a convolutional attention mechanism to en-
sure that the decoder aligns with the corresponding input
token at each decoding time step, thus providing an ad-
justment function for the generation process. In addition,
they also provided two optional networks for the decoder:
Vanilla RNN and LSTM. .e encoder-decoder framework
with an attention mechanism is shown in Figure 6 [73]. .e
attention-based context vector is calculated as in equations
(3)–(5) [73]:

e
t
i � v

Ttanh Wahi + Wbst + battn( 􏼁, (3)

αt
i � softmaxi �

exp e
t
i􏼐 􏼑

􏽐
n
i�1 exp e

t
i􏼐 􏼑

, (4)

ct � 􏽘
i

αt
ihi, (5)

where αt
i is the attention weight, which denotes the attention

paid to the i-th token in the input when generating the t-th
summary token. Wa and Wb are trainable parameters, st is
the hidden layer state of the decoder at time t. Finally,
the probability distribution at time step t is calculated as
follows [73]:

p (w) � softmax Wost + Voct + bgen􏼐 􏼑. (6)

Lopyrev et al. [74] tested two different attention
mechanisms in the news headlines generation task. .e first
one is the same as the dot mechanism in Figure 5, and they
called it complex attention. .e second one is a slight var-
iation of the dot mechanism consisting of some neurons
used to calculate the attention weights, which has specific
advantages when further exploring the functions of the
network, and they called it simple attention. .eir experi-
ments showed that the simple attention mechanism per-
formed better. Chen et al. [75] utilized the distraction-based
Bi-GRU to model input document. In order to better model
the overall document representation, they focused on spe-
cific regions and contents of the input text, while also
distracting them from traversing between different contents
of the input text. .eir work is the early application of the
coverage mechanism in ABS.

However, because RNN is difficult to control during the
generation process, the basic encoder-decoder architecture
still has some critical problems in ABS, such as generating

out-of-vocabulary (OOV) words, modeling keywords, and
capturing the hierarchical structure of words to sentences.
To alleviate these problems, Nallapati et al. [76] further
extended the basic encoder-decoder model. .ey con-
structed a feature-rich encoder, which uses an embedding
vector for the Part-of-Speech (POS), named Entity Rec-
ognition (NER) tags, and discretized TF and IDF values,
respectively. .en, these values are connected with word-
based embedding values as the encoder input. .e feature-
rich-encoder can capture the key concepts and entities in
the input document. .ey also employed a switching
generator-pointer to model rare/unseen words in the input
document, which alleviates the problem of generating OOV
words. Moreover, they also introduced hierarchical at-
tention to jointly model key sentences and keywords in the
key sentences.

Furthermore, when processing longer documents
(usually more than 1000 tokens), neural network-based
models often generate repeated words and phrases, and even
inconsistent phrases. To alleviate these problems, Paulus
et al. [77] adopted the intra-attentionmethod, which can pay
attention to the specific area of input tokens and continu-
ously generate output separately. At each decoding step, in
addition to the decoder’s hidden state and the previously
generated tokens, their model also employs an intra-tem-
poral attention function to pay attention to the specific area
of input text. .us, the intra-temporal attention can prevent
the model from repeatedly paying attention to the same part
in the original document at different decoding timesteps. To
solve the problem of generating repeated phrases based on
encoder hidden states, they further proposed to utilize intra-
decoder attention to incorporate more information about
the previously generated tokens into the decoder. At the
current decoding time step, considering the tokens that have
been generated allows the encoder-decoder model to make a
more holistic decision, which can effectively avoid gener-
ating duplicate tokens, even if these tokens are generated
many steps away.
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3.3. Hierarchical Encoder-Decoder Models. When the input
is a lengthy document, the basic single-layer encoder-de-
coder architecture cannot fully capture the relationship
between the contexts when encoding the document, which
leads to the problem of long-distance dependence. Re-
searchers found that long documents naturally have a hi-
erarchical structure, that is, documents are composed of
multiple long sentences (sentence level), and long sentences
are composed of multiple words (sentence level). Inspired by
this, researchers constructed a hierarchical encoder-decoder
architecture. .e hierarchical encoder-decoder architecture
can significantly reduce long dependency problems. .e
basic framework of the hierarchical encoder-decoder ABS is
shown in Figure 7.

Hierarchical neural models have shown strong perfor-
mance in document-based language models (LM) [78] and
some document classification [79] tasks. In 2015, Li et al.
[80] proposed a basic hierarchical ABS model, and Jadhav
and Rajan [81] further extended their model. And the
summaries generated by their method are significantly better
than similar methods in terms of informativity and read-
ability. Inspired by the graph-based NLP models, Tan et al.
[82] proposed a novel graph-based attention mechanism in
the hierarchical encoder-decoder framework. .ey
employed a word encoder to encode words, used a sentence
encoder to encode short sentences, and utilized the hidden
state of the sentences to construct a hidden state graph. .e
hierarchical attention value of the sentence is calculated
from a hidden state graph.

Although the above hierarchical encoder-decoder model
is designed based on the sentence-word hierarchy, it fails to
capture the global structural characteristics of the document.
In 2018, Li et al. [83] used the structural information of multi-
sentence summaries and documents to enhance the perfor-
mance of ABS models. In order to mine the information
compression and information coverage properties, they
proposed to model structural-compression and structural-
coverage regularization during summary generation. .ey
utilized sentence-level attention distributions to calculate the
score of the structural-compression, as follows [83]:

strCom αt( 􏼁 � 1 −
1

log N
􏽘

N

i�1
αi

tlogα
i
t, (7)

where αi
t is the sentence-level attention distribution. .e

structural-coverage of the summary is calculated as follows
[83]:

strCov αt( 􏼁 � 1 − 􏽘
i

min αi
t, 􏽘

t−1

t′�1

αi
tlogα

i
t′

⎛⎝ ⎞⎠, (8)

which is used to encourage different summary sentences to
concentrate on different source sentences in generating
summary sentences. .eir method achieved the SOTA re-
sults at the time.

Hsu et al. [84] found that the extractive summarization
can get a high rouge score using sentence-level attention, but
it is not easy to read. In addition, a more complex ABSmodel
can obtain word-level dynamic attention, thereby generating

more readable sentences. Inspired by this, they use sentence-
level attention to adjust the attention assigned to each token,
reducing the probability of tokens in sentences with less
attention being selected. .e updated word attention is
calculated as follows [84]:

􏽢αt
m �

αt
m × βn(m)

􏽐mα
t
m × βn(m)

, (9)

where αt
m is word-level attention, βn(m) is sentence-level

attention. Moreover, they also proposed a novel inconsis-
tency loss function to penalize the different attention be-
tween two different layers.

3.4. CNN-Based Encoder-Decoder Models. Unlike RNN that
directly processes time-series data, CNN uses convolution
kernels to extract features from data objects, which are often
used in image-related tasks [85]. But after the text is rep-
resented by a distributed vector, each token is a matrix in the
vector space..en CNN can be used to perform convolution
operations in text-related tasks [86]. In 2016, Facebook AI
Research (FAIR) used CNN to build an encoder under the
encoder-decoder architecture for the first time, and achieved
SOTA results in machine translation tasks [87].

In 2017, Gehring et al. [88] proposed a model ConvS2S
and its encoder and decoder both use CNN, which is the
most representative ABS model based entirely on CNN. .e
overall architecture of themodel is shown in Figure 8 [88]. In
their model, in addition to receiving the word embedding,
the input layer also adds a position vector for each input
token. .en, the word and position embeddings are con-
catenated to form the final embeddings of the word, which
enables the CNN-based models to perceive the word order
like RNN and use the convolution module to convolution
and nonlinear transformation of the embedding. In addi-
tion, to alleviate the problem of gradient disappearance and
explosion, they introduced residual connections between
layers. .eir model achieves similar results to the RNN-
based models on DUC-2004 and Gigaword datasets, and the
training speed is greatly improved.

Fan et al. [89] proposed a model that can specify the
length, style, and entities of the summary, and other high-
level attributes, which can control the shape of the generated
summary and meet the needs of user customization. .e
encoder and decoder of their model are constructed by
CNN. Inspired by Gehring et al. [88], they extended the
intra-attention [87] to a multi-hop intra-attention..ey also
employed the self-attention mechanism on the decoder side
to use the previous decoding information. To control the
length of the generated summary, they first used the discrete
bins to quantize summary length. .en, they extended the
input vocabulary with special word types and used a marker
to indicate the length of the ground-truth summary during
training.

Narayan et al. [90] constructed an extreme ABS system
that aims to generate a one-sentence title for answering the
question “What is the article about?” .eir model is a topic-
conditioned architecture, and the encoder and decoder are

6 Computational Intelligence and Neuroscience



both built on CNN. .e convolutional encoder associates
each token with a topic embedding to capture whether it
represents the salient information of the document, while
the decoder controls the prediction of each token. Specifi-
cally, they employed the LDA topic model [91] to obtain the
topic embeddings of words and documents, which is the
additional input of the encoder and decoder.

In sequence modeling, because the convolutional layer
can only generate fixed-size context vectors, CNN-based

ABS models cannot directly process variable-length se-
quence samples. However, the superposition of convolu-
tional layers can increase the context representation,
forming a hierarchical structure. .e elements in the se-
quence can be calculated in parallel between layers, and the
long-distance dependence problem between elements can be
solved under a shorter path. .erefore, the training of the
ABS model based on CNN is more efficient than RNN.
However, compared with the chain structure of RNN, the
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processes each word token, and the sentence level processes each sentence.
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hierarchical structure of CNN makes the adjustment of
parameters greatly increase, which dramatically increases
the cost of parameter adjustment when the model is trained
on a large dataset.

3.5. Methods for Tackling OOV Words and Repetition
Problems. For ABS systems, OOV words and repetition
problems are one of the most important factors affecting
model performance, and they are also the most common
problems. Based on the statistics of the generated summa-
ries, the researchers found that almost all OOV words can be
found from the input document, and they are low-frequency
words. .erefore, the researchers proposed that when
generating the summary token, the model should be able to
find and copy low-frequency words from the input docu-
ment. In addition, to alleviate the problem of generating
repeated words or phrases, the tokens that have been gen-
erated previously should be penalized (reduce the score)
during the generation process to avoid generating duplicate
tokens.

Gulcehre et al. [92] constructed a model to use an
attention-based pointing mechanism to process rare and
unseen words (OOV words). .eir model employed two
softmax layers to predict the next generated words: one
softmax to predict the location of the word in the source
sentence and copy it as output, and the other to predict the
word in the shortlist vocabulary. In each prediction
process, they use Multilayer Perceptron (MLP) to decide
which softmax to use to generate words. At the same time,
a large vocabulary trick (LVT) [93] is introduced, which
reduces the size of the softmax layer in the decoder side
and makes the decoding process more efficient. .eir
inspiration comes from a common human psychology:
when people do not understand an entity’s name, they tend
to make guesses based on context and background. .eir
method significantly alleviates the problem of generating
OOV words. .e framework of the pointer softmax is
shown in Figure 9 [92].

Gu et al. [94] proposed a new ABS model (CopyNet)
based on the encoder-decoder framework, incorporating the
copyingmechanism into the decoding process..e CopyNet
model can well combine the regular word generation
method in the decoder with a new copy mechanism, which
can select words and phrases in the input document and
place them in the appropriate positions of the generated
summary. Particularly, they conducted experiments on both
synthetic and real datasets, and the results confirmed the
effectiveness of their models in alleviating the OOV word
problem.

Furthermore, See et al. [95] proposed a more compre-
hensive ABS model with a point-generator (PG) network.
.e PG employs a pointer to copy words from the input
document, which helps to accurately reproduce the infor-
mation while retaining the ability to generate new tokens
through the generator. In addition, to alleviate the problem
of generating repeated words and phrases, they proposed a
coverage mechanism to track what has been generated and
punish them. Compared with the methods of Gulcehre [93]

et al. and Nallapati et al. [76], PG is considerably different,
with two main aspects: (1).e pointer of PG can freely select
the words to be copied, while the pointers of the other two
methods are only activated when processing OOV words or
named entities; (2) .e final generating distribution of PG is
a combination of pointer distribution and vocabulary dis-
tribution, while the distribution of the other two models is
independent. .e framework of the PG model is shown in
Figure 10 [95].

.e PG significantly alleviates the problem of generating
OOV words and repetition, but it is still limited by the
following two problems: (1) .e pointer can only copy exact
words, ignoring possible distortions or abstractions, which
limits its ability to capture a latent potential alignment; (2)
.e hard copy mechanism allows the model to have a strong
copy orientation, which will cause most sentences to be
generated by simply copying the source input. Based on this,
Shen et al. [96] proposed a generalized pointer generator
(GPG) to enhance potential alignment. .eir model allows
re-editing the word pointed to by the pointer instead of a
simple hard copy and performing the editing by converting
the pointed word embedding into a target space with a
learned relation embedding. Compared with a hard copy in
PG, GPG can capture more abundant potential alignments,
which contributes to the controllability and interpretability
of the ABS model.

3.6. Methods for Tackling Factual Errors Problems. For the
ABS system, it is necessary to first understand the entire
input document, and then generate a summary..is process
inevitably involves tailoring, modifying, reorganizing, and
fusing the input text, which makes the entire system un-
controllable and generates fake information. Some literature
has studied the factual errors problems in ABS models
[97–99], and they concluded that nearly 30% of summaries
generated using ABS systems did not match the facts de-
scribed in the original documents. .erefore, to enhance the
usability of the ABS models, it is necessary to keep the
summary consistent with the factual descriptions in the
original text.
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Figure 9: .e framework of the pointer softmax. It utilizes two
softmax layers to predict the next generated words: one softmax to
predict the location of the word in the source sentence and copy it
as output, and the other to predict the word in the shortlist
vocabulary.
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In 2017, Cao et al. [100] proposed a dual-attention
encoder-decoder model (FTSum) to enhance the factual
correctness of their system. .ey first leveraged the Open
Information Extraction (OpenIE) tool [101] to extract triples
from the input as the fact descriptions of input text, then
used a relational encoder to encode the fact descriptions.
During decoding, they utilized the embedding of the fact
descriptions and the original text to calculate the final at-
tention. .e new attention allows the model to pay more
attention to the fact descriptions in the original text to avoid
generating fake facts. .e overall framework of the FTSum
model is shown in Figure 11 [100].

Li et al. [102] adopted a multi-task learning strategy to
introduce textual entailment [103] in the ABS task.
Specifically, their model uses the attention-based encoder-
decoder framework as the infrastructure, and then shares
the encoder with the entailment recognition system, that
is, uses the encoder in the ABS model and a softmax layer
to construct an entailment relationship classifier trained
on the NLI dataset. .is enables the encoder not only to
grasp the essence of the source document but also to be
aware of the entailment relationship. Moreover, when
decoding, they modified the loss function to reward the
entailment degree of the generated summary and
employed a Reward Augmented Maximum Likelihood
(RAML) [104] to train the model, so that the decoder is
also entailment aware. .e overall framework of the
model is shown in Figure 12 [102].

Zhu et al. [105] proposed a Transformer-based encoder-
decoder model (FASum), the encoder and decoder are
stacked by Transformer blocks. .ey used open-source
OpenIE [101] tool to extract entity relationship information
from the original input text. .e extracted knowledge is
represented by a set of triples, where each triple is composed
of a subject, an object, and a relation. For each triple (subject,
relation, object), they regarded subject, relation, and object
as three different nodes, and then connected two undirected
edges subject-relation and relation-object. In this way, by

constructing edges for all the triples, an undirected graph
can be obtained, which is the knowledge graph of the input
document..en, the graph attention neural network [106] is
used to extract the feature of each node on the knowledge
graph, and this feature is used as the representation of the
node. Finally, by constructing a cross-attention layer on the
decoder side, the information of the knowledge graph is
integrated into the decoding process to control the gener-
ation of the summary. .e overall framework of the FASum
model is shown in Figure 13 [105].

Zhang et al. [107] proposed a fact-aware reinforced
ABS model (FAR-ASS). .ey also employed the OpenIE
and dependency parser tools to extract fact descriptions
of the input document. .en, they elaborately designed
a fact correctness evaluation algorithm, which can cal-
culate the factual correctness score of generated sum-
maries after comprehensively considering the fact
correctness and redundancy. In the training phase, they
adopted a reinforcement learning strategy based on fact
correctness scores to train the summarization model. .e
overall framework of the FAR-ASS model is shown in
Figure 14 [107].

4. Datasets

In this section, we provide an overview about the well-
known and standard datasets, including: Document Un-
derstanding Conference (DUC) datasets, Text Analysis
Conference (TAC) datasets, CNN/DailyMail, Gigaword,
New York Times (NYT), Newsroom, Large-scale Chinese
Short Text Summarization (LCSTS), etc.

4.1. DUC/TAC. .e DUC datasets have become the most
widely used and common datasets in the ABS research field.
.ese datasets are collected and released by the National
Institute of Standards and Technology (NIST). Every year,
they provide a new set of English documents for researchers
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Figure 10: .e framework of the PG model. It utilizes a pointer to copy words from the input document, which helps to accurately
reproduce the information while retaining the ability to generate new tokens through the generator.
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to evaluate their summarization system. Since 2008, DUC
datasets have become a summarization track of TAC. Each
item in DUC/TAC contains a news document and its cor-
responding ground-truth summaries. .ese summaries
consist of three forms, including: (1) manually generated
summaries, (2) summaries that are automatically generated
as baselines, and (3) summaries that are automatically
generated by challenge participants systems. And the DUC/
TAC datasets are usually used as the testing set to evaluate
the performance of the ABS model, because they contain a
small amount of data, which is not enough to train neural
network models [108]. .e statistics of DUC/TAC datasets
are shown in Table 2.

4.2. CNN/Daily Mail. .e CNN/Daily Mail dataset [109] is
used in passage-based question answering systems and has
become the most widely used benchmark dataset in the
field of abstractive text summarization. In 2016, Nallapati
et al. [76] modified the original corpus to contain multi-
sentence summaries, which is more used in the field of

abstractive text summarization. .e statistics of the CNN/
Daily Mail dataset are shown in Table 3. Currently, there
are two most popular versions of the CNN/Daily Mail
dataset, as follows:

(1) Anonymized Version [76, 79]. For each document-
summary pair, the named entity in it is manually
replaced with a unique identifier. For example, the
entity?eUnited States is replaced with the identifier
@entity7.

(2) Nonanonymized Version [95]. .e original docu-
ment-summary pair contains entity information.

4.3. Gigaword. .e Gigaword dataset consists of about 10
million English news documents from different news
agencies. In 2015, to train their ABS model, Rush et al. [67]
preprocessed the original Gigaword dataset. .ey lower-
case all English words, replace all digits with special
characters, replace all undisplayable characters with UNK,
and delete all duplicate phrases and sentences. Finally, the

u v

u v

MLP

3-way so�max classifier

Summary Decoder Entailment Classifier

Shared Sentence Encoder Source Sentence

Entailment
Reward

Summary

x1 x2 x3 xn x1 x2 x3 xn

h1 h2 h3 hn h1 h2 h3 hn

y0 yt–1 yt

S0 St–1 St

Ct Ct

y0 yt–1 yt

S0

u*v|u–v|

St–1 St

Figure 12:.e overall framework of the Entailment-aware encoder-decoder model. It uses the attention-based encoder-decoder framework
as the infrastructure, and then shares the encoder with the entailment recognition system.

h1 h2 h3 h4

x1 x2 x3 x4

Attention
sofmax

GRU

Dual-Attention Decoder

⊗

r1 r2 r3 r4

Attention

MLP

Context Selection

Relation Encoder
Sentence Encoder

h1
r h2

r h3
r

Ct
r

yt–1St–1Ct–1

Ct
x

Ct
rCt

xSt Ct

yt

h4
r

⊗

Figure 11: .e overall framework of the FTSum model. It is a dual-attention encoder-decoder model.

10 Computational Intelligence and Neuroscience



Summarization
Model

output summary y

input sentence
x

Fact
Extractor

Reward1

L= λLNLL + (1 – λ)(LR + LS)
Policy Gradient Update

Reward2

...
...

rR

rS

reference summary ŷ

(sub1, pre1, obj1)
(sub2, pre2, obj2)

(sub1, pre1, obj1)
(sub2, pre2, obj2)

(subn–1, pren–1)
(pren, objn)

(subn–1, pren–1)
(pren, objn)

⊗
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Table 2: .e statistics of DUC/TAC datasets.

Dataset #Document Language #Ground-truth summary Summary length
DUC 2001 60×10 Eng. 3 per cluster 50, 100, 200, 400 tokens
DUC 2002 60×10 Eng. 128 10, 50, 100, 200 tokens
DUC 2003 60×10, 30× 25 Eng. 128 200, 400 tokens
DUC 2004 100×10 Ara. & Eng. 4 per cluster 100 tokens
DUC 2005 50× 32 Eng. 4 per cluster 665 bytes
DUC 2006 50× 25 Eng. 4 per cluster 250 tokens
DUC 2007 25×10 Eng. 4 per cluster 250 tokens
TAC 2008 48× 20 Eng. 4 per cluster 250 tokens
TAC 2009 44× 20 Eng. 4 per cluster 250 tokens
TAC 2010 46× 20 Eng. 8 per cluster 100 tokens
TAC 2011 44× 20 Eng. 8 per cluster 100 tokens
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Figure 13: .e overall framework of the FASum model. Its encoder and decoder are stacked by Transformer blocks.
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Gigaword dataset for ABS contains about 3.8 million
training pairs, 189,000 validation pairs, and 2,000 com-
monly used testing pairs. .erefore, the Gigaword dataset
is sufficient to train and test neural network models.
However, since only the first sentence of the document is
used as the ground-truth summary, the text summari-
zation task on the Gigaword dataset is also called the
headline (title) generation task. .e statistics of the
Gigaword dataset are shown in Table 3.

4.4. NYT. .e NYT dataset comprises millions of articles in
the New York Times between 1987 and 2007 [110]..ere are
approximately 650,000 manually generated article-summary
pairs and 1.5 million manually annotated articles. It can be
used for automatic summarization, text classification,
content extraction, and other NLP tasks. .e statistics of the
NYT dataset are shown in Table 3.

In 2018, Paulus et al. [77] performed a series of pre-
processing on the originalNYTdataset to make it suitable for
text summarization tasks. After limiting the length of the
input document to 800 tokens and summary to 100 tokens,
the average length of the document-summary pairs output
by their preprocessing steps is 549 tokens for documents and
40 tokens for summaries. Compared with the CNN/Daily-
Mail dataset, the summaries of the NYT dataset are more
varied, shorter, and can utilize higher levels of abstraction
and paraphrase. .erefore, these two datasets can comple-
ment each other very well.

4.5. Newsroom. .e Newsroomdataset [111] is a large
dataset that can be used to train and evaluate automatic
summarization systems. .is dataset is released by
Connected Experiences Laboratory, which consists of 1.3
million news articles and some other metadata. .e ar-
ticles and summaries were manually written by 38 major
news publishers, and these data were obtained from
searches and social media from 1998 to 2017. .e doc-
ument-summary pairs in the Newsroom dataset are
processed through some extractive and abstractive pre-
processing strategies.

4.6. LCSTS. LCSTS dataset [112] is a Chinese short text
summarization dataset released by the Intelligent Com-
puting Research Center of Harbin Institute of Technology.
.e dataset is collected from more than 2 million Chinese
short texts published by certified users of the SinaWeibo
website, which is a Chinese microblogging website. .e
LCSTS dataset contains 2.4 million training pairs, 10,000

validation pairs, and 1,100 testing pairs. .e average length
of the input text and reference summaries is 104 and 18,
respectively. Specially, the validation set and the testing set
increase the score of the correlation between the summaries
and the original documents. .e higher the score, the higher
the correlation, which facilitates the researcher to adjust the
use of the dataset according to the characteristics of different
tasks.

4.7. Others. In addition to some mainstream text summa-
rization corpora, there are also some corpora oriented to
specific domain tasks, including: news headline generation
dataset XSum [90], multi-document summarization dataset
Multi-News [113], conference summary dataset AMI [114],
IELTS summary dataset IELTS [115], academic paper dataset
[116], etc. .ese datasets play very important roles in
promoting the development of automatic summarization,
and extending the text summarization technology to more
fields.

5. Performance Analysis

In this section, we introduce the main evaluation metrics of
the ABS, including the automatic evaluation and manual
evaluation. .en we use these evaluation metrics to analyze
the performance of popular ABS models on commonly used
datasets.

5.1. Evaluation Metrics

5.1.1. Automatic Evaluation. Because it takes considerable
time to manually evaluate the performance of the generated
summaries on the entire testing set, many automatic eval-
uation metrics are proposed, such as BLEU, METEOR, and
ROUGE. Among them, ROUGE is an automatic recall-
oriented summarization evaluation metric proposed by Lin
[117], which is the most widely used metric for evaluating
the performance of ABS models. It evaluates the quality of
the summarization system by counting the number of basic
units overlapping between the reference and the generated
summaries. .e ROUGE metric has been proven to be an
effective measure of the quality of summary and is well
correlated with human evaluation. .ere are mainly three
commonly used ROUGE metrics: ROUGE-1 (unigram),
ROUGE-2 (bigram), and ROUGE-L (Longest Common
Subsequence, LCS). ROUGE can only evaluate the character
overlap between the reference and the generated summaries,
and does not involve semantic evaluation. .e calculation is
as follows:

Table 3: .e statistics of the standard datasets.

Dataset Lang. #Train #Valid. #Test. Ave. source length Ave. target length
Gigaword Eng. 3,800,000 189,000 1951 31.4 8.3
CNN/Daily Mail Eng. 287,226 13,368 11,490 780 56
NYT Eng. 589,284 32,736 32,739 549 40
Newsroom Eng. 995,041 105,760 105,760 658.6 26.7
LCSTS Chi. 2,400,591 10,666 1,106 103.7 17.8
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RROUGE−N �
􏽐S∈ Reference{ }􏽐Nn−gram∈SCountmatch Nn−gram􏼐 􏼑

􏽐S∈ Reference{ }􏽐Nn−gram∈SCount Nn−gram􏼐 􏼑
,

(10)

where {Reference} denotes the reference summaries,
Countmatch(Nn−gram) denotes the number of n-grams in the
reference summary and the generated summary at the same
time, and Count(Nn−gram) denotes the number of n-grams
in the reference summary.

5.1.2. Human Evaluation. .e main limitation of the
ROUGE metric is that it is coherence-insensitive [118].
Current automatic evaluation metrics can only describe the
superficial relationship between sentences, and cannot
distinguish the quality of summaries by semantics. .ere-
fore, human evaluation makes up for the shortcomings of
automatic evaluation methods to some extent. However,
human evaluation is affected by some subjective factors,
such as mother tongue, education level, language style, etc.
To find a balance and ensure the robustness of the evalu-
ation, many ABS systems performROUGE evaluation on the
entire testing set, and perform the human evaluation on a
sampled small testing set.

At present, human evaluation is mainly carried out from
the following aspects:

(1) Readability. It measures how well the summary is
fluent and grammatical.

(2) Informativeness. It measures how well the summary
contains the gist of the original input.

(3) Fluency. It measures how well the summary is
consistent with human language habits.

(4) Conciseness. It measures whether the summary is
simple and easy to understand (less redundancy)

(5) Factual correctness. It indicates whether the facts
described in the summary are consistent with the
original document, which is the most critical factor
affecting the usability of the summary.

Amazon Mechanical Turk (AMT) is the most widely used
crowdsourcing platform. To avoid subjective tendencies, these
selected participants are usually not told which one is the
reference summary and which one is the generated summary.

5.2. Performance Comparison of Popular ABSModels. In this
section, we report the ROUGE scores of the popular ABS
models on the CNN/DailyMail dataset and Gigaword
dataset. Table 4 shows the results of SOTA models for each
year in the past five years (2017-2021) on the Gigaword
dataset. Table 5 shows the results of annual SOTAmodels on
the CNN/DailyMail dataset. .e results on all datasets are
consistent overall. Specially, we also report the vocabulary
size used by different methods, including the encoding
vocabulary size (input) and the decoding vocabulary (out-
put). .ey control the vocabulary size to improve the
training efficiency. For the models in Tables 4 and 5, we
report the techniques they employ, as follows:

(i) PG+Coverage [95]: a pointer generator net-
work that can copy words directly from the
original text and can reduce repetitions using a
coverage mechanism.

(ii) SEASS [119]: an RNN-based Seq2seq model that
selectively encodes important information in the
input to enhance summary generation.

(iii) DRGD [120]: a Seq2seq framework, which can
generate summaries using the structural infor-
mation of the input.

(iv) FTSumg [100]: an RNN-based model that en-
codes factual descriptions in the input to en-
hance the factual correctness of the generated
summaries.

(v) Transformer [121]: a fully attention-based
framework that is also the foundational com-
ponent of pretrained models.

(vi) Struct + 2Way +Word [122]: a Seq2seq model
that can copy key words and relationships from
the original text using structure-infused copy
mechanisms.

(vii) PG + EntailGen +QuestionGen [123]: a neural
model based on multi-task learning, which can
utilize question and entailment generation
task to enhance the summary generation
process.

(viii) CGU [124]: a global encoding framework that
utilizes convolutional gated unit to encode
global information of the input.

(ix) Reinforced-Topic-ConvS2S [85]: a convolu-
tional Seq2seq model that can integrate topic
and textual information to enhance the sum-
mary generation process.

(x) Seq2seq + E2T_cnn [125]: a Seq2seq model that
can utilize linked entities to guide the decoding
process.

(xi) Rê3 Sum [126]: a extended Seq2seq framework
that can utilize candidate templates to generate
summaries.

(xii) JointParsing [127]: a novel Seq2seq model
consisting of a sequential decoder and a tree-
based decoder, which improves the syntactic
correctness of the generated summaries.

(xiii) Concept pointer +DS [128]: a concept pointer
network which expands the types of words that
pointers can copy using knowledge-based
conceptualizations.

(xiv) MASS [129]: a Seq2seq pretrained LM, which
improves the feature extraction ability of the
model by jointly training the encoder and
decoder.

(xv) UniLM [130]: a novel unified pretrained LM
that employs a shared transformer layer and
adopts specific self-attention masks during
decoding.
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(xvi) BiSET [131]: a neural bidirectional model that
uses the input text to generate templates to guide
the summary generation process.

(xvii) PEGASUS [132]: a novel pretrained LM that
improves the representational power of
the model by removing/masking important

Table 5: .e results of different models on the CNN/DailyMail dataset. RG-1 denotes the ROUGE-1 score, RG-2 denotes the ROUGE-2
score, and RG-L denotes the ROUGE-L score.

Year Method
CNN/Daily Mail Vocabulary

RG-1 RG-2 RG-L In/out

2017 Transformer [121] 39.50 16.06 36.63 150k/50k
PG+Coverage [95] 39.53 17.28 36.38 50k/50k

2018

PG+EntailGen+QuestionGen [123] 39.81 17.64 36.54 150k/60k
ROUGESal + Ent RL [139] 40.43 18.00 37.10 50k/50k

Li et al. [83] 40.30 18.02 37.36 50k/50k
RNN-ext + abs +RL+ rerank [140] 40.88 17.80 38.54 30k/30k

Bottom-up [141] 41.69 19.47 37.92 150k/50k
DCA [142] 41.22 18.68 38.34 150k/50k

2019

EditNet [143] 41.42 19.03 38.36 50k/50k
Two-stage +RL [144] 41.71 19.49 38.79 30k/30k
BertSumExtAbs [145] 42.13 19.60 39.18 120k/120k

UniLM [130] 43.08 20.43 40.34 30k/30k
BART [146] 44.16 21.28 40.90 120k/120k

PEGASUS [132] 44.17 21.47 41.11 96k/96k

2020

ERNIE-GENBASE [133] 42.30 19.92 39.68 50k/50k
UniLMv2 [147] 43.16 20.42 40.14 31k/31k

ERNIE-GENLARGE [133] 44.31 21.35 41.60 50k/50k
BART+R3F [135] 44.38 21.53 41.17 120k/120k

2021

Mask attention network [136] 40.98 18.29 37.88 50k/50k
MUPPET BART large [138] 44.45 21.25 41.4 120k/120k

BART+R-drop [148] 44.51 21.58 41.24 120k/120k
GLM-XXLarge [149] 44.7 21.4 41.4 32k/32k

.e values in bold represent the SOTA model for that year.

Table 4: .e results of different models on the Gigaword dataset. RG-1 denotes the ROUGE-1 score, RG-2 denotes ROUGE-2 score, and
RG-L denotes ROUGE-L score.

Year Method
Gigaword Vocabulary

RG-1 RG-2 RG-L In/out

2017

SEASS [119] 36.15 17.54 33.63 120k/69k
DRGD [120] 36.27 17.57 33.62 110k/69k
FTSumg [100] 37.27 17.65 34.24 120k/69k

Transformer [121] 37.57 18.90 34.69 120k/69k

2018

Struct + 2Way +Word [122] 35.47 17.66 33.52 70k/10k
PG+EntailGen+QuestionGen [123] 35.98 17.76 33.63 110k/69k

CGU [124] 36.3 18.0 33.8 110k/69k
Reinforced-topic-ConvS2S [85] 36.92 18.29 34.58 110k/69k

Seq2seq +E2T_cnn [125] 37.04 16.66 34.93 50k/50k
Rê3 sum [126] 37.04 19.03 34.46 110k/69k

2019

JointParsing [127] 36.61 18.85 34.33 110k/69k
Concept pointer +DS [128] 37.01 17.10 34.87 150k/150k

MASS [129] 38.73 19.71 35.96 110k/69k
UniLM [130] 38.90 20.05 36.00 30k/30k
BiSET [131] 39.11 19.78 36.87 110k/69k

PEGASUS [132] 39.12 19.86 36.24 96k/96k

2020

ERNIE-GENBASE [133] 38.83 20.04 36.20 50k/50k
ERNIE-GENLARGE [133] 39.25 20.25 36.53 50k/50k

ProphetNet [134] 39.51 20.42 36.69 110k/69k
BART-RXF [135] 40.45 20.69 36.56 120k/69k

2021

Mask attention network [136] 38.28 19.46 35.46 110k/69k
Transformer +Wdrop [137] 39.66 20.45 36.59 32k/32k
Transformer +Rep [137] 39.81 20.40 36.93 32k/32k

MUPPET BART large [138] 40.4 20.54 36.21 120k/69k
.e values in bold represent the SOTA model for that year.
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sentences in the input and then regenerating
them.

(xviii) ERNIE-GEN [133]: a multi-flow Seq2seq pre-
trained framework that utilizes the infilling
generation and noise-aware mechanism to en-
hance the generation process. .ere are two
models of different scales (ERNIE-GENBASE
and ERNIE-GENLARGE).

(xix) ProphetNet [134]: a novel Seq2seq pretrained
model that introduces a self-supervised
objective and a n-stream self-attention
mechanism.

(xx) BART-RXF [135]: a pretrained LM that reduces
representation changes during fine-tuning by
replacing used adversarial objectives with pa-
rameter noise.

(xxi) Mask Attention Network [136]: an improved
transformer-based framework that introduces a
dynamic mask attention network layer and
constructs a sequential layered structure.

(xxii) Transformer +Wdrop [137]: a transformer-
based model that utilizes a word dropout per-
turbation to perform training.

(xxiii) Transformer +Rep [137]: a transformer-based
model that utilizes a word replacement pertur-
bation to perform training.

(xxiv) MUPPET BART Large [138]: a pretrained model
that adopts a pre-finetuning technique to sig-
nificantly improve the efficiency and perfor-
mance of it.

(xxv) ROUGESal + Ent RL [139]: a Seq2seq model that
adopts a reinforcement learning strategy to
improve the quality of generated summaries
from different perspectives.

(xxvi) RNN-ext + abs +RL+ rerank [140]: a fast ab-
stractive summarization that can generate a
concise summary by selecting salient sentences
and rewriting them.

(xxvii) Bottom-Up [141]: a novel Seq2seq summariza-
tion that utilizes a bottom-up attention as a
selector to select salient sentences.

(xxviii) EditNet [143]: a mixed extractive-abstractive
model that utilizes an editorial network to
generate summary.

(xxix) Two-Stage +RL [144]: a novel Seq2seq pre-
trained framework that employs a two-stage
decoder to generate summary.

(xxx) BertSumExtAbs [145]: a pretrained model that
employs a document-level encoder based on
BERT to obtain the semantic information of
input document.

(xxxi) UniLMv2 [147]: a pseudo-masked LM that
utilizes the pretrained LM for both autoen-
coding and partially autoregressive tasks using a
novel training procedure.

(xxxii) BART+R-Drop [148]: a BART model with
R-Drop as its training strategy to regularize
dropout.

(xxxiii) GLM-XXLarge [149]: a novel pretrained
framework that can improve the generalization
and adaptability of neural networks to deal with
different downstream tasks.

From the results in the table, we can know that the large-
scale language model based on pretraining has achieved the
current SOTA results. .is is expected, because these pre-
trained models are pretrained on a large-scale external
corpus (e.g., Wikipedia) to capture deeper semantic infor-
mation of natural language. And now, the models based on
pretraining almost dominate the list of various NLP tasks.
However, the pretraining process requires enormous
computing resources and massive data to support it. Most
researchers can only use pretrained models to fine-tune for
adapting to specific tasks.

Compared with the Seq2Seq baseline, adding pointers
and coverage mechanisms can significantly improve the
quality of the generated summary. Furthermore, adding
internal guidance information can better control the gen-
eration process of the ABS systems, such as keywords, key
sentences, etc., which allows the model to focus more on the
important parts of the document when decoding, thereby
enhancing the informativeness of generated summaries. In
addition, the introduction of external information into the
system can also further enrich the semantic information of
the model, thereby ensuring the readability and factual
correctness of the generated summary, such as common-
sense knowledge graphs. In particular, the introduction of
triples improves the factual correctness and the ROUGE
score of generated summaries. Compared with the baseline
models, the use of reinforcement learning training strategy
further enhances the performance of summarization
systems.

6. Conclusions

Since the automatic text summarization technology was
proposed in the late 1950s, it has gradually developed from
extractive to abstractive. In recent years, as deep learning
technology has matured in the NLP field, abstractive
summarization based on deep neural networks has also
made rapid development. Automatic text summarization is
not only widely used in finance, news, media, and other
fields but also plays an important role in information re-
trieval, public opinion analysis, and content review.

In this paper, we provide a comprehensive overview of
currently available abstractive text summarization models.
We show the overall framework of the ABS systems based on
neural networks, the details of model design, training
strategies, and summarize the advantages and disadvantages
of these methods. We also introduced some datasets and
evaluation metrics that are widely used in the field of text
summarization. Finally, we report the performance analysis
results of different models on large-scale datasets, which
should be helpful for researchers to choose a suitable
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framework and model according to their own needs. We
hope that our work can provide some new perspectives and
inspirations for the future research and application of ABS.

With the amount of data becoming more extensive and
the attributes of the data becoming more and more abun-
dant, the ABS models based on deep learning have great
potential. However, the existing ABS methods have many
limitations, which are the future challenges and research
directions of the research community. .ese challenges will
help the researchers to identify areas where further research
is needed. We discuss several directions worth studying in
the future, as follows:

(1) Personalized Summary Generation. At present, most
of the summarymodels are based on input documents
and do not consider the subjective demands of users.
A system that can generate personalized summaries
according to specific user needs will be very useful in
e-commerce and text-based recommendation.

(2) Introduce Richer External Knowledge. Both models
guided by keywords (sentences) and models en-
hanced by factual triples essentially use knowledge
from within the document. However, with the de-
velopment of knowledge graph technology, a lot of
commonsense knowledge can be used to enhance the
model and further improve the factual correctness of
the generated summaries.

(3) Flexible Stopping Criteria during the Generation
Process. .e generation of a summary is an iterative
process. At present, almost all methods limit the
maximum length of summary in advance to ter-
minate this process. However, in fact, different
scenarios and fields, and even different input doc-
uments, have different lengths of the summary. For
example, the summary of a scientific article is longer
than a news article. How to make the system
adaptively terminate the iterative process is a sig-
nificant research direction.

(4) Comprehensive Evaluation Metrics. Evaluating the
quality of generated summary either automatically or
manually is a difficult task. Manual evaluation is
highly subjective and can only be performed on a
small testing set, which is not statistically significant.
However, the current automatic evaluation is diffi-
cult to consider the semantic level. .erefore, a new
comprehensive automatic evaluation metric is es-
sential, which can not only help evaluate the quality
of a summary but also support the training process of
the ABS system.

(5) Cross-Language or Low-Resource Language Sum-
marization. Currently, popular public summariza-
tion datasets are based on English. Using these
publicly available large-scale English datasets to train
a cross-language summarization model to generate
summaries in low-resource languages is an inter-
esting and meaningful work. .is research is still in
its infancy and requires more researchers to work
together to make a breakthrough [150].

Data Availability

All the datasets mentioned in Section 4 are publicly available,
as follows: DUC/TAC: https://duc.nist.gov/ CNN/
DailyMail: https://github.com/deepmind/rc-data (Anony-
mous Version); https://github.com/abisee/cnn-dailymail
(non-Anonymous Version); Gigaword: https://catalog.ldc.
upenn.edu/LDC2003T05; NYT: https://catalog.ldc.upenn.
edu/LDC2008T19; Newsroom: https://lil.nlp.cornell.edu/
newsroom/; LCSTS: http://icrc.hitsz.edu.cn/Article/show/
139.html.
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