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At present, due to the large-scale use of di�erent kinds of power electronic devices in the power system, the problem of
harmonic pollution in the power grid is becoming more and more serious, which will lead to a serious decline in the
production, transmission, and utilization rate of electric energy, overheat electrical devices, generate vibration and inter-
ference, and then a�ect the aging and service life of the lines. In order to e�ectively reduce the harmonic problems caused by
di�erent levels of the power system, it is necessary to analyze the harmonic components. In this paper, the BP neural network
learning algorithm is introduced into the harmonic problems of the power system. �e mapping relationship between input
and output signals is obtained by using the BP neural network algorithm, and the harmonic frequency, amplitude, and phase
contained in the obtained data are analyzed. According to the type of equipment with problems in the operation of the power
system and the rapid diagnosis of existing defects, the problems are quickly located and the causes are analyzed. �e practical
results show that the BP neural network learning algorithm proposed in this paper has higher detection accuracy and analysis
speed for the di�cult problems in the power system.

1. Introduction

When harmonic issues of the power system are studied,
massive data on the operation of equipment are accumu-
lated, which can re�ect the historical problems of the
equipment and the related solutions [1, 2]. Historically, no
e�ective data analysis has been conducted, and the relevant
data are often stored in the corresponding system. More-
over, the equipment issues in the power system are resolved
through maintenance, personnel’s specialized expertise, and
pragmatic experience accumulated over time because the
equipment in the power system has functional de�ciencies
and the operation is complicated. In the case where historical
issues are resolved by the BP neural network-based learning
algorithm and the results of the case study are kept in the
relevant platform, a database for maintenance cases of the
power system equipment can be established. It will facilitate
maintenance personnel in various areas for query, learning,

and reference in real time to improve their communication
so that they can share experience with each other and
perform troubleshooting e�ciently [3, 4].

As a reference, historical cases can help new main-
tenance personnel master the process of equipment op-
eration and maintenance in the power system and
improve their competency rapidly, which is vital for the
e�ective diagnosis of the equipment later. According to
the abovementioned analysis, combined with the data
mining algorithm and bidirectional networks in the long-
and short-terms, and random conditions, the research on
the power system harmonic issue is completed to address
the problems in the power system harmonic process ef-
fectively [5, 6]. By constructing the power system
equipment knowledge graph of the ontology model,
power system equipment failure is identi�ed by the BP
neural network-based learning algorithm. Accurate de-
tection of the system frequency is the basis for better
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realizing harmonic detection and suppression. At the
same time, it is also the key core problem of applying
active filtering. .e quality of detection directly deter-
mines whether the active filter can achieve harmonic
compensation well. Hence, accurate real-time acquisition
of harmonic data is required. When fundamental com-
ponents can be measured accurately and quickly from the
distorted waveform, the detection and suppression of
higher harmonics can be accomplished. Sedzro et al.
proposed a stochastic model of risk perception. .is
stochastic method considers the uncertainty of energy
production and market price to maximize revenue and
minimize loss risk. Chen et al. proposed a power man-
agement mechanism to meet the delay constraints of
broadcast applications and the scheduling of scan aware
packets, so as to provide a better quality of service for
applications with multiple rates. Zhang et al. proposed an
intelligent detection and the diagnosis system, which can
reliably detect dangerous operating conditions online..e
best trade-off between detection and diagnosis accuracy
and detection and diagnosis is achieved. Muntean et al.
proposed a solution for monitoring indoor and outdoor
environmental parameters, including low-cost, easy to
deploy wireless power devices, and cloud applications for
managing, storing, and visually recording data. .ere are
also some researches on harmonic detection and diagnosis
of the power system. With the rapid development of
artificial intelligence technology, the artificial neural
network algorithm is gradually introduced into the har-
monic analysis process of the power system, which is
mainly divided into an adaptive linear neural network and
the BP neural network learning algorithm. Both of these
two algorithms can quickly detect the harmonic com-
ponents, but they also have their own drawbacks. .e
adaptive linear neural network needs to clearly obtain the
conditions for accurate harmonic analysis at the funda-
mental frequency; the window and the interpolation FFT
algorithm can be used to detect the harmonic frequency,
and the adaptive linear neural network algorithm can
achieve better results in detecting the harmonic inter-
polation and phase process. .e BP neural network al-
gorithm can be used for harmonic detection; because
there is uncertainty in the data training process, usually it
needs to be trained for a long time before use, or there may
be untrainable and local minima. Data acquisition is
performed according to the convergence situation, so it
cannot be applied to actual scenarios; however, the BP
neural network learning algorithm has high accuracy and
flexibility in real-time harmonic detection, and there is no
strict limit on the number of samples collected. In ad-
dition, the BP neural network learning algorithm has the
advantages of fast learning speed, no local minimum
value, and consistent approximation performance for any
nonlinear function, which can be applied to the harmonic
detection of the power system.

Under the synchronous sampling of power system
harmonics, the BP neural network algorithm will not pro-
duce spectral omission. According to this characteristic, it

can be analyzed that by adjusting the sampling interval of the
sampling sequence again, the harmonic signal of asyn-
chronous sampling can be converted into a quasisynchro-
nous signal. Relying on the BP neural network-based
learning algorithm, this paper conducts technical analysis
and harmonic research for the difficult problems in the
power system, so as to reduce or eliminate the synchroni-
zation error.

2. Basic Correlation Algorithms

Assuming that the neural network has m layers with Ni, NI,
andNm neurons in the input I in each m layers, respectively.
In the BP neural network algorithm, Xp is variable inputs;
Op is practical variable outputs [7, 8]; Tp is expected outputs.
ωi/jk is the weight of the neuron j in the i-th layer on neuron
k in the i+ 1 layer; Oi/j is internal scalar outputs of neuron j
in the i-th layer; θi/j is the threshold of neuron j in the i-th
layer; ui/j is all inputs of neuron j in the i-th layer; f is the
activation function. .e variables have relationships as
follows:
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Input of neuron j in the hidden layer:
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Output of neuron j in the hidden layer:
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.e error function E of the neural network can be
expressed as follows:
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1
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Weight adjustment is performed on the network in the
gradient descent direction of E by the gradient descent
method [9, 10], and calculation is conducted according to
the equation as the following:
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where η is the learning efficiency coefficient, that is, the step
size.
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In the hidden layer, node Oi + 1/k is as follows:
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When Oi + 1/k is the node of the output layer:
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When the i+ 1 layer is used as the output layer:
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.e following can be obtained if the i+ 1 layer is hidden:
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3. Harmonic Analysis with BP the Neural
Network-Based Learning Algorithm

.e characteristics of data are indicated using the proposed
BP neural network algorithm for the power system with
harmonic “drawbacks” as the target of analysis [11, 12]. For
the purpose of mining and applying harmonics data of the
power system, this paper builds a power system harmonics
research platform, which mainly includes three layers (data,
ontology, and application). In the data layer, harmonic data
are processed by the BP neural network-based learning
algorithm according to power equipment based on the
historical records of harmonic issues, which has provided a
basis to analyze the power system harmonic problem ef-
fectively. .e ontology layer in the system is mainly to build
the relationship between objects based on the algorithm, and
then, the harmonic problem in the power system is formed.
In the business layer, the data obtained are shared via the
ontology layer. .e BP neural network learning algorithm
for power systems is a model extensively applied in the
analysis of harmonic issues. In the study of harmonic
problems in the power system, text features and CRF can be
extracted by leveraging the advantages of the bidirectional
storage network in the long term to accomplish the mission
of sequence labeling and analyze harmonic issues.

Assuming that the optimized power data conversion
range does not exceed the constraints, it can be generated in
a random way and compared before and after the combi-
nation of harmonic signal operation and optimization to
ensure multiobjective data.

If the optimized target exceeds the boundary range, the
random generation method is used for modification. For a
single-point objective of neuronal harmonic signals before
and after optimization of harmonic signal manipulation, in
order to ensure that the optimization target can transform
the data, it is necessary to select any optimization target hr as
this conversion factor and leave it to the subsequent target.
For other conversion targets, a random number R can be
generated arbitrarily within the range of 0 to 1, and
meanwhile, whether a multitarget crossover operation is
required is determined according to the random number
and the harmonic signal probability modification.

uh,n,g+1 �
vh,n,g+1, R≤P or h � hr

xh,n,g, R>p,

⎧⎨

⎩ (13)

where uh,n,g+1 in equation (13) is the h-th objective of the
(g+ 1)-th generation obtained after the harmonic signal
operation; vh,n,g+1 is the (g+ 1)-th generation neuron after
the multiobjective optimization target, xh,n,g is the h-th
target of the g-th generation neuron before completing the
harmonic signal, and p is the probability value of the har-
monic signal.

Different fitness functions are selected based on different
operating modes, and the optimal neuron is used to
maintain the multiobjective differential evolution algorithm
calculation. In this article, a binary coding method is used to
indicate whether a component is faulty or not with a data bit.
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.e collective size is 40. Natural selection refers to the
operation of selecting superior neurons and eliminating
inferior neurons from the collective [13, 14]. .is paper
adopts the competition method..e harmonic signal adopts
the point harmonic signal method with a certain probability
P, that is, a harmonic signal point is randomly selected in the
neuron column, and the two neurons are partially exchanged
before and after this point. Generation of new neuron by
combining selection and harmonic signals, some permanent
loss of information caused by selection, and harmonic
signals can be avoided. Local random search can be per-
formed by the multiobjective differential evolution algo-
rithm to ensure its effectiveness. Meanwhile, the
multiobjective differential evolution algorithm maintains
the diversity of the group, and the optimization operation is
also a measure to prevent the algorithm from premature.
Based on the traditional multiobjective gap evolution al-
gorithm, the following improvements are made. In terms of
forming the initial neuron (giving an initial value), the
neuron where the component failure occurs is formed like
the component-related protection fault, and the neuron
which generates the component failure and neurons without
component failure are formed.

.e symmetrical sigmoid function can be mathemati-
cally expressed as follows:

f(u) �
1

1 + e
− λu

. (14)

.us, the asymmetric function for sigmoid is as follows:

f(u) �
1 − e

− λu

1 + e
−λu

. (15)

.e internal λ is used as the function gain, which de-
termines the function slope in the nonsaturated range; a larger
λ indicates a steeper curve. From the characteristics of the
S-function curve, it can be concluded that when it is used as
the excitation function, since the middle is the high-gain
region, it can adapt to weaker signals; and because the two
ends are in the low-gain region, it can adapt to weaker signals
and enhance the generalization of the neural network.

.e principle of δ learning rule is as follows: assuming
that the weight of the neuron is adjusted to minimize the
function F(w). If the current weight of neuron is w (t), then
the weight at the next moment is as follows:

w(t + 1) � w(t) + Δw(t) (16)

In the formula, Δw(t) is the weight adjustment direction
at the current time point, and it is expected that each ad-
justment satisfies the following formula:

F(w(t + 1))<F(w(t))

������
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2
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2



. (17)

Conduct Taylor series expansion on F(w(t+ 1)) to get the
following formula:

F(w(t +1)) � F(w(t) +Δw(t))≈F(w(t)) + g
T
(t)Δw(t).

(18)

In formula (18), gT(t) �ΔF(w(t)) | w � w(t) is the
gradient vector of F(w) at w(t).

Δw(t) � −cg(t). (19)

In the formula, c is the learning rate, which generally
takes the smallest positive number, that is, a smaller value in
the negative gradient direction is taken as the weight cor-
rection amount. .us, the last term of equation (18) on the
right side must be a negative value; then, the formula (18)
will be automatically met according to the basic principle of
the gradient method.

If any signal f(t) with period T is Fourier-expanded, the
following can be obtained:

f(t) � a0 + 
∞

n�1
cn cos nωt + ϕn( , (20)

where ω is the angular velocity value of the signal at the
fundamental frequency. When n� 1, it corresponds to the
parameter of the fundamental signal. Its magnitude and
phase are expressed as follows:
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.e actual Fourier coefficients represent the content of
cosωt and sinωt in the detected signal f(t). .erefore, if a
certain signal is assumed, the corresponding fundamental
wave component can always be obtained, that is, the signal
waveform of the system and the fundamental wave com-
ponent are always in a one-to-one correspondence. If the
space formed by the full signal is set to be f(A), and the
corresponding space formed by the fundamental wave
components is f(B), it is proved that the mapping from f(A)
to f(B) is an injective relation.

As a forward neural network that uses error to learn
backwards, massive studies have been conducted on the BP
neural network, and nonlinear mapping capacity is one of its
essential functions. It is divided into input layer, hidden
layer, and output layer. .e three layers are mostly fully
interconnected, but there is no interconnection relationship
between units in the same layer. When a network is provided
for a learning sample, the activation value of neurons
propagates from the input layer through each intermediate
layer to the output layer. After the neurons in each layer of
the output layer obtain the input response of the network,
they will reduce the error between the target output and the
actual output. From the output layer to the middle layer, the
connection weights are modified layer by layer, and finally
back to the input layer. Only when the hidden layer has
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sufficient neurons, nonlinear mapping of input and output
can be completed in 3-layer networks. Figure 1 shows the
structure of the BP neural network.

Here, the input of the network is the measurement target
signal, xi is one of the m sample values, and yj is the fun-
damental wave component at the corresponding moment
(i� 1, 2, 3, . . ., n, and j� 1, 2, 3, . . ., n).

(1) In its structure, neuron counts in each layer (input,
output, and hidden) are designed, respectively [15]

(a) Determine the neuron count in the input layer.
.e set of sample data with a certain pattern
should include various types of patterns as much
as possible, and the distribution of the samples
should also meet the distribution in its practical
application as much as possible. Assuming that
the Fourier decomposition expansion of the
nonsinusoidal periodic signal in the power sys-
tem is shown in equation (21), the sampling
period is 32 points per cycle, that is, fs� 1600Hz,
so there are 32 neurons in the input layer.

f(t) � a0 + 
∞

n�1
cn cos nωt + φn( . (22)

(b) .e number of output layer units is determined
to be 32, corresponding to the instantaneous
value of the fundamental wave at the corre-
sponding sampling time

(c) In accordance with the number of layers and the
famous Kolmogorov theorem, when there are
sufficient nodes in the hidden layer, a neural
network with a hidden layer can approach non-
linear function at any accuracy, so the fundamental

wave detection network in this paper adopts the
hidden layer.

(d) Determination of hidden layers and neurons
therein. In practice, hidden layer neurons can be
selected empirically or by trial-and-error methods.
According to the empirical formula, the neuron
count in the hidden layer is as follows:

s�

������������������������������

0.43mn+0.12n
2
+2.54m+0.77n+0.35



+0.15.

(23)

.ere are 98 nodes in the hidden layer. m is the
neuron count in the input layer, s is the neuron
count in the hidden layer, and n is the neuron
count in the input layer.

(e) Activation function selection: in this paper, an
asymmetric S-function is selected for the acti-
vation function, and all input parameters and
output parameters are normalized for samples.
In this paper, the asymmetric sigmoid function is
selected, and its standard input and output range
is [0, 1].

(f ) .e selection of the initial weight and the initial
value of the weight must satisfy that the state of
the superposition of the input of each neuron’s
approach to zero. Ensure that in the initial
training state, all neurons are in the more sen-
sitive area of the activation function, and try to
avoid appearing in the insensitive area of the
function. Since the activation function used in
this paper is an asymmetric S function, the initial
weight selected in this section is a set of random
values between [0, 1]

Error back propagation

xn

x3

x2

x1

y3

yn

y1

y1

Input forward

…
…

…
…

…
…

Figure 1: Structure diagram of the BP neural network.
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(g) Determination of the expected error: after the
trend of training the network is on the right
track, slowly reduce the error to 10–5, and train
the network again. According to the above-
mentioned analysis, this paper designs a BP
neural network including three layers: input,
hidden, output, with 32, 98, and 32 neurons,
respectively.

(2) Formation of training samples

Samples are critical for neural network learning. .e
information contained can directly affect the performance of
the network. Whether the sample set is representative de-
termines the learning effect of the network; the sample set
size is used to describe a training set (data quantity and data
distribution). As shown in Figure 2, a sample set of a pattern
should contain as many types of patterns as possible, and the
actual distribution of the samples should meet the actual
application situation as much as possible. Since the system
contains many nonlinear loads, most of the distortion
waveforms generated are odd-ordered, but the proportion of
harmonics is not very large; a higher harmonic order
generally indicates a smaller amplitude. .e signal of the
system voltage or current may also contain a DC compo-
nent, that is, when its average value is not equal to zero.

.erefore, the sample set selected from current/voltage
signals of the grid in this paper is the following combination:

(1) Fundamental wave, DC component, and harmonic
components (3, 5, 7)

(2) Fundamental wave and harmonic components (3)
(3) Fundamental wave and harmonic components (5)
(4) Fundamental wave and harmonic components (7)
(5) Fundamental wave and harmonic components (3, 5)
(6) Fundamental wave and harmonic components (3, 7)
(7) Fundamental wave and harmonic components (5, 7)
(8) Fundamental wave and DC components
(9) Only fundamental components

.e proportion of the DC component is about 0.1
times that of the fundamental wave; the amplitude of the
3rd harmonic component (Figure 3) is no larger than
0.3 times; the amplitude of the 5th harmonic is smaller
than 0.2 times; the amplitude of the 7th harmonic is
smaller than 0.025 times.

.e specific training sample set is X� [X1, X2, X3, X4, X5,
X6, X7, X8, X9], X1, . . ., X9 are respectively as follows.

X1 � 0.1 + sin(ωt) + 0.3 sin(3ωt) + 0.2 sin 5ωt +
π
4

 

+ 0.025 sin 7ωt +
π
3

 ,

X2 � sin(ωt) + 0.3 sin(3ωt)

X3 � sin(ωt) + 0.2 sin 5ωt +
π
4

 

X4 � sin(ωt) + 0.025 sin 7ωt +
π
3

 

X5 � sin(ωt) + 0.3 sin(3ωt) + 0.2 sin 5ωt +
π
4

 

X6 � sin(ωt) + 0.3 sin(3ωt) + 0.025 sin 7ωt +
π
3

 

X7 � sin(ωt) + 0.2 sin 5ωt +
π
4

  + 0.025 sin 7ωt +
π
3

 

X8 � 0.15 + sin(ωt)

X9 � sin(ωt).

(24)

where ω� 2πf, and the value range of f is [49.5, 50.5].

4. Simulation Example

For the purpose of ensuring that erroneous information in
the harmonic signal of the power system can be detected by
the BP neural network algorithm, the harmonic signal in-
formation data obtained in this experiment is used. At this
time, the harmonic problem of the power system will be
parameterized according to the actual situation, as shown in
Table 1, where λ is the regularization coefficient of L2;
optimizer is the optimizer of the algorithm solution (Adam
is the estimation algorithm of the adaptive moment, SGD is
the descent algorithm of the stochastic gradient); NHidden dim
is the neuron count in the BiLSTM hidden layer; NEpoch is
the rounds of sample training; NBatch_size is the sample size of
each batch selected; cLearning_rate is the algorithm learning
rate; NEmbedding_dim is the vector distribution dimension
when harmonics are converted to vectors; cDropout is the
random dropping rate of neurons.

.e performance of the model is assessed based on three
indices: precision (P), recovery (R), and F1 according to
equations (2)–(4). .e results in 4 control groups are shown
in Table 1.

It can be observed from the abovementioned simulation
results that the neural network and Prony algorithm can be
used to analyze the harmonics of the power system. In the
absence of noise, the width value and phase have high
precision, plus white noise with only 0.001 times the fun-
damental wave. However, due to the large width of the

W1

W2 +++.
.
.

.

.

.

.

.

.
Wn

e (t)

f (x) Y

d (ti)

+–

Figure 2: Current linear neuron model.
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fundamental wave, even if a small white noise is added, the
measurement accuracy of harmonics is greatly reduced.

Comparing the power system harmonic problem pro-
posed in this paper (control group 1), Table 2 shows three
indices (accuracy, recovery, and F1) in the experimental
group based on CRF, BiLSTM-softmax, and Seq2Seq-at-
tention, respectively, under the natural language generation
model. Table 2 indicates that the proposed power system
harmonic method has better accuracy (87.12%), recovery
(86.46%), and F1 (0.8679) than CRF, BiLSTM-softmax, and
Seq2Seq-attention, respectively. Furthermore, an accuracy
of above 90% can be achieved when three entities of the fault
solution for location in the Q&A dataset of power service are
identified and extracted by CRF. .e test accuracy of the
dataset used in this paper is only 70.01%, which also verifies
the advantages of the study of harmonic problems in power
systems.

In order to further verify the effectiveness of the BP
neural network algorithm, this paper selects the sample data
of harmonics when different angle deviations as the test data
and conducts analysis and simulation verification of the

algorithm. .is paper collects and analyzes harmonic
samples according to the changes of the specific rectification
angle, specifically, which can be divided into five angles of
α� 0°, α� 30°, α� 60°, α� 90°, and α� 120° for network di-
agnosis. In order to further detect the harmonic diagnosis
results of the network, the corresponding training samples
are used for analysis, and the actual output of the neural
network is represented by 0 and 1 to facilitate comparison
with the expected output.

Constant

0.05

Sine wave 5

Sine wave 4

Sine wave 3

Sine wave 2

Sine wave 1

DSP

DSP

DSP

DSP

DSP
Scope

Scope 1+

+

+

+

+

+
Add

Figure 3: Harmonic simulation model.

Table 1: Settings of model hyper-parameters.

Hyper-
parameters

Value
Control
group 1

Control
group 2

Control
group 3

Control
group 4

λ 0.0001 0.001 0 0.0001
Optimizer Adam Adam Adam SGD
Nhidden_dim 400 400 400 400
Nepoch 40 40 40 40
Nbatch_size 35 35 35 35
clearning_rate 0.001 0.001 0.001 0.001
Nembedding_dim 200 200 200 200
cdropout 0.4 0.4 0.4 0.4

Table 2: Comparison of model performance by experiments.

Models Accuracy (%) Recall (%) F1
CRF 70.02 70.43 0.7142
BiLSTM-softmax 78.73 71.9 0.7714
Seq2Seq-attention 71.63 — —
BP neural network learning 87.13 86.47 0.8779
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Figure 4: Harmonic diagnostic accuracy.
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.e output of the neural network is reasonably processed
using the judgment principle, and the processed data can
correctly reflect the diagnosis results of the harmonic wave.
Figure 4 shows the harmonic diagnosis accuracy when α is
taken as 0°, 30°, 60°, 90°, and 120° respectively.

It can be seen from the results in Figure 4 that the BP
neural network algorithm has good classification perfor-
mance and high efficiency of intelligent detection and
diagnosis.

5. Conclusion

In the normal running power system, speed changes in the
synchronous generator will lead to the change of the fre-
quency of the power system, which is in line with the basic
principle of the harmonic current detection method. On the
basis of analyzing the shortcomings of independent detec-
tionmethods, a BP neural network-based learning algorithm
is proposed from the essential function of the active power
filter to the improve power quality and reduce total har-
monic distortion rate to analyze the reason of frequency
fluctuation of the power system. .e neural network is used
to simulate the fundamental wave signal to obtain the re-
quired fundamental wave frequency; the harmonic pa-
rameter estimation can achieve high accuracy. .e research
on the harmonic problem of the power system has been
improved in the evaluation index, which can be used for
providing a theoretical basis for plotting the knowledge
graph, reading relevant data, conducting standardized
processing, etc. in the power system. .e harmonic issues in
the power system can be effectively addressed based on the
comparison of track records to ensure a more intelligent and
suitable model for application scenes in practice. According
to the test results, the proposed method can resolve the
harmonic problems and detect the harmonic current in the
power system using the active power filter at the harmonic
detection stage.
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