Hindawi

Computational Intelligence and Neuroscience
Volume 2022, Article ID 7255913, 12 pages
https://doi.org/10.1155/2022/7255913

Research Article

@ Hindawi

QoS Analysis for Cloud-Based IoT Data Using Multicriteria-Based

Optimization Approach

L. Jayakumar ,! R. Jothi Chitra,’ J. Sivasankari,’ S. Vidhya,4 Laura Alimzhanova,’
Gulnur Kazbekova,’ Bakhytzhan Kulambayev,” Alma Kostangeldinova ©,® S. Devi,’

and Dawit Mamiru Teressa ®'°

'Department of Computer Science and Engineering, National Institute of Technology, Agartala, Tripura, India
ZDepartment of Electronics and Communication Engineering, Velammal Institute of Technology, Chennai, Tamilnadu, India
Department of Electronics and Communication Engineering, Ultra College of Engineering and Technology, Madurai,

Tamilnadu, India

*Department of Information Technology, Saveetha Engineering College Thandalam, Chennai, Tamilnadu, India

®Al-Farabi Kazakh National University, Almaty, Kazakhstan

®Head of the Department of Computer Sciences, C. T. S Khoja Akhmet Yassawi International Kazakh-Turkish University,

Turkistan, Kazakhstan

“International Information Technology University, Almaty, Kazakhstan
8Kokshetau University Named Af Sh Ualijhanov, Kokshetau, Kazakhstan
*Department of Computer Science Engineering, Mother Terasa College of Engineering and Technology, Pudukkottai,

Tamil Nadu, India

"Department of Chemical Engineering, College of Biological and Chemical Engineering,
Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Correspondence should be addressed to L. Jayakumar; jkaylogu@gmail.com and Dawit Mamiru Teressa; dawit.mamiru@

aastustudent.edu.et

Received 11 May 2022; Revised 4 August 2022; Accepted 9 August 2022; Published 7 September 2022

Academic Editor: Kehui Sun

Copyright © 2022 L. Jayakumar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This work explains why and how QoS modeling has been used within a multicriteria optimization approach. The parameters and
metrics defined are intended to provide a broader and, at the same time, more precise analysis of the issues highlighted in the work
dedicated to placement algorithms in the cloud. In order to find the optimal solution to a placement problem which is impractical
in polynomial time, as in more particular cases, meta-heuristics more or less approaching the optimal solution are used in order to
obtain a satisfactory solution. First, a model by a genetic algorithm is proposed. This genetic algorithm dedicated to the problem of
placing virtual machines in the cloud has been implemented in two different versions. The former only considers elementary
services, while the latter uses compound services. These two versions of the genetic algorithm are presented, and also, two greedy
algorithms, round-robin and best-fit sorted, were used in order to allow a comparison with the genetic algorithm. The char-
acteristics of these two algorithms are presented.

1. Introduction

The Internet of things (IoT) will open up new possibilities
for developing apps that more effectively incorporate the
current status of the sector. Due to the proliferation of web
services that perform identical tasks, industrial

organizations must select the best web services based on
their quality of service (QoS) characteristics. In this article,
the QoS problem is formulated as a multicriteria goal
programming (MCGP) model, and the model is solved using
a multipopulation genetic algorithm (MGA). In addition to
automatically selecting high-quality web services to combine

mailto:jkaylogu@gmail.com
mailto:dawit.mamiru@aastustudent.edu.et
mailto:dawit.mamiru@aastustudent.edu.et
https://orcid.org/0000-0002-5542-6709
https://orcid.org/0000-0003-2221-3560
https://orcid.org/0000-0001-5270-8252
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7255913

into composite services, MCGP also searches for composite
services that do not fall short of users’ QoS expectations by
loosening QoS restrictions. A study of empirical data shows
that the genetic algorithm outperforms both round-robin
and best-fit sorting. Additionally, the studies show that the
genetic algorithm can efficiently and scalably address the
large-scale QSC problem.

We define three QoS characteristics as the quality
evaluation criteria of web services according to the domain
application of 10T, which are defined in relation to various
QoS attributes for web services published by the W3C
working group:

(i) Execution time (f): the average amount of time that
passes between when a user sends a request and
when the server responds is the service’s execution
time ().

(ii) Reliability (r): the percentage of service requests that
are successfully fulfilled determines how reliable a
service is. The ratio of successful executions to total
service calls is used to calculate it.

(iii) Execution cost (c): the fee for using a web service is
known as the execution cost.

A collection of component services with logical con-
nections makes up a composite service (or tasks). Various
candidate service instances with the same functionality but
distinct QoS values might be bound to different tasks. Se-
quential, loop, parallel, and switch are the most popular
service composition workflows.

In conclusion, researchers try to identify the greatest
services to combine into the best composite service for
industrial applications. Developing effective strategies to
deal with circumstances where no practicable solution can
satisfy the overall QoS restrictions is still a crucial task. In
order to address this challenge, this work formulates the QoS
problem into an MCGP model in order to discover a so-
lution with a lower level of constraint violation. The MCGP
model is then solved using a multipopulation genetic
method. Figure 1 shows the QoS criteria.

2. Literature Review

The analysis of the SLA proposals of the main current Saa$S
service providers makes it possible to realize that the in-
clusion of even one of these parameters directly serves the
interests of the service provider [1]. Services, in the research
on cloud computing placement algorithms, could allow for
further study [2, 3]. For example, if the latent capacity
parameter, cited in Oracle’s SLA proposal, was used as a
metric to be optimized in the placement algorithms, in
addition to the energy consumption and response time, this
would lead to analysis of an interesting compromise between
the reduction in energy consumption, the desired perfor-
mance at a given moment, and the capacity of the services at
the moment, if a peak of use (a sudden increase in the
number of requests) occurs. Indeed, taking into account
more QoS parameters, assimilated to optimization metrics
in placement algorithms aimed at reducing the energy

Computational Intelligence and Neuroscience

Goal

[Service] [Service] [Service] Service] [Service]
1 2 3

FiGure 1: QoS criteria.

consumed, can lead to choosing a temporary consolidation
configuration of virtual machines unfavorable for some
metrics, but guaranteeing a high level of performance for
other metrics, which are mostly ignored in current studies
[4]. The use of several metrics thus makes it possible to have
a more complete view of the state of all physical resources,
and provides service providers with a more sophisticated
analysis possibility as well as a greater number of configu-
ration solutions. In addition, multicriteria optimization also
makes it possible to analyze the influence of the parameters
with respect to each other. This is performed, in order to
estimate the way in which each parameter influences the
optimization, to analyze the antagonism caused by the joint
use of these metrics, but also to verify their relevance. These
different points are not without importance because it is not
necessarily easy to select a set of QoS parameters having both
real relevance for the analysis of the operation of the system
and the joint optimization which, with other parameters,
results in a satisfactory compromise. Another interesting
advantage of a simultaneous analysis of various cloud QoS
settings can be emergence from the a priori undemonstrated
properties of greedy algorithms, whose intrinsic behavior
does not allow a direct optimization of the analyzed metrics
[5, 6].

This work explains why and how QoS modeling has been
used within a multicriteria optimization approach. It is also
important to remember that in addition to the selected
quality of service parameters, reconfigurations of virtual
machines as well as DVES are integral parts of the scheduling
problem presented. First, modeling by a genetic algorithm is
proposed. This genetic algorithm dedicated to the problem
of placing virtual machines in the cloud has been imple-
mented in two different versions [7, 8]. The former only
considers elementary services, while the latter uses com-
pound services. This version clearly complicates the reso-
lution of the placement, in particular, because a temporal
aspect must be integrated into the resolution. Indeed, the
topology of a complex service, however simplistic it may be,
induces dependence between the services that the genetic
algorithm must take into account to obtain a valid invest-
ment solution. These two versions of the genetic algorithm
are presented, and also, two greedy algorithms, round robin
and best-fit sorted, were used in order to allow a comparison
with the genetic algorithm. The characteristics of these two
algorithms are presented. It is important to specify here that
the version of the algorithm using compound services is

Computational Intelligence and Neuroscience

presented as preliminary work requiring future work. This
version of the genetic algorithm is not used in the other
works exposed in the rest of this article but presents a certain
interest thanks to the complexities that it raises. The first
section of this work presents how the use of several quality of
service metrics within scheduling algorithms can both en-
rich current research studies and improve multiobjectives
dedicated to cloud computing, but also highlights the
sometimes ignored insight of certain algorithms with more
basic behaviors [9-12].

As the importance of quality of service in cloud com-
puting becomes more and more important, this article
implements the various types of classifications in cloud
computing and includes three major concepts to explain
cloud computing. The energy consumption, the response
time, and the two other parameters are used to explain the
QoS methodology of the entire network services [13-27].

To reduce the power consumption of IoT devices and
speed up task execution, Internet of things (IoT) tasks are
offloaded to servers at the edge of the network. However, in
dangerous terrain or in emergency situations where the
network is down, establishing edge servers could be chal-
lenging or perhaps impossible. Cloud services are replaced as
close to the end user as possible by mobile-edge computing
(MEC). This lowers the energy usage and turnaround time
delay by allowing the edge servers to carry out the offloaded
operations that the users have requested. However, it could
be challenging to deploy such edge servers in hostile envi-
ronments or in disaster zones without a network. Perfor-
mance improvements are now possible in many domains
thanks to recent developments in high-performance com-
puting systems. Surface approximation from a group of
points is one of the most significant uses of this improve-
ment. In this study, we suggest a method for creating a
surface that approximates an oriented set of samples and is
entirely compatible with graphics processing units (GPUs)
[28-30].

3. Selection of Quality of Service Metrics

Four QoS parameters have been chosen: energy consumption,
which makes it possible to take into account environmental
problems; the response time, which makes it possible to have a
pure performance measure; the robustness, which reassures
service providers and users on the probability of being af-
fected by a failure of the system; and the dynamism, which
ensures a certain reserve of performance in the event of a
traffic peak. In order to be able to measure and evaluate these
metrics in the two approaches proposed in this chapter, some
modifications had to be made to the definitions of the metrics
used compared to those presented.

4. Greedy Algorithms

This section presents the greedy algorithms used, described
below, in addition to the genetic algorithm presented. These
two greedy algorithms are round-robin and best-fit sorted.
Their operation is more basic compared to a generic algo-
rithm in that they do not integrate a direct optimization of

QoS metrics. However, the multicriteria analysis of their
results allows them to interpret their insight in another way.

4.1. Round-Robin. The round-robin (RR) algorithm was
empirically used for scheduling in networks, with no priority
over the chosen destination, when the concept of a vir-
tualized environment did not yet exist. Its use in the context
of this chapter may seem rather strange given that the
principle of this algorithm does not present any particular
intelligence, which would make it possible to take advantage
of virtualization and therefore of the notion of virtual
machine consolidation, currently commonly used in cloud
data centers to minimize energy consumption. Thus, its use
in this chapter is analyzed by taking into account several
parameters, and not only the energy consumption, which
allows a more elaborate analysis to be made to demonstrate
its advantages [31-34]. The implemented round-robin sorts
the physical machines in ascending order according to their
type. That is to say, the algorithm will go through the
physical machines of type 0 first, then those of type 1, etc.
Due to the intrinsic behavior of the algorithm, this sorting
has little importance when a large number of virtual ma-
chines must be allocated because virtual machines will still
be placed on poorly performing physical machines. But the
more the number of virtual machines to allocate decreases,
the more interesting this sorting becomes. However, this sort
of sorting is not very efficient with round-robin as long as the
number of virtual machines to be allocated is greater than
the number of physical machines. Indeed, these will be used
anyway, whatever their type.

4.2. Best-Fit Sorted. The best-fit sorted (BFS) algorithm is
better known for its ability to efficiently take advantage of a
virtualized environment. Used with sorting performed on
the characteristics of physical machines and virtual ma-
chines, the BFS obtains good results in terms of energy
consumption. The implemented BES performs two different
sorts on physical machines. First, the physical machines are
sorted according to their type. Once this first sort is com-
plete, a second sort is performed according to the (de-
creasing) quantity of free MIPS on each of the physical
machines. This not only allows virtual machines to be al-
located to the most energy-efficient physical machines, but
also attempts to consolidate virtual machines as best as
possible.

5. Genetic Algorithm

In English, a genetic algorithm (GA) is an optimization
meta-heuristic that mimics natural evolution. A genetic
algorithm uses a set of individuals, called a population, in
which each individual (also called a chromosome) represents
a solution to the problem to be solved. The basic principle of
a genetic algorithm is to make this initial population evolve,
over a certain number of generations, to end up with a
population that will contain better chromosomes than the
initial ones. From one generation to another, specific op-
erators (genetic operators) are applied to each individual in

Computational Intelligence and Neuroscience

Begin
Initialize P(n)
t=0
While (¢<T) do

end if
Sort P(n)
for i=1 to n/m
Select P(i)
Crossover P(i)
Mutation P(i)
end for

Select P(i)

Crossover P(i)

Mutation P(i)
end for

Select P(i)
Crossover P(i)
Mutation P(i)
end
for t=t+1
end while
end

//P: the population of current generation
//n: the number of individuals

/Im: the number of groups

//t: the number of current generations
/IT: the maximum number of generations

Calculate Fitness for P(n) using equation (1)
If no Feasible (P), then
Calculate Fitness for P(n) using equation (2)

for i=(n/m)+1 to (n/m) =2

fori=n—(m—1)* (n/m) to n

ALGORITHM 1: Basic genetic algorithm.

order to explore new possible solutions. At each generation,
following the application of these genetic operators that
generate new individuals, all the chromosomes (initial and
new) are sorted according to their fitness value. Each in-
dividual is assigned a score (fitness value) following the
calculation of an objective function. Each individual is
therefore evaluated according to this value, and only those
chromosomes having obtained a fitness value estimated to be
good enough to be part of the generation are selected to
constitute the working population of the next generation.
Thus, with each generation, the set of operators creating new
chromosomes tends to ensure that the population contains
individuals representing better solutions. A genetic algo-
rithm is therefore a meta-heuristic, being able to adapt to
several types of problems and make a starting population
evolve by randomly applying operators, making possible the
journey of the solution space [34-37].

Equation (1) is frequently used to assess the fitness of an
individual (equivalent to a candidate service composition
formed by choosing a specific service instance for each task).

F=Wt+W,r+Wic (1)

Here, the values of reaction time, dependability, and cost
have been combined using aggregation procedures.

The fitness function stated in equation (2) specifically
tries to minimize breaches of the QoS performance and the
provided QoS constraints for people in the case of no feasible
solutions. Algorithm 1.

F=Wit+W,r+Wyc+W,d] + Wid, + Wed;, (2)

where 0<w; <1,

6
Zwi: 1,

di =t-T,, (3)
d, =Ry -,
d; =c-C,.

5.1. Modeling. A genetic algorithm is, by definition, a meta-
heuristic that can be adapted to many types of problems. A
clear description of the chosen model in the context of this
thesis is therefore necessary:

(i) A chromosome represents a solution for placing
virtual machines, as shown in Figure 2

Computational Intelligence and Neuroscience

-

Represents a Gene
(virtual machine)

Number of the physical machine on

X which the virtual machine is allocated

FIGURE 2: A chromosome is made up of N genes.

[Y 5 0 1
TPy | | |

Crossing two Points

s aoo o EENEEEIE ¢
Child 2 A B C D E F G H T

FIGURE 3: Two-point crossing operator applied to chromosomes.

(ii) A gene represents a virtual machine

(iii) The value assigned to a gene represents the number
of the physical machine on which the virtual ma-
chine has been allocated

(iv) At the same time, the characteristics of virtual
machines and physical machines are saved in order
to be able to calculate the values of each of the
metrics as well as the fitness value of the
chromosomes

5.2. Operators. As mentioned in the introduction, one of the
basic principles of an algorithm is to randomly apply op-
erators to the chromosomes of a population in order to form
new ones. The best individuals are kept to be part of the next
generation, and then the process begins again. The operators
used and described are the three typical operators of genetic
algorithms:

(i) The mutation operator, applied to a fixed number
of chromosomes, randomly chooses a gene and
changes its value. This change in the value of the
concerned gene means that the virtual machine
represented by this gene has been allocated to
another physical machine. Thus, the new chro-
mosome obtained represents a new placement
solution and is integrated into the current
population.

(ii) The crossover operator, also applied to a fixed number
of chromosomes, inverts parts of two chromosomes
and thus generates two new solutions. This is per-
formed using two crossing points. An illustrated ex-
ample of this operator is given in Figure 3.

(iii) The role of the selection operator is to reduce the
number of individuals present in the population,
temporarily enlarged by the execution of the two

operators above, in order to keep the best of them,
and thus restore the population to its original size.

5.3. Chromosome Validity. An important process of a ge-
netic algorithm is to ensure that the solutions found, fol-
lowing the application of operators, are valid solutions. In
other words, the solutions found must respect the con-
straints of the model of the problem to be solved. For the
genetic algorithm used here, this consists in verifying that
each solution respects the maximum utilization rate of each
resource (CPU and memory). If the check infers that a
chromosome does not meet these constraints and is
therefore not valid, then it is simply deleted from the current
population and a new individual is generated.

5.4. Stop Criterion. 'The termination of a genetic algorithm
can be decided in two different ways:

(i) By defining an improvement threshold that makes it
possible to compare the best chromosome of the current
generation with the best chromosome of the previous
generation. If the difference between these two chro-
mosomes is less than the defined threshold, then the GA
is stopped, considering that the improvement between
two consecutive generations is not important enough
that it is worth continuing the process.

(ii) After a fixed number of generations in the algorithm
studied here, the first solution could not be used.
Indeed, as explained in the next section, chromo-
somes are evaluated according to a normalized value.
This depends, among other things, on the mean
values of each of the metrics (calculated for all in-
dividuals in the population). These averages are
necessarily different between each generation. Thus,
the fitness values of the chromosomes are not
comparable between successive generations. There-
fore, the second solution was adopted.

5.5. Fitness Metrics and Values. Each metric calculation gives
a value in an interval intrinsically linked to the relevant metric.
In order to be able to calculate correctly the value of the
objective function, involving a set of metrics whose values are
not included in the same intervals, a normalization of each of
these metric values must be applied. This consists in calculating,
for each metric, a value called normalize. These values are
therefore comparable, and it is then possible to add or subtract
them from each other in order to obtain a normalized fitness

Computational Intelligence and Neuroscience

Set of Virtual Machines (t=0)

o(=]

o)

s]’

(=]

VM[ES]

o))

o)

(2]

ZE VRN

CPU% Physical Machine 1

CPU% Physical Machine 2

CPU% Physical Machine N

100% 100%

50% 50%

100%

50%

FiGure 4: Illustration of the elementary service allocation problem.

value. The normalization method used here is the “Center-
Reduce” method, whose formula gives a set of values whose
mean is 0 and a variance of 1.

O =) (4)

with v the value of the metric to be normalized, 4 the mean of
the metric over the entire population and the standard
deviation. Thus, the normalized value of fitness is equal to a
linear formula integrating all these normalized values. This
therefore makes it possible to compare accurately and
precisely each chromosome belonging to a generation
according to their fitness value.

The objective function used in this genetic algorithm is as
follows:

Fobj:alE+a2TReSP+u3R—a4D’ (5)

where a,, a,, a5, and a, are the respective coeflicients of
energy (E), response time (T'g,), robustness (R), and dy-
namism (D), respectively. These coeflicients can be modified
(increased or decreased) to benefit the optimization of one
or more metrics. In this equation (5) of the objective
function, the energy, the response time, and the robustness
are metrics to be minimized, unlike the dynamism metric,
which must be maximized.

5.6. GA Version: Allocation of Elementary Services. This first
version of the genetic algorithm only involves the allocation of
independent elementary services, each executed in a dedi-
cated virtual machine. Each virtual machine therefore rep-
resents an elementary service whose start date is t=0. As
illustrated in Figure 4, the solution to the problem consists of

finding a placement of the set of virtual machines on the
available physical machines while optimizing the QoS metrics.
It is obvious that this version of the genetic algorithm
solves the problem of the allocation of very simplified services
compared to real cloud services. However, this version of
simplified service allocation allows analysis to be focused on
optimizing the various selected QoS metrics [38-42]. Indeed,
using this genetic algorithm as a placement meta-heuristic
makes it possible to evaluate both the quality of its optimi-
zation but also to demonstrate the impact of metrics on top of
each other, highlighting the advantage of using a multicriteria
approach for service allocation purposes. It is this version of
the genetic algorithm that is used in the rest of the work
presented. The analysis of the impact of multicriteria opti-
mization is discussed in detail in the section below.

5.7. GA Version: Allocation of Compound Services. A second
version of the genetic algorithm using compound services
(Sc) has also been explored. A composite service is a set of
elementary services (an elementary service is executed by
one and only one virtual machine). In a general case, the
topology of a compound service is a DAG. This makes it
possible to define the dependency relationships between the
elementary services and thus, represent the execution order
of each of them. One of the main differences from the
version presented in the previous section is that the use of
compound services brings a temporal aspect to the execution
of virtual machines.

5.8. Topology. For this first version of the genetic algorithm
using compound services, a very simple topology has been
chosen (illustrated in Figure 5).

Computational Intelligence and Neuroscience

F1Gure 5: Illustration of the topology of a compound service.

However, this topology makes it possible to introduce a
dependency between the elementary services of a composite
service, resulting in different departure dates between each
elementary service as well as a communication time between
two consecutive elementary services. In addition, a virtual
machine can only belong to a single compound service.

5.9. Generation of Compound Services. All virtual machines
are used to create a number of compound services. The size
of a composite service has been set between 2 and 10 (chosen
randomly when it is created), and the virtual machines that
compose it are also chosen randomly. Using the configu-
ration of 400 virtual machines/110 physical machines, this
leads to having a number of services between 40 and 200
different sizes. The communication time between two ele-
mentary services is fixed at 1 second.

6. Calculation of Metrics

Despite these numerous simplifications brought to the
configuration of this GA, taking into account the depen-
dencies between the execution dates of virtual machines very
clearly complicates the calculation of QoS metrics. Indeed, in
order to be able to calculate the total energy consumed for
the execution of all these composite services, each start and
end date must be known. These are variable depending on
the reconfigurations and the composite services to which
they belong. The optimization of the energy consumption
metric is therefore much more complex to implement.
Regarding the response time metric, this always represents
the total execution time, here, determined by the termina-
tion date of the last elementary service of the last service
compound. Its computation is a little finer because the
slowing down of one of the virtual machines in a compound
service must have an impact on the execution of the virtual
machines that run afterward.

In order to clarify the progress of this version of the GA,
everything that has been mentioned above is operational; the
new issues mentioned below remain to be clarified.

The optimization of the other two metrics still raises new
questions. Indeed, since the dynamism and the robustness
are being in themselves and metrics are a property of the
system not dependent on time, their evaluations in this
version of the GA must be submitted. Several solutions are
therefore possible:

(i) Optimize their average value over the total execu-
tion time
(ii) Optimize their maximum value reached

(iii) Optimize their value so that it never drops below a
certain threshold

Whatever the solution adopted, this implies an evalua-
tion of the values of these metrics at each start-up and
termination of virtual machines in order to take into account
the evolution of the system load during this time.

This version of the genetic algorithm involves an in-
significant number of new constraints and very interesting
difficulties, which raise numerous allocation problems. In
addition, the use of composite services allows one to come a
little closer to the allocation constraints of real cloud ser-
vices. However, many questions still remain open, and the
study of this version of the genetic algorithm is still part of
the research work currently underway [36, 37].

6.1. Multiobjective Optimization by the GA. The genetic al-
gorithm solves the problem of placing virtual machines with
the aim of optimizing the metrics integrated into the
computation of its objective function. Each individual of the
working population is evaluated according to its value
(fitness value). The chosen solution is therefore the indi-
vidual who will have received the best overall result. The
advantage of the genetic algorithm is that it quite easily
allows adding or removing parameters to be taken into
account when evaluating a population. Moreover, the so-
lution of the problem is carried out in a reasonable time due
to the property of the genetic algorithms to quickly converge
towards a solution which they consider to be the best. The
disadvantage of the genetic algorithm is that it gives a
placement result for a given starting situation. That is, it
calculates each of the metrics for this situation at the instant
t=0 and ignores the time aspect. Of course, the termination
dates of each virtual machine are taken into account in the
metric calculations, but the optimization is carried out from
the starting placement (different according to the chro-
mosomes) and is not questioned as the number of virtual
machines still running decreases. This section highlights the
advantages of a multiobjective optimization, taking into
account four QoS metrics simultaneously compared to a
placement focused on a single parameter. For this, five
versions of the genetic algorithm have been generated; the
first four correspond to the optimization of a single metric,
and the last one optimizes equitably the four metrics taken
into account. This therefore leads to having the following five
GAs:

6.2. Configuration. Given the complexity of the allocation
problem handled by the GA, it is not uncommon for al-
location solutions that it generates to be invalid. That is to
say that the proposed placement does not respect the
constraints of memory and /or CPU. In this case, the
chromosome is rejected and the genetic algorithm generates
a new one. If this is repeated too often, the creation time of

8 Computational Intelligence and Neuroscience
TaBLE 1: Different parameters of the genetic algorithm. TaBLE 2: Universal setting for the use of an algorithm.

Number of physical machines 110 Working population individuals 30 to 50

Number of virtual machines 400 Crossbreeding rate Between 70 and 95%

Number of individuals from the initial population 1500 Mutation rate 1or2%

Number of individuals in working population 120 Number of generations Between 30 and 40

Number of crosses 90

Number of mutations 120

Number of generations 600 TasLE 3: Different versions of the GA associated with their opti-

the starting population, as well as the working population of
each generation, can very quickly become extremely long or
even never finish (in the case where the placement con-
straints are too heavy). With 110 physical and 400 virtual
machines, the allocation constraints are reasonable but al-
ready have a rather heavy impact on the creation of the
initial population. Indeed, to find 1500 valid individuals, the
GA generates on average around 240,000 invalid chromo-
somes. With such a ratio between the number of chromo-
somes desired for the initial population and the number of
invalid individuals, the creation time of the initial pop-
ulation is about 4 seconds. This equates to approximately
10% of the total GA execution time. The number of 1500 was
therefore considered as a good compromise between a
number of starting individuals not too low in order to have
all the same a chance that the starting population is com-
posed of interesting individuals and a reasonable generation
time. Although there is no universal setting for the use of an
algorithm, starting values giving good results are shown in
Table 1.

Except for the value of the number of crossings, the
values adopted for the genetic algorithm are higher than
these theoretical values: a working population of 120 indi-
viduals, 75% crossing, 83% mutation, and a much higher
number of 600 generations. These values were chosen to
both have a reasonable total resolution time of the GA
(about 40 seconds) and an efficient solution search given the
complexity of the problem allocation to resolve. In the
performance evaluation phases of this GA, it was found to be
more efficient to use a reasonable working population size
and a large number of generations. This is why the choice of
a number of 120 individuals, allowing a reasonable pro-
cessing time for each generation, and a number of 600
generations favouring optimization between generations,
has been made. Regarding the crossings, a percentage
corresponding to the theoretical value was adopted because
the crossing process showed that it would generate a large
number of invalid solutions. There was therefore no point in
increasing its number. Conversely, the mutation operator
has proven to be very efficient in generating good solutions.
Applied to the problem studied here, this operator corre-
sponds to migrating a virtual machine out of 100 different
individuals at each generation. Table 2 shows the universal
setting for the use of an algorithm.

6.3. Optimization Configurations. The genetic algorithm has
been broken down into 5 different versions. Each of them
applies a different optimization of the metrics:

mization coefficients of each of the QoS metrics.

Coeflicients applied to metrics

Name of GA])
Energy Time Robustness Dynamism

GA All 1 1 1 1

GA E 1 0 0 0

GA TResp 0 1 0 0

GA R 0 0 1 0

GA D 0 0 0 1

(i) GA E optimizes energy
(ii)) GAT

(iii) GA R optimizes the robustness

Resp OPtimizes the response time

(iv) GA D optimizes the dynamism

(v) GA All optimizes all these metrics simultaneously
and decently

The values of the coefficients corresponding to each
version of the GA are summarized in Table 3.

The coeflicient values shown in Table 3 for each
version of the GA correspond to the weights assigned to
the coefficients (a,, a,, a5, and a,) used in the calculation
of the objective function. When a value equal to 0 is
applied to the coefficient of a metric, then that metric is
totally ignored. Thus, for the four mono-optimization
versions (GA E, GA T, GA R, and GA D), the value of 1
allows only the desired metric to be optimized. Any other
value greater than 0 and different from 1 would have
exactly the same effect on optimization. For the multi-
objective version (GA All), the value of 1 (when it is not 0)
applied to the different coefficients has no meaning in
itself. Indeed, although we are dealing here with a mul-
ticriteria optimization concerning metrics with different
units, a standardization method was applied to each of
them. Once the calculation of the objective function uses
standardized values of metrics, then the absolute value of
each of the coefficients is irrelevant. Indeed, it is only the
difference in the values applied to them that can favour
one metric over others. In other words, the same positive
value different from 1 could have been applied to all the
coefficients of the GA All, giving equal weight to each
metric considered in the calculation of the objective
function.

6.4. Comparison of Optimization Results. This section
compares and critiques the different optimization results
obtained with the different versions of the genetic algorithm.

Figures 6 and 7 show the results of the execution of the
different GAs described above, using an increasing number
of virtual machines to allocate. This therefore results from 8

Computational Intelligence and Neuroscience

700
600 - R
X
500 - m ®oxoe
B 400 mooR X e
g L 4
S 300 oK Ko e
X .
200 * : :
1004 H...e
0 ? T T T T T T 1
0 50 100 150 200 250 300 350 400
Number of VMs
¢ GAE X GATRESP
m GAR X GAALL
A GAD
FIGURE 6: Comparison of results on the energy metric.
135 :
1304 kAl @
. |
125 + : : : * X
~ .
L0 T e
g .
IR I R EEERR e
b
§11°' momoox xS x) x
BUA05 A
4
100 ~
95
90 T T T T T T T 1
0 50 100 150 200 250 300 350 400
Number of VMs
¢ GAE X GATRESP
m GAR X GAALL
A GAD

FiGure 7: Comparison of the results on the response time metric.

executions of each of the 5 versions of the GA; the 8 exe-
cutions correspond to the number of virtual machines to be
placed, ranging from 50 to 400, on the 110 physical machines
available. This variation in the number of virtual machines to
allocate makes it possible to analyze the optimization results
applied to a lightly loaded, moderately loaded, and heavily
loaded system. The first figure (Figure 7) shows the results of
the energy metric, and the second (Figure 8) shows the
results of the time of r Response; then the results of the
robustness metric are presented in Figure 9, and finally,
Figure 10 presents the results of the dynamism metric.

Each of Figures 8 to 10 contains five curves. They cor-
respond to the five versions (GA E, GA T, GA R, GA D,
and GA All) of the genetic algorithm described above, with
the number of virtual machines to be allocated on the X axis,
and the value of the considered metric on the Y axis.

The analysis of these curves makes it possible to notice
that on each of them, the curve representing the best result

9
4.5 -
4 - : : * * *
* * * * * |
3.5 S o
3 A)
2 [|
£ 2.5 4 % .
3 X
g 27 %
&, /.|
154X m
11 % -
0.5 A
0 T T T T T T T 1
0 50 100 150 200 250 300 350 400
Number of VMs
¢ GAE xX GATRESP
B GAR X GAALL
A GAD

FiGure 8: Comparison of results on the robustness metric.

1600 - :
1400 § =
]
1200 - e X N
B 1000 - E :
E 8004 - i XK
g [|
A 600 X x-
]
400 - XK
[]
2009 g ey X
0 . . . —
0 50 100 150 200 250 300 350 400
Number of VMs
¢ GAE X GATRESP
m GAR X GAALL
A GAD

FiGure 9: Comparison of results on the dynamism metric.

corresponds to the curve of the version of the GA which
optimizes the metric concerned in Figure 10. This result is
both logical and reassuring. In addition, it also allows to see
the deviation of other GAs from the best solution. The most
remarkable differences are given by the version of GA that
only optimizes the energy metric. Indeed, if we look at the
results of this GA for robustness or dynamism, it is unde-
niable that this version of GA (GA Energy) gives much worse
results than the others. It also reinforces the idea that energy
consumption is a very interesting parameter to study
alongside these other two metrics. Moreover, in addition to
the underlying environmental aspect in the optimization of
this metric, it also allows to deduce that it is very relevant in
this context of multiobjective optimization, being perfectly
antagonistic with robustness and dynamism. Then, it is
necessary to analyze the results of the GA All, optimizing in a
fair way the four metrics. First of all, we can notice that this
curve is never very far from the best curve in each of the
figures. At first glance, this means that this version of the GA

10
0.7
0.6 'S *
0.5 L 4 'S ¢
2 044 & @ 2 m- B 7
s
£ 03
X
0.2 U B mooX XXX
X x yx X X
0.1
0 T T T T T T T 1
0 50 100 150 200 250 300 350 400
Number of VMs
¢ GAE X GATRESP
m GAR % GAALL
A GAD

FiGure 10: Comparison of fitness values between the 5 versions of
GA.

performs well overall for each of them. Unlike the other
versions of GA studied, which automatically degrade one of
the metrics, this version seems to be able to give fairly good
results and find an interesting compromise so as not to
disadvantage any QoS parameters. In order to be able to
analyze and compare all the results of the GA All in relation
to the others and therefore to better understand its per-
formance and the compromises it generates, the last figure is
proposed.

On this, we find on the abscissa the number of virtual
machines to allocate, and the Y axis this time represents the
fitness value of the objective function. This value is calculated
by summing the normalized values of each metric. The
applied normalization method uses the interval [min; max],
corresponding to the smallest and the largest value obtained
by the different versions of the GA for all the metrics and for
the number of virtual machines given. Eight intervals are
calculated, corresponding to the eight values of the X axis,
and the normalized values are calculated as follows:

9, = m (6)

max — min

with M the value of the metric. This normalization reduces
all the values of the metrics between 0 and 1. Thus, for the
metrics to be minimized, a value close to 0 represents a good
result, and values close to 1 are worse. When a metric has to
be maximized, such as dynamism, the interpretation of this
value is reversed.

This normalization method was preferred in this study
over the “Center-Reduce” method because the values of
means and standard deviations used in the latter should have
been calculated on a sample of five values, which is too little
to have good precision.

Analysis of this comparison of the five versions of the GA
shows that the multiobjective approach, represented by the
GA All curve, achieves a better fitness value than all other
versions of the GA. This indicates that by taking into account

Computational Intelligence and Neuroscience

the four evaluated metrics, none of the GAs optimizing only
one of them is able to obtain a better result than the GA All
version, regardless of the system load represented by the
gradual increase in the number of virtual machines to
allocate.

7. Conclusion

This work explains the utilization of QoS modeling in a
multilevel optimization approach. The quality of the selected
service parameters, the modification of the virtual machines,
and the DVES are integral parts of the proposed planning
problem. First, modeling was proposed by a genetic method.
Dedicated to the problem of placing virtual machines in the
cloud, this genetic algorithm has been implemented in two
different versions. The former considers elementary services
only, and the latter uses compound services. This version
clearly complicates the resolution of the employment be-
cause a temporary feature must be integrated into the res-
olution. In fact, the terrain of a complex service, which is so
simple, triggers the dependencies between services that the
genetic algorithm must take into account to obtain the right
investment solution. These two versions of the genetic al-
gorithm are presented, and the two greedy algorithms, the
round-robin and the best-fit sorted type, were used to allow
comparison with the genetic algorithm. The characteristics
of these two methods are given. It is important to note here
that the version of the algorithm that uses the compound
services is provided as preliminary work and requires future
work.

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding author upon reason-
able request.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

[1] M. R. Garey and D. S. Johnson, Computer and Intractability®,
A Guide to the NP-Completeness, WH Freeman and Com-
pany, Ney York, NY, USA, 1979.

[2] H. Topcuoglu, S. Hariri, and M. -Y. Wu, “Performance-ef-
fective and low-complexity task scheduling for heterogeneous
computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, no. 3, pp. 260-274, 2002.

[3] G. Da Costa, M. Jarus, A. Oleksiak, W. Piatek, and E. Volk,
“Modeling Data Center Building Blocks for Energy-Efficiency
and Thermal Simulations,” Energy-Efficient Data Centers,
pp- 66-82, Springer, Berlin, Germany, 2014.

[4] J. K. Lenstra, A. R. Kan, and P. Brucker, “Complexity of
machine scheduling problems,” Annals of discrete mathe-
matics, vol. 1, pp. 343-362, 1977.

[5] I. P. Egwutuoha, S. Chen, D. Levy, B. Selic, and R. Calvo,
“Energy Efficient Fault Tolerance for High Per-Formance
Computing (HPC) in the Cloud,” in Proceedings of the Cloud

Computational Intelligence and Neuroscience

(7]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

Computing (CLOUD), 2013 IEEE 6th International Conference
on, pp. 762-769, Santa Clara, CA, USA, July 2013.

T. Gu’erout, T. Monteil, G. Da Costa, R. Neves Calheiros,
R. Buyya, and M. Alexandru, “Energy-aware simulation with
DVES,” Simulation Modelling Practice and Theory, vol. 39,
pp. 76-91, 2013.

K. Kurowski, A. Oleksiak, W. Piatek, T. Piontek,
A. Przybyszewski, and J. Weglarz, “DCworms— A tool for
simulation of energy efficiency in distributed computing
infrastructures,” Simulation Modelling Practice and Theory,
vol. 39, pp. 135-151, 2013.

H. Liu, H. Jin, C.-Z. Xu, and X. Liao, “Performance and energy
modeling for live migration of virtual machines,” Cluster
Computing, vol. 16, no. 2, pp. 249-264, 2013.

K. Rybina, W. Dargie, A. Strunk, and A. Schill, “Investigation
into the Energy Cost of Live Migration of Virtual Machines,”
in Proceedings of the 2013 Sustainable Internet and ICT for
Sustainability (SustainIT), pp. 1-8, Palermo, Italy, October
2013.

A. Strunk, “A Lightweight Model for Estimating Energy Cost
of Live Migration of Virtual Machines,” in Proceedings of the
Cloud Computing (CLOUD), 2013 IEEE 6th International
Conference on. IEEE, pp. 510-517, Santa Clara, CA, USA, July
2013.

W. Wu, J. Zhou, Y. Xiang, and L. Xu, “How to achieve non-
repudiation of origin with privacy protection in cloud
computing,” Journal of Computer and System Sciences, vol. 79,
no. 8, pp. 1200-1213, 2013.

Z. Xiao and Y. Xiao, “Security and privacy in cloud com-
puting,” IEEE Communications Surveys & Tutorials, vol. 15,
no. 2, pp. 843-859, 2013.

T. Guérout, S. Medjiah, G. Da Costa, and T. Monteil, “Quality
of service modeling for green scheduling in clouds,” Sus-
tainable Computing: Informatics and Systems, vol. 4, no. 4,
pp. 225-240, 2014

C. R. Rathish and A. Rajaram, “Efficient path reassessment
based on node probability in wireless sensor network,” In-
ternational Journal of Control Theory and Applications,
vol. 34, pp. 817-832, 2016.

S. Rahamat Basha, C. Sharma, F. Sayeed et al, “Imple-
mentation of reliability antecedent forwarding technique
using straddling path recovery in manet,” Wireless Com-
munications and Mobile Computing, vol. 2022, Article ID
6489185, 9 pages, 2022.

C. R. Rathish and A. Rajaram, “Hierarchical load balanced
routing protocol for wireless sensor networks,” International
Journal of Applied Engineering Research, vol. 10, no. 7,
pp. 16521-16534, 2015.

D. N. V. S. L. S. Indira, R. K. Ganiya, P. Ashok Babu et al.,
“Improved artificial neural network with state order dataset
estimation for brain cancer cell diagnosis,” BioMed Research
International, vol. 2022, Article ID 7799812, 10 pages, 2022.
P. Ganesh, G. B. S. R. Naidu, K. Swaroopa et al., “Imple-
mentation of hidden node detection scheme for self-orga-
nization of data packet,” Wireless Communications and
Mobile Computing, vol. 2022, Article ID 1332373, 9 pages,
2022.

A. Rajaram and K. Sathiyaraj, “An improved optimization
technique for energy harvesting system with grid connected
power for green house management,” Journal of Electrical
Engineering & Technology, vol. 2022, pp. 1-13, 2022.

M. Dinesh, C. Arvind, S. Sreeja Mole et al., “An energy ef-
ficient architecture for furnace monitor and control in

(21]

(22]

(23]

(24]

[25]

(26]

[27

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

11

foundry based on industry 4.0 using IoT,” Scientific Pro-
gramming, vol. 2022, Article ID 1128717, 8 pages, 2022.

S. Kannan and A. Rajaram, “Enhanced stable path routing
approach for improving packet delivery in MANET,” Journal
of Computational and Theoretical Nanoscience, vol. 14, no. 9,
pp. 4545-4552, 2017.

R. P. P. Anand and A. Rajaram, “Effective timer count
scheduling with spectator routing using stifle restriction al-
gorithm in manet,” IOP Conference Series: Materials Science
and Engineering, vol. 994, no. 1, Article ID 012031, 2020.
M. Paramasivam and A. Wahi, “EENMDRA: efficient energy
and node mobility based data replication algorithm for
MANET,” International Journal of Computer Science Issues -
IJCSI, no. 9, 2012.

C. R. Rathish and A. Rajaram, “Sweeping inclusive connec-
tivity based routing in wireless sensor networks,” ARPN
Journal of Engineering and Applied Sciences, vol. 3, no. 5,
pp. 1752-1760, 2018.

K. Mahalakshmi, K. Kousalya, H. Shekhar et al,, “Public
auditing scheme for integrity verification in distributed cloud
storage system,” Scientific Programming, vol. 2021, Article ID
8533995, 5 pages, 2021.

J. Divakaran, S. Malipatil, T. Zaid et al., “Technical Study on
5G Using Soft Computing Methods,” Scientific Programming,
vol. 2022, Article ID 1570604, 7 pages, 2022.

S. Shitharth, P. Meshram, P. R. Kshirsagar, H. Manoharan,
V. Tirth, and V. P. Sundramurthy, “Impact of big data analysis
on nanosensors for applied sciences using neural networks,”
Journal of Nanomaterials, vol. 2021, Article ID 4927607,
9 pages, 2021.

M. H. Mousa and M. K. Hussein, “Efficient UAV-based
mobile edge computing using differential evolution and ant
colony optimization,” Peer] Computer Science, vol. 8, Article
ID €870, 2022.

M. Mousa and M. Hussein, “Efficient UAV-based MEC using
GPU-based PSO and voronoi diagrams,” Computer Modeling
in Engineering and Sciences, vol. 133, no. 2, pp. 413-434, 2022.
M. H. Mousa and M. K. Hussein, “Toward high-performance
computation of surface approximation using a GPU,” Com-
puters & Electrical Engineering, vol. 99, no. 2022, 2022.

A. Strunk, “Costs of virtual machine live migration: a survey*,
services (services),” in Proceedings of the 2012 IEEE 8th World
Congress on, pp. 323-329, Honolulu, HI, USA, June 2012.
M. K. Patterson, “Energy Efficiency Metrics,” in Proceedings of
the 2012 Energy Efficient Thermal Management of Data
Centers, Salt Lake City, UT, USA, November 2012, https://10.
1109/SC.Companion.2012.120.

C. Dupont, G. Giuliani, F. Hermenier, T. Schulze, and
A. Somov, “An energy aware framework for virtual machine
placement in cloud federated data centres,” in Proceedings of
the 3rd International Conference on. IEEE Future Energy
Systems: Where Energy, Computing and Communication Meet
(E-Energy), pp. 1-10, Madrid, Spain, May 2012.

B. Aksanli, J. Venkatesh, and T. S. Rosing, “Using datacenter
simulation to evaluate green energy integration,” Computer,
vol. 45, no. 9, pp. 56-64, 2012.

S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic
algorithm: past, present, and future,” Multimedia Tools and
Applications, vol. 80, no. 5, pp. 8091-8126, 2021.

T. Kuang, Z. Hu, and M. Xu, “A genetic optimization algo-
rithm based on adaptive dimensionality reduction,” Mathe-
matical Problems in Engineering, vol. 2020, Article ID
8598543, 7 pages, 2020.

https://10.1109/SC.Companion.2012.120
https://10.1109/SC.Companion.2012.120

12

(37]

(38]

(39]

[40

(41]

(42]

M. Srinivas and L. M. Patnaik, “Genetic algorithms: a survey,”
Computer, vol. 27, no. 6, pp. 17-26, 1994.

M. Kumar and S. C. Sharma, “Dynamic load balancing al-
gorithm for balancing the workload among virtual machine in
cloud computing,” Procedia Computer Science, vol. 115,
pp. 322-329, 2017.

M. O. Ahmad and R. Z. Khan, “An efficient load balancing
scheduling strategy for cloud computing based on hybrid
approach,” International Journal of Cloud Computing, vol. 9,
no. 4, pp. 453-469, 2020.

Z.Liu, A. Zhao, and M. Liang, “A port-based forwarding load-
balancing scheduling approach for cloud datacenter net-
works,” Journal of Cloud Computing, vol. 10, no. 1, 2021.
H. A. Shabeer, P. P. Ramaswamy, H. A. Zubar, and
R. S. D. W. Banu, “Editorial: green cloud computing and
communication,” Mobile Networks and Applications, vol. 25,
no. 4, pp. 12871289, 2020.

J. Chen, T. Du, and G. Xiao, “A multi-objective optimization
for resource allocation of emergent demands in cloud com-
puting,” Journal of Cloud Computing, vol. 10, no. 1, p. 20, 2021.

Computational Intelligence and Neuroscience

