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Buildings are considered to be one of the world’s largest consumers of energy. *e productive utilization of energy will spare the
accessible energy assets for the following ages. In this paper, we analyze and predict the domestic electric power consumption of a
single residential building, implementing deep learning approach (LSTM and CNN). In these models, a novel feature is proposed,
the “best N window size” that will focus on identifying the reliable time period in the past data, which yields an optimal prediction
model for domestic energy consumption known as deep learning recurrent neural network prediction system with improved
sliding window algorithm. *e proposed prediction system is tuned to achieve high accuracy based on various hyperparameters.
*is work performs a comparative study of different variations of the deep learning model and records the best Root Mean Square
Error value compared to other learning models for the benchmark energy consumption dataset.

1. Introduction

Today’s modern world faces steady acceleration in the de-
velopment of technology, population, and economic growth,
which dramatically increases energy consumption. As per
the International Energy Agency (IEA) report, more than
30% of the global energy is consumed in buildings, and
nearly one-third of carbon dioxide (CO2) emitted by the
building accounts for a significant part of the total CO2
emissions [1]. Hence, buildings are the world’s prime
consumers of energy, and broadly, in residential sectors,
heating and cooling systems consume energy, accounting for
more than one-fifth of the total [2]. *ough being a good
consumer of energy, buildings are also connected with a
significant proportion of energy waste as well [3], and this
dissipated form of energy shows an alarming situation to
sustainability. Such frightening circumstances address the
concerns of growing energy demand, development of ur-
banization, and pollutant emissions, the increasing need of

new smart sustainable energy resources. Hence, it is nec-
essary to emerge with solutions that deal with building
energy efficiently as it is extremely crucial. With this pattern,
accurate predictions of future electric power consumption
have become a fundamental advance in the computerized
administration of power systems.

We can abate the further rise in the above-mentioned
primary issues, namely, pollutant emissions (e.g., CO2) and
energy consumption in buildings, only by promoting en-
ergy-saving designs for buildings during the design phase
[4]. To accomplish smart and sustainable designs for energy
efficiency, a focus has been derived towards the integration
of buildings and smart technology for modeling and fore-
casting energy consumption. A smart environment is
composed of “networks of sensors” that produce substantial
amounts of energy data [5], for instance, the smart grid, the
next level of the future power grid that dynamically deals
with the generation and distribution of energy; therefore, at
aggregate as well as modular level, smart, intelligent, and
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reliable decisions should be made endlessly in the grid with
flexibility [6]. However, to achieve the reliability and effi-
ciency of the grid, it is important to predict the future energy
demand. In addition to that, smart meters are also quite
promising in understanding the behavior of energy con-
sumption with better clarity to the consumers as they do not
save energy by themselves and are capable of sending precise
readings to the power suppliers for customer billing.
However, during the past decades, various countries like the
United States of America (USA), China, and Europe have
been working on energy efficiency by conducting programs
of deploying smart meters at a large scale [7–10]. *is smart
technology will benefit in lowering electricity bills and
optimizing power consumption, which will play a significant
role in the development of sustainable smart cities and
societies. But, we should take into account that innovation
and technology all alone will not be sufficient to change how
individuals devour energy, yet it gives the intention to utilize
energy in a purposeful and cognizant manner. Furthermore,
resident’s behavior and households count are the secondary
factors having a substantial influence on the energy effi-
ciency profile of domestic buildings. Particularly, the oc-
cupancy of various household appliances is primarily
responsible for obtaining the household electric power
consumption. Beckel, Sadamori and Staake [11] reveal
characteristics of the households, number of occupants, and
appliances using energy-related data generated from smart
meters. Haldi and Robinson [12] tried to predict the impact
of occupant’s behavior and their presence on the energy
demand in buildings.

Artificial intelligence (AI) techniques have been applied
in a wide range of disciplines and attracted the attention of
researchers or scientists. AI models perform powerful data
modeling by simulating the obtained information and adapt
to changes in historical data to infer new facts [13]. Various
qualitative works have recognized that AI techniques like
statistical and learning-based modeling are ample skillful to
apprehend nonlinear and tricky relationships that yield
extremely good accuracy estimates from the historical en-
ergy-related data of buildings [13–15]. *ese AI models are
quite promising for the prediction of domestic energy
consumption in residential buildings accurately. However, it
widely depends upon the researcher’s requirement and their
work on how to derive these AI models. Also, the success of
AI techniques usually relies upon “data representation.” Out
of them, deep learning aspires to form a combination of
various nonlinear transformations and helpful interpreta-
tion in a more abstractive way and ultimately achieve more
benefit [16]. Hence, the deep learning approach has been
vigorously considered in different application areas such as
image and video recognition [17–20], speech recognition
[21, 22], and natural language processing [23, 24].

*e deep recurrent neural networks are powerful tools
dealing with the long sequence modeling in various domains
of time series like energy demand and usage prediction. *is
work chooses Long Short-Term Memory (LSTM) and
Convolution Neural Network (CNN) with an enhanced
sliding window algorithm for predicting domestic energy
consumption. *e advantages of this enhanced deep

learning model include (1) capturing the nonlinear corre-
lation over multivariable energy data composed of exoge-
nous and target variables, (2) modeling the temporal
information into separable spaces for energy predictions, (3)
identifying the best “N” window size, that is, the number of
days considerable in the past that yields the optimal models
followed by the best N window size graph for both the deep
learning models, and (4) hyperparameter tuning of the
models for more accurate predictions.

1.1. Related Work. Several studies have been devoted to
predicting energy consumption at an industrial and resi-
dential level. Analyzing energy performance in buildings,
which has been the subject of many researchers, is cate-
gorized into two modeling approaches: traditional statistical
approach and machine learning approach. Table 1 presents
the summary of researches conducted on energy con-
sumption in buildings and their proposed method based on
two categories, namely, conventional statistical methods and
traditional machine learning modeling.

1.1.1. Conventional Statistical Methods. Conventional sta-
tistical methods are popular and classical modeling tech-
niques that have been widely used to solve forecasting
problems in energy consumption. Several popular statistical
models for predicting energy consumption in buildings
include autoregressive (AR) models such as AR, Autore-
gressive Integrated Moving Average (ARIMA), and variants
of ARIMAmodel named Seasonal Autoregressive Integrated
Moving Average (SARIMA). Other statistical regression
algorithms are linear regression and multilinear regression,
Bayesian regression, ordinary least square regression, and
case-based reasoning.

AR model works on the fundamental of analyzing the
statistical properties of energy-related time-series data. In
other words, AR models predict future energy consumption
only by considering the recent past and area data at a specific
time. *e implementation of these AR models was relatively
simple and worked upon the theory of only looking back
into the past data of dependent or target variables, but at the
same time, these models have shown significant limitations,
such that the forecasting horizon is limited to the short term
only and cannot determine complex and nonlinear data
patterns, which limit their application scope and accuracy
[25–28]. However, researchers introduced several en-
hancements to overcome basic autoregressive models issues
such as SARIMAmodels, Autoregressive Integrated Moving
Average with Explanatory Variable (ARIMAX) models, and
Seasonal Autoregressive Integrated Moving Average with
Explanatory Variable (SARIMAX), but these improved
versions of AR models are still facing some limitations
accounting for not capturing nonlinear relationship within
building energy-related time-series data, which highly affects
the forecasting performance. In addition to these technical
improvements, many researchers came up with the idea of
hybrid models to tackle the above issues, such as ARIMA
and Artificial Neural Network (ANN), ARIMA, and
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Table 1: Summary of researches conducted on energy consumption in buildings.

Technique Focus of work Sector and case study Performance metrics Pub.

ARMA and ARIMA Analysis of household
electricity consumption

French residential building
(energy consumption data)

Akaike Information Criterion
(AIC); Root Mean Square Error

(RMSE)
[25]

ARIMA Forecast the future demand Residential building (power
consumption) Mean Square Error (MSE) [51]

ARIMAX and ANN
Predicted hourly building load

based on periodicity and
linearity

Office building; ITES load data
(electricity consumption and

cooling)
AIC; mean bias error (MBE) [29]

Linear regression and
multiple regression

Prediction performance is
analyzed based on hourly and

daily time resolution

Residential building; TxAIRE
Research and Demonstration
House (energy consumption,

weather data)

RMSE [33]

ANN Predicted energy consumption
at a daily time resolution

Hong Kong-based office building
(weather, building design
parameters, and day type)

Nash–Sutcliffe efficiency
coefficient; coefficient of

variation of the Root Mean
Square Error

[39]

Linear regression,
feedforward neural network
(FFNN), SVM, least-squares
SVM, and hierarchical
mixture of experts: regression
and FFNN and fuzzy c-means
with FFNN

Predicting one hour ahead
electric energy consumption
and a short-term forecasting

scenario

Residential buildings; Campbell
Creek 3 homes dataset (electricity

consumption)

Coefficient of Variance (CV),
Mean Absolute Percentage
Error (MAPE), and MBE

[40]

Random forest
Predicting average and peak
energy consumption based on

people dynamics

Residential building;
telecommunication data (electric

energy consumption)

Mean Absolute Error (MAE),
MSE, RMSE, Relative Squared
Error (RSE), Relative Absolute
Error (RAE), and coefficient of

determination (R2)

[52]

SVM

Energy consumption
prediction based on weather

and building operating
parameters

Commercial building; 3-star
hotel energy dataset (weather

data, lighting data, elevator, and
cooling system data)

MSE; R2 [53]

Multilayer perceptron, linear
regression, random forest,
and SVM

Analysis and prediction of
IoT-based sensor data in a
building using different

machine learning techniques
followed by a rigorous

comparative study with other
learning techniques

Two-storey building (weather,
light and appliances energy
consumption, and temporal

information)

R2, MAPE, MAE, and RMSE [54]

Fuzzy Bayesian

To predict long-term energy
consumption based on an

econometric methodology to
improve reliability and

accuracy

Chinese per capita electricity
consumption (PEC) dataset

(electricity dataset)
MAE, MAPE, and RMSE [55]

Ensemble bagging trees Energy use prediction at
hourly granularity

Institutional building; Rinker hall
data (climatic, occupancy and

temporal data)
R2, RMSE, and MAPE [56]

LSTM
Forecasting energy load with
one min and one-hour time

resolution

Residential building; single house
data (power consumption) RMSE [57]

Conditional Restricted
Boltzmann Machine (CRBM)
and Factored Conditional
Restricted Boltzmann
Machine (FCRBM)

*e energy consumption
forecasting over different time
horizons (short, medium and
long term) and on different

time resolutions

Residential building; household
electric dataset (energy

consumption)
RMSE, R, and p-value [58]

CNN-LSTM with fixed
window size

Prediction of electricity
consumption for next hour

Residential building; (electricity
consumption dataset) MAE, MAPE, RMSE, and MSE [16]
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evolutionary models and collaboration with other machine
learning algorithms [29–32].

On the other hand, statistical regression algorithms work
on modeling the relationship between predictor and target
variables. Various researchers predicted energy consump-
tion in buildings by using linear regression [33–35], multiple
regression [36, 37], and Bayesian regression [38]. Regression
models suffer from multicollinearity problems that arise due
to the relationship among independent variables used in
prediction. Additionally, it is difficult to determine the ex-
planatory variables, and we are still facing difficulty in
dealing with the nonlinear problems.

1.1.2. Traditional Machine Learning Modeling. Machine
learning modeling acts as a black box and tries to learn the
relationship that exists among input features and targets
based on the provided data, such as energy performance.
Several machine learning algorithms have been studied by
researchers in buildings for estimating the energy con-
sumption, energy demand, and their related performance
criteria for different circumstances. Numerous techniques
are widely used to analyze energy consumption prediction
problems in various types of buildings, that is, commercial,
residential, or industrial sectors.

Being a highly adaptable and flexible approach, ANN
solved numerous prediction problems with respect to energy
consumption [39–42], and nearly all the related works
revealed that ANN outperforms real-time problems and
identifies the nonlinear relations between input and output
but at the same time deals with the several issues like
overfitting problems when additional energy feature is in-
troduced and local minima problems.

Besides that, support vector machines (SVM) are an-
other efficient and widely popular modeling approach for
solving nonlinear problems accounting for efficient energy
management in buildings by forecasting energy consump-
tion which covers [43–48]. *ese learning algorithms
maintain a balance between nonlinearity and prediction
accuracy. *ough users find difficulty in identifying the
kernel functions, an optimal hyperparameter will produce
the optimal accurate predictionmodel. Users need to do a lot
of rigorous work on the dataset properties and their own
experience to deal with such issues.

*ere are other learning modeling employed black-box
approaches used for different objectives such as detection
and diagnosis of faults and forecasting energy consumption
at different horizons with respect to buildings, with the focus
of performance improvement covering ensemble models
and improved hybrid models [49, 50].

Kim and Cho [16] predicted residential energy using a
hybrid approach of deep learning, which uses a sliding
window algorithm with fixed window size. *e window size
also affects the model performance. Besides that, model
needs hyperparameter optimization as these parameters
have a great impact on forecasting and model accuracy.

1.2. Contribution. *e main contributions of this paper are
as follows:

*is work proposes a Deep Learning Neural Networks
prediction system enhanced with the best window size
in sliding window algorithm for stably predicting do-
mestic energy consumption in a residential building on
4.5 years of energy dataset
*e proposed deep learning models are tuned to
achieve high performance based on various
hyperparameters
*is study performs an extensive experimental evalu-
ation of different variations of deep learning models
and records the best RMSE value compared against the
previous studies on the benchmark datasets
*is work also focuses on analyzing the variables of
interest that construct the energy consumption data
followed by various model fitting functions for a precise
explanation of the electric consumption dataset

*e structure of the paper is organized as follows: Section
2 provides a brief introduction to deep learning recurrent
neural network theory. Section 3 applies establishing deep
recurrent neural network prediction models for domestic
energy consumption in an actual residential house and
analyzing various household appliances variables affecting
the energy consumption forecasting, and performance
measures andmodification of hyperparameter for tuning the
model performance will also be discussed in this section. In
Section 4, the conclusions are presented.

2. Introduction to Deep Learning Recurrent
Neural Network Theory

A specialized subset of machine learning is coined as “deep
learning,” which [51–58] overcomes the accuracy issues [59].
Deep learning architectures are composed of nonlinear
computation at multiple levels, such as neural nets per-
formed by many hidden layers [60] with more abstraction
and complexity. *e key feature of deep learning archi-
tectures is automated feature extraction and data scaling
with improved high performance [61]. Several artificial
intelligence applications are widely relying upon the foun-
dation of Deep Neural Networks. It includes robotics, IoT
sensor data, image, speech recognition, and many other
breakthrough domains that have exploded, which use Deep
Neural Networks [62–66].

In this paper, the effectiveness of deep learning methods
is explored by executing domestic level forecasting in a
residential building. *e proposed methodology uses CNN
and LSTM techniques. *e proposed work introduces an
LSTM and CNN model with an enhanced sliding window
algorithm. Both deep learning techniques are established on
a benchmark electricity consumption dataset for an indi-
vidual residential building with daily time resolutions.

2.1. LSTM for Time Series. Principally, neural networks for
time-series forecasting are commonly categorized in two
variants, namely, (i) feedforward neural networks and (ii)
deep learning recurrent neural networks. Feedforward
neural networks only process spatial information and skip
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temporal information, whereas deep learning recurrent
neural networks are capable of handling both sequential and
temporal information as it is composed of fully connected
neurons having look back features even on a large-scale
dataset. Regardless of these benefits, the typical recurrent
neural networks (RNN) deteriorate due to vanishing gra-
dient issues while handling the long-term dependencies [67].

Hochreiter and Schmidhuber [68] proposed a new ad-
vancement based on connected subnets to overcome the
RNN shortcoming known as Long Short-Term Memory.
LSTM has the ability to remember observations at arbitrary
time lags. Now, the question is what makes LSTM re-
member? In conventional RNN, each cell receives two in-
puts, output from the previous hidden state and values at the
“t” time. Apart from a hidden state, no past information
exists to remember by the RNN. RNN cell representation is
shown in Figure 1. *e fundamental computations are
provided in (1) and (2).

h
t

� σ W
h
x + x

t
+ W

h
h ∗ h

t− 1
+ b

h
􏽨 􏽩, (1)

Z
t

� σ W
h
Z ∗ h

t
+ b

Z
􏽨 􏽩, (2)

where σ defines activation function, Wh
x, Wh

h, andWh
Z rep-

resent weight matrices of input, hidden, and output layer,
and bh and bZ are bias at hidden and output layer,
respectively.

A recurrently connected memory block uses memory
cells with self-connections in addition to three multiplicative
gates, namely, input gate (it), input modulation gate (ćt),
forgot gate (ft), and output gate (Ot) in the hidden layer,
enabling the model to store temporal state and to control the
information flow in the network as directed by the associated
activation function (ReLU, sigmoid, and tanh), thereby al-
leviating the vanishing of gradient problem. However, each
gate plays a significant role.

Input gate is responsible for writing operations
Input modulation gate is responsible for the creation of
a new cell value vector
Forgot gate, also known as remember vector, is re-
sponsible for taking the decision of which information
is to be kept or which is to be forgotten
Output gate performs reading operations and decides
which memory cell value passes to the next hidden state

Figure 2 shows the internal structure of LSTM. LSTM
cell takes two inputs at “t” timestamp: (i) input at t(Xt) and
(ii) (ht−1) previous timestamps used to obtain the outcome.
*e working of each gate governs through a set of mathe-
matical equations as presented in equations (3) to (7).

Cell state equation is as follows:

Ct � ft ∗Ct−1 + it ∗ ćt. (3)

Input gate equation is as follows:

it � σ Wi ∗ ht−1, xt􏼂 􏼃 + bi( 􏼁. (4)

Input modulation gate equation is as follows:

ćt � Relu Wć ∗ ht−1, xt􏼂 􏼃 + bć( 􏼁. (5)

Forgot gate equation is as follows:

ft � σ Wf ∗ ht−1, xt􏼂 􏼃 + bf􏼐 􏼑. (6)

Output gate equation is as follows:

Ot � σ Wo ∗ ht−1, xt􏼂 􏼃 + bo( 􏼁, (7)

where Wi, Wć WfWo define the weight matrices for input
and recurrent layer and bi, bć, bf, bo are the input and re-
current bias, respectively. Finally, the hidden state equation
is defined for the output (ht) in equation (8), respectively.

Hidden state equation is as follows:

ht � Ot ∗Relu ćt( 􏼁. (8)

However, during the training process, the initial pa-
rameter values, that is, weights and bias of the LSTM, are
generated arbitrarily. In general, weights and bias of the
neuron in the LSTM layers can be updated through the
standard gradient descent method employed by the back-
propagation algorithm, but the performance of gradient
descent highly depends upon the selection of optimal
hyperparameters, which improves the accuracy of time-
series problems.

2.2. CNN for Time Series. In general, there are a number of
methodologies that perform analysis and prediction out of
time-series data. However, these methodologies usually
follow at least a two-step process: first, perform feature

σ

Output
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σ ht
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Zt

Figure 1: RNN cell representation.
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Figure 2: Long Short-Term Memory cell unit representation.

Computational Intelligence and Neuroscience 5



engineering and use some statistical algorithms or models to
transform the time series as a vector of features; second,
perform classification or regression tasks using various
statistical or machine learning algorithms. On the other
hand, CNN can be viewed as one frame architecture that
incorporates the automatic extraction of features and
modeling the time-series data. In this work, multivariate
time-series data consists of “n” length and “k” width, where
length defines time step count and width represents the total
number of features. *e CNN architecture viewed the input
sequence as an image of “n” pixels and each pixel with “k”
channels.

Unlike LSTM, CNN uses the current window and does
not consider past information. *e CNN consists of three
layers, namely, input layer, multiple hidden layers, and
output layer. *e input layer receives extracted features as
input, the output layer generates the prediction, and the
hidden layer is further composed of three layers (convo-
lution layer, ReLU layer, and pooling layer) and an activation
function. Each sublayer of the hidden layer has a significant
role in the prediction process: (i) Convolution layer uses
convolution operation to the input sequence where con-
volution operation emulates the neurons’ response, then
processes the time-series data, and passes the outcome to the
successor layer. (ii) ReLU layer is an activation function. (iii)
Pooling layer is responsible for parameter reduction by
reducing the space size for representation and thereby re-
sults in a reduction in computational cost. Equation (9)
governs the Lth convolution layer outcome, and equation
(10) provides the working of the pooling layer.

yij � σ 􏽘
M

m�1
W

l
m,j ∗X

0
i+m−1,j

⎛⎝ ⎞⎠ + b
l
j

⎡⎢⎢⎣ ⎤⎥⎥⎦. (9)

P
l
ij �

Pooling Type
r ∈ R

y
l−1
i∗T+r,j􏼐 􏼑, (10)

where yij is the output vector, bj defines the bias, Wm,j

defines the weight metrics,m defines the filter index value, σ
is the activation function, T is the strides, R is the pooling size
(must be less than the size of input), and pooling type defines
which pooling function is used out of three: maximum,
average, and sum, respectively. However, this work applies
the “max” pooling type for parameter reduction.

Consequently, CNN transforms the given input se-
quence layer by layer. However, gradient descent will be used
to train the weights and biases of the neurons in the con-
volution layer or fully connected layer so that the prediction
scores computed by the CNN remain consistent with the
training set.

2.3. Sliding Window Algorithm and Window Size. Sliding
window algorithm is used to construct samples with one step
size where each sliding window includes previous time steps
as an input, and it aims to predict the upcoming time step.
Consider the input vector Xn where subscript n is the
number of normalized 7-day units to be taken per window.
*e sliding window algorithm is able enough to handle

multivariate datasets as an input to the model and perform
data smoothing of the original data by reducing the model
time complexity. In the sliding window algorithm, the
window size is quite responsible for deciding the number of
time steps that need to be considered in the past and
obtaining the optimal model as the model will learn the
energy data that is preprocessed for every defined fixed
window length. Consequently, the static window size may
limit the temporal modeling in the deep learning neural
networks as the data defined by the window size are only
being modeled and are inappropriate to handle long-term
dependencies in the time-series data.

To the best of our knowledge, most of the researchers
used fixed or static window size in the sliding window al-
gorithm. By selecting the proper size of a sliding window, the
model efficiency can also be improved. Hence, this work is
finding the best N window size in order to yield the best
model with the least RootMean Square Error. To accomplish
this objective, an independent function is created, which
takes a minimum value and maximum value as the pa-
rameters in order to observe the best window length for “N”
previous time steps for prediction and run the deep pre-
diction models several times to process the time series in
each window using sliding window approach. For every “N”
value, the window receives the input data from the begin-
ning, and the time series is encoded into the vectors at the
end of each window. Later, the obtained feature vectors are
fed into the deep learning prediction models (i.e., LSTM and
CNN) to estimate the prediction error with its respective
training labels. In summary, Algorithm 1 presents the
pseudocode for the deep prediction models with an en-
hanced sliding window algorithm.

2.4. Mathematical Formulation for Domestic Energy
Consumption. In this work, predicting a domestic energy
consumption problem has a multivariable time-series
dataset with “N” distinct attributes, which include electrical
measuring parameters and sensors deployed at different
sections of residential buildings. At each time step “t,”
electric energy consumed by the household appliances is
recorded by the sensors attached to the submetering system
and can be provided in the form of (11).

Xt � X
1
t , X

2
t , X

3
t , . . . , X

n
t􏼐 􏼑, (11)

where Xn
t signifies the total number of variables constitute

energy consumption data at the “t” time step. Now, let us
consider window size for input as this work includes a
sliding window approach as follows:

WS
l
k � Xk, Xk+1, Xk+2, . . . . . . . . . , Xk+l−1( 􏼁, (12)

where l indicates the time-series length and training dataset
with its labels represented asli � Xk+l. *erefore, models
need to learn function “f,” which provide the mapping of
window onto its respective training label and can be
designed by (13).

li � α WS
l
k􏼐 􏼑. (13)
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So that, given energy consumption prediction problem
can be transformed into supervised learning problem and
uses Root Mean Square Error for prediction error. Hence,
the prediction formal derivation is shown in (14).

ModelΩmin
1
2

􏽘

N

i�1
li − α WS

l
k􏼐 􏼑􏼐 􏼑

2
, (14)

where ModelΩ is the set of parameters for the model “α” and
N is training size. Model “α” is a deep learning model like
LSTM and CNN.

3. EstablishingDeepRecurrent Neural Network
Prediction Model for Domestic
Energy Consumption

In this section, detailed explanations on the proposed deep
learning recurrent neural network prediction system en-
hanced with an improved sliding window algorithm for
accurate energy consumption forecasting will be provided.

3.1. Basic Electrical Energy Consumption of Residential
BuildingDataset InformationandDataPreprocessing. In this
study, the electric power consumption dataset was collected
from the UCI machine learning repository [69]. *e dataset
contains the readings collected from the monitored house,
situated in the city of Sceaux near Paris in France. *is
multivariate dataset is composed of recorded observations
covering the period of 4 years from December 2006 to
November 2010. During preprocessing, a total of 1.25% of
the rows contain missing values that were imputed with the
median. Also, redundant records are tried to be removed so
that they will not cause the learning model to be biased
towards the more frequent records during the training
process[70].

Different electrical measures and submetering infor-
mation of interest that construct the energy consumption

data of residential buildings are presented in Table 2. *e
active power is the actual energy consumed, and the un-
utilized energy in the power line is referred to as reactive
power. Besides active power, the dataset contains a distri-
bution of real power via the main circuit in different areas of
the home, that is, kitchen, washing area, and temperature
control systems via sensory submetering systems, whereas
voltage represents the average voltage supplied and global
intensity refers to the average current intensity.

*e major electrical energy consumption of a residential
building can be divided into three categories: cookhouse
consumption, lighting and utility room consumption, and
heating and cooling system power consumption, as shown in
Figure 3. From Figure 3, it can be observed that the energy
used by the cookhouse and utility room along with lighting
accounts for less impact on global power consumption. On
the other hand, energy consumed by heating and cooling
system accounts for a major portion of residential’s electrical
energy consumption. *e equipment of the cookware house
includes microwave, oven, and dishwasher that are con-
nected to submeter 1, utility area includes lights, washing
machine, drier, and refrigerator, which is connected to
submeter 2, and heating and cooling units account for the
water heater and air conditioner of the house concerned with
the submetering 3.

*e results of various model fitting functions are
summarized for a precise explanation of the electric con-
sumption dataset, as mentioned in Table 3. *ese fitting
functions will help in estimating and understanding the
distributional properties for different energy variables that
are conditional on other variables and summarize the re-
lationship among variables.

3.2. Applying LSTM and CNN Deep Learning Model. *e
proposed deep learning recurrent neural network protection
system was implemented on the Anaconda Navigator using
Python version 3.7 on an Intel Core i5 1.60 GHz processor

Input
min_val⟵ minimum time steps considered in past.
max_val⟵ maximum time steps considered in past.
sequence_size⟵ the required length of the series to be forecasted,
model ‘α’⟵ a deep prediction model

Output
Best window size with minimal prediction error and a forecasted series

Deep model-enhanced Sliding window ()
(1) Pass the min_ value and max_val as the function parameter
(2) for each i⟵ min_val to max_val+1 begin
(3) sequence_size� i
(4) sliding_window()
(5) count� 0
(6) last window input data feed into the deep prediction model α and compute the prediction α (WScount)
(7) While (count< sequence_size) do
(8) Sliding the window with one step ahead and provide the predicted point α (WScount) at the end of the sliding window
(9) new window receives the input and feed into the model “α” and estimate the next prediction α (WScount+1)
(10) count� count+1

ALGORITHM 1: Deep prediction models with enhanced sliding window algorithm.

Computational Intelligence and Neuroscience 7



with 8 GB ram onWindows 10 operating system. *e whole
experimental setup is divided into 3 steps, namely, (i) data
preprocessing, (ii) data partition into training and testing
dataset, and (iii) modification of hyperparameters.

3.2.1. Data Preprocessing. A preliminary and inescapable
phase in forecasting applications is used to reshape the
obtained domestic electric power consumption dataset, from
Section 3.1, into a proper format that can be fed into the
learning model and aid in the convergence of the learning
model. In this work, the z-score normalization technique
was applied to the input features, thereby providing data

transformation in such a way where the mean value equals
zero and the standard deviation is 1 for the transformed data
in order to prevent inaccurate predictions because of the
presence of high-frequency components in energy con-
sumption dataset. *e mathematical formulation for z-score
data transformation is shown in (15).

ti �
ti − ti( 􏼁

Si

; ∀ i � (1, 2, 3, . . . , n), (15)

where ti is the mean value of data samples, Si defines the
standard deviation of data samples, and n is the total number
of data samples in the dataset. A significant highlight to be
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Figure 3: Structure of electrical energy consumption of residential buildings.

Table 2: Different electrical measures and submetering information of interest that construct the energy consumption data.

Variables Description Measuring units
Global active power Total active power Kilowatts
Global reactive power Total reactive power Kilowatts
Voltage Average voltage Volts
Global intensity Average current intensity Ampere
Submetering 1 Active energy corresponds to the kitchen Watt-hours of active energy
Submetering 2 Active energy corresponds to the laundry Watt-hours of active energy
Submetering 3 Active energy corresponds to the cooling and heating appliances Watt-hours of active energy

Table 3: Various model fitting functions for a precise explanation of the electric consumption dataset.

Fitting function Min 1st quantile Median Mean 3rd quantile Max Standard deviation
Global active power 0.076 0.308 0.602 1.092 1.528 11.122 1.055
Global reactive power 0.000 0.048 0.100 0.124 0.194 1.390 0.113
Voltage 223.2 239.0 241.0 240.8 242.9 254.2 3.239
Global intensity 0.200 1.400 2.600 4.628 6.400 48.400 4.435
Submetering 1 0.000 0.000 0.000 1.122 0.000 88.000 6.139
Submetering 2 0.000 0.000 0.000 1.299 1.000 80.000 5.794
Submetering 3 0.000 0.000 1.000 6.458 17.00 31.000 8.436
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noted here is that prediction errors are recorded in their
original scale in terms of various performance metrics, as
discussed in Section 3.3.

3.2.2. Data Partition. In the data partition step, the con-
sidered domestic energy consumption dataset is partitioned
in order to generate training and testing data samples to
reduce the learning model complexity and thereby optimize
the accuracy. *e dataset consists of 2075259 observations.
For experiment, original energy data sampled at 1-minute
granularity was later downsampled at the daily interval for
meaningful analytics. Further, the sliding window approach
was used for the short-term prediction of energy demand for
a day. Initially, the sliding window of sequence size of seven
points per window was considered, which is equivalent to
7 days in the past, in order to forecast the next point that is
24 hours or a day in the future.

Further to study the impact of window size on prediction
error, sliding window approach enhanced with window size
function which takes several ranges and tries to obtain the
best N window size means the total number of days in the
past that yields an optimal model with minimal prediction
error as shown and discussed in Section 3.4. *e training
data samples for short-term prediction consist of energy
consumption of a residential building for the period of three
years using the aforementioned window size of 7 data points,
and the rest of the one year of the energy dataset is held out
purely for testing purpose.

3.2.3. Modification of Hyperparameter. In general, hyper-
parameter is the model property governing the training
process [70]. Hyperparameter covers two types of variables:
one determines the model structure, and the other deter-
mines how the model is trained. Optimizing the hyper-
parameter has a significant impact on the performance of the
model.

In this work, optimizer, activation function, neuron
count in each layer, number of LSTM layers, kernel size,
and kernel number (in case of CNN) followed by early
stopping and model checkpoint hyperparameters were
tuned to check out how these affect the model perfor-
mance. Besides that, the dropout technique was used to
perform regularization to avoid overfitting and general-
ization errors.

3.3. Performance Measures. *e statistical measures are
assessed to determine which model is suitable to amplify the
goodness of fit using the classical model or hybridization of
the model. In our work, the following set of statistical
measures are selected to evaluate the prediction performance
of the deep learning recurrent neural network prediction
system over three states of the art of residential energy
consumption, namely, Mean Square Error (MSE), Root
Mean Square Error (RMSE), and coefficient of determina-
tion (R2). *e statistical metrics are defined through
equations (16)–(18), respectively.

MSE �
1
N

􏽘

N

i�1

(y,􏽢y) ∈ Test

yi − 􏽢yi( 􏼁
2
. (16)

RMSE �

�����������

1
N

􏽘

N

i�1

(y,􏽢y) ∈ Test

􏽶
􏽵
􏽵
􏽴 yi − 􏽢yi( 􏼁

2

. (17)

R
2

� 1 −
􏽐

N
i�1 yi − y

pred
i􏼐 􏼑

2

􏽐
N
i�1 yi − y

mean
( 􏼁

2,
(18)

where at time step “i,” yi is the observed energy con-
sumption, 􏽢yi is the predicted energy consumption, and “N”
is the data point count in the test dataset.

3.4.Results ofDeepLearningModels forPrediction ofDomestic
Energy Consumption. In this section, various experimental
results are discussed for all variations of models imple-
mented using LSTM and CNN enhanced with a sliding
window approach. Also, a comparative analysis was per-
formed to demonstrate the performance of the proposed
model over competitive benchmarks using a household
electricity energy consumption dataset. *e main focus of
this work is to implement a robust residential electricity
energy consumption prediction system with minimal pre-
diction error and high accuracy. *e proposed model in-
tegrates both deep learning models, that is, LSTM and CNN,
with the improved version of the sliding window algorithm,
which is capable of identifying the best n window size and
predicting the short-term energy consumption in a resi-
dential building located in the city of France. *e parameter
setting of the deep learning recurrent neural network pre-
diction system enhanced with a sliding window algorithm is
provided in Table 4. *e LSTM and CNN models were
implemented with TensorFlow at the backend, and the
scikit-learn package was used for the implementation of
other approaches in Python programming language on the
Keras framework.

3.4.1. Performance Comparison of All Model Variations for
LSTM and CNNModels. A primary strategy was to conduct
the experiments to find out the optimal LSTM and CNN
network structure, that is, to tune various hyperparameters,
as discussed in Section 3.2.3, while training the model using
TensorFlow for predicting the household electric energy
consumption scenario.

Tables 5 and 6 provide the details of hyperparameter
tuning to observe how they affect the performance of the
prediction system for predicting domestic energy con-
sumption scenarios in terms of Mean Square Error and Root
Mean Square Error. *e above tables show the LSTM ar-
chitecture with “Adam” optimizer (activation
function� “ReLU,” dropout� 0.2, recurrent dropout� 0.2,
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neuron count � (128, 64), and LSTM layer count� 2) per-
forming optimally for short-term prediction and CNN ar-
chitecture with “Adamax” optimizer (activation
function� “ReLU,” kernel size � (1,3), (1,1), kernel
number� 64, 128, strides � (1,1), pool size � (1,1), and
pooling type� “max”) executing in an optimal manner for
short-term prediction. Figure 4 and Figure 5 present single
household electric power consumption prediction results of
proposed deep learning neural network prediction system
for short-term scenario, that is, one day ahead prediction of
global power consumption.

3.4.2. Optimal Window Size. *is work confirmed the im-
pact of changes in window size on deep learning models.
Figures 6 and 7 present the optimal N window size graph for
both LSTM and CNN models. *e window size function
takes several values to identify the best size for the sliding
window as the fixed-size window length may limit the
temporal modeling and also affect themodel performance by
increasing the forecasting error. Hence, this study analyzed
and evaluated the proposed deep learning prediction system
to be robust in the matter of dynamic window size and then
compared the RMSE for the respective window size.

From the above figures, it was clear that LSTM with an
improved sliding window algorithm gives better prediction
performance with a window size of 7, 12, and 14, which
means that these are the days that can be considered in the
past sequence to obtain the minimal forecasting error. On
the other hand, CNN with an improved sliding window

approach provided minimal prediction error with the
window size for 4, 5, and 8, respectively.

3.4.3. Comparative Analysis with Competitive Benchmark.
Further, a comparative study of the proposed work is
performed with contrast benchmark models that use the
considered household electricity consumption data. *e
prediction performance of the contrast model for the test

Table 4: Parameter setting of the proposed prediction system.

Parameters Range
Learning rate (0.01,0.001)
Decay (1e− 6)
Momentum (0.9)
Beta_1 (0.9)
Beta_2 (0.999)
Epsilon (None)
Batch size 128
Epoch 100

Table 5: Evaluation of different variations of LSTM model with sliding window algorithm.

Optimizer Neuron count and number of LSTM layers Activation function Estimated Root Mean Square Error (RMSE)
SGD 128, 128, 128 ReLU, ReLU, sigmoid 0.0722
Adam 128, 64 ReLU, ReLU 0.0693
Adam 128 ReLU 0.0764
Adam 32 ReLU 0.0877
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Figure 4: Regression lift chart showing original and prediction
values of household energy consumption using the LSTM model.

Table 6: Comparison of various model variations implemented by CNN with sliding window algorithm.

Optimizer used Kernel size and kernel number Activation function and layers Estimated Root Mean Square Error (RMSE)
Adagrad (1,3), (1,1) and 64, 128 ReLU and ReLU 0.1330
Adamax (1,3), (1,1) and 128, 264 ReLU and ReLU 0.1201
Adam (1,3), (1,1) and 64, 128 ReLU and ReLU 0.1183
Adamax (1,3), (1,1) and 64, 128 ReLU and ReLU 0.0836
Adamax (1,3), (1,3) and 64, 128 ReLU and ReLU 0.1110
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dataset for daily time resolution is summarized in Table 7.
Kim and Cho [16] stably predicted the total power con-
sumption for a residential house using a hybrid approach by
combining CNN and LSTM and applied a sliding window
algorithm that enables the hybrid model to learn the input
data. *ey fixed the window size to predict the minutely
household consumption, but for the rest of the time

resolutions like hourly, daily, and weekly, window size re-
mains unclear. Chujai et al. [25] analyzed the energy con-
sumption based on autoregressive models, that is, ARIMA
and ARMA, using a benchmark dataset. *ey figured out
forecasting errors for fixed and random window sizes. By
comparing the error metrics, this work confirmed that the
proposed deep learning recurrent neural network prediction
system with an improved sliding window algorithm out-
performs the considered contrasting benchmarks and also
figured out the optimal window size for which the model
achieved a minimal prediction error.

4. Conclusion

In this research work, an establishment of a residential
energy prediction system is presented using the deep
learning recurrent neural network; that is, LSTM and CNN
models are used with an improved sliding window-based
approach to establish a robust and accurate prediction of
energy consumption in a residential building. *is work
employs a new feature in the sliding window algorithm of
finding the optimal N value for window size that is the
sequence length of data points to be considered in the past.
*is improvement does not limit the temporal modeling and
yields an optimal model with minimal forecasting error.

A case study on individual household electric power
consumption data collected from a residential building lo-
cated in France to predict the total active power con-
sumption for a day with daily time resolution, a short-term
scenario, was presented. In this course of the evaluation, the
impact of hyperparameter tuning was analyzed for the short-
term scenario. Furthermore, the proposed deep learning
prediction model outperforms benchmark contrast models
in terms of different quality metrics like MSE and RMSE.

Although the proposed approach shows better predic-
tion results, in themodeling process, the potential challenges
are observed, which also provide a future directive to this
study, as follows:

Automating the hypertuning using some evolutionary
approach
Introducing additional features such as building pa-
rameters and occupancy parameters
Impact of different time resolutions on model
performance

Data Availability

*e multivariate time series energy data used to support the
findings of this study are available from the corresponding
author upon request.
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Figure 5: Regression lift chart showing original and prediction
values of household energy consumption using CNN model.

Table 7: Prediction performance of contrast model.

Method Time resolution MSE RMSE R2

ARMA [25] Daily — 0.34
CNN-LSTM [16] Daily 0.1037 0.3221
LSTM Daily 0.0048 0.0693 0.9679
CNN Daily 0.0069 0.0836 0.9622
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