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Rotating machinery is indispensable mechanical equipment in modern industrial production. However, rotating machinery is
usually under heavy load. Due to the complexity of its structure and the severity of its working conditions, it is urgent to �nd
e�ective condition monitoring methods and fault maintenance strategies for its safe and reliable operation. e conditional
random �eld is derived from the maximum entropy model, which solves the problem of label bias and improves the convergence
speed of model training. Combining Kriging theory and random �eld theory, this study proposes a three-dimensional conditional
random �eld generation method based on failure time, applies this method to the comparison of measured data and other
nonconditional random �elds, and then analyzes the failure probability of rotating machinery in the failure process by combining
the numerical calculation results and reliability theory. It is found that the conditional random �eld generation method can
e�ectively describe the spatial variability of rotating machinery parameters. Compared with the nonconditional random �eld, the
reliability index of rotating machinery failure time is improved by 0.8823, so the conditional random �eld can better describe the
reliability of rotating machinery.

1. Introduction

Rotating machinery is mainly composed of rotors, stators,
bearings, couplings, housings, etc. [1]. e working state
drives the movement of other components to realize the
predetermined mechanical movement, which is a kind of
modern industrial production. Rotating machinery is an
indispensable main equipment in industrial machinery
because of its unique properties and functions [2]. Typical
rotating machinery includes gearboxes, reducers, steam
turbines, gas turbines, fans, generators, and engines, which
are widely used in electric power, petrochemical, metallurgy,
automobile manufacturing, aerospace, and other sectors [3].

Rotating machinery is usually in the continuous opera-
tion state of heavy load and high speed, and the failure of
di�erent failure forms occurred in rotating machinery; it is
easy to a�ect its normal work [4]. Once these core com-
ponents fail, the light ones will a�ect the use, and the serious
ones will cause downtime or even casualties. As key

equipment widely used in all walks of life, rotating machinery
plays a pivotal role in production [5, 6]. At the same time, due
to the complexity of its structure and the harsh working
conditions, it is urgently needed for its safety. Reliable op-
eration �nds e�ective condition monitoring methods and
fault maintenance strategies. erefore, failure analysis and
reliability analysis of rotating machinery have become a very
critical part of system design and maintenance.

Fault diagnosis of mechanical equipment is a scienti�c
technology for monitoring, diagnosing, and predicting the
status of continuous running equipment and ensuring the
safe operation of mechanical equipment. Its prominent
feature is the close combination of theoretical research and
engineering practice. It is an advanced technology for re-
cording and analyzing the equipment status and identifying
and alarming the abnormal status by using various mea-
surements and monitoring methods. e application of this
technology can �nd the fault state of mechanical equipment
in time, avoid the occurrence of catastrophic events, and
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avoid the economic loss caused by insufficient or excessive
maintenance, which has great economic benefits. As the
most important component in the mechanical system, such
as induction motor, it is the main device to drive various
mechanical equipment. It is widely used in various me-
chanical equipment, and its operation reliability and safety
should be higher. Academician Qu Liangsheng has sum-
marized that mechanical equipment is divided into three
basic parts: gear, bearing, and rotating shaft system, and
rotating parts such as bearing and gear are also widely used
in various mechanical systems. According to the research, it
is found that the bearing damage fault accounts for about
40% of the faults of rotating machinery, and the fault caused
by gear failure accounts for about 10.3%. -erefore, it is of
great significance to find out the fault conditions in the
rotating machinery in time and conduct accurate fault di-
agnosis and maintenance for the rotating machinery to
ensure the safe and stable operation of the production system
and reduce the probability of catastrophic accidents [3].

-e fault diagnosis technology of rotating machinery is
an interdisciplinary subject combining with practice and
integrating computer technology, mathematical theory,
electronic technology, signal processing technology, and
other modern technologies. Its essence can be regarded as
the problem of pattern recognition and classification, in-
cluding signal detection, feature extraction, state recogni-
tion, and decision diagnosis. Although some achievements
have been made in the fault diagnosis of rotating machinery
in recent years, for the monitoring and diagnosis of modern
complex mechanical equipment, a large number of non-
linear high-dimensional data information will be generated
by the detection of multiple sensors, while the traditional
fault diagnosis method that relies on manual feature ex-
traction will generate a huge workload when analyzing and
processing these data, reducing the efficiency of fault di-
agnosis, -e accuracy of fault diagnosis results depends on
the effectiveness of feature extraction, and effective feature
extraction technology needs the prior knowledge of the
research object as the basis. -erefore, feature extraction
technology is a key issue in the development of traditional
mechanical fault diagnosis technology. In view of the current
complex big data research background, the research on
intelligent mechanical fault diagnosis methods can reduce
the degree of manual intervention, improve the efficiency of
fault diagnosis, and help to ensure the safe and reliable
operation of rotating machinery.

Intelligent manufacturing engineering has become an
important development trend of the manufacturing in-
dustry. Intelligent manufacturing is based on the deep in-
tegration of the new generation of information and
communication technology and advanced manufacturing
technology. It runs through all links of manufacturing ac-
tivities such as design, production, management, and ser-
vice. It has the characteristics of self-perception, self-
learning, self-determination, self-implementation, and self-
adaptation. -e development of Intelligent Manufacturing
in China has made certain achievements, and the key
technology and equipment represented by high-end CNC
machine tools, industrial robots, and intelligent instruments

have made positive progress. -e intellectualization of in-
dustrial manufacturing also puts forward intelligent re-
quirements for the fault diagnosis system of rotating
machinery. -e intelligent fault diagnosis is realized by
means of big data-driven knowledge learning and self-help
intelligent system, which helps to improve the intelligent
level of major equipment. -e new generation of artificial
intelligence technology based on deep learning is an effective
method to realize intelligent fault diagnosis through deep
feature mining of data and independent knowledge learning.
According to the characteristics of large amount and high
dimension of mechanical equipment monitoring data, it is
the key development direction in the future to realize tar-
geted intelligent diagnosis model design and explore intel-
ligent diagnosis methods based on multisource data fusion
and deep feature extraction.

With the development of computer science, intelligent
methods such as artificial intelligence, pattern recognition,
and machine learning have been continuously applied to
mechanical fault diagnosis tasks [7], such as neural network
(NN), support vector machine (Support Vector Machine,
SVM), Hidden Markov Model (HMM), genetic algorithm,
fuzzy theory, and manifold learning, and other intelligent
pattern recognition technologies have achieved good results.
Pan et al. proposed a multiclass fuzzy support matrix
classifier for rolling bearing fault diagnosis [8]. Cerrada et al.
established a model for feature selection and model tuning
applied to fault severity diagnosis in Spur Gearboxes [9]. Xu
et al. proposed a K-nearest neighbor-based method [10].
Chen et al. proposed a supervised Fuzzy CMeans Clustering
(SFCM) to diagnose rotating machinery [11]. Shen et al. of
Georgia Institute of Technology used fuzzy neural network
and Bayesian algorithm to predict the health status of
mechanical systems [12]. Sun et al. used wavelet transform to
extract feature information, combined with distance eval-
uation technology to reduce the dimension of feature space,
and finally used the support vector regression method to
construct rotating machinery fault identification method
[13]. Lafferty and Mccallum proposed a method of aug-
mented popular learning using kernel sparse representation
to construct neighborhood and successfully applied to
gearbox health monitoring [14]. -e artificial intelligence
method enables the computer to have the ability of feature
learning, replaces the process of manual feature extraction,
and combines feature learning and fault identification and
classification into an organic whole, thereby realizing in-
telligent fault diagnosis and reducing the impact of manual
participation on the fault diagnosis system. With the con-
tinuous attempts in the field of machine learning in recent
years, deep learning technology has developed rapidly, and
intelligent mechanical fault diagnosis technology based on
deep learning has also gradually developed.

-e conditional randomfieldmodel is amachine learning
model based on the hidden Markov model. It simulates
conditional probability and is mainly used to label and seg-
ment serialized data. It was first used for sequence labeling. At
present, it has been widely used in various fields including
word processing, biomedicine, computer vision, social in-
telligence, intrusion detection, information extraction, speech
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processing, and other fields. In this study, the method of
establishing conditional randomfieldmodel is used to analyze
the reliability of rotating machinery.

2. Existing Problems of Fault Analysis for
Rotating Machinery

2.1. Intelligent Fault Diagnosis Method Based on Nonartificial
Feature Extraction. Traditional fault diagnosis methods of
rotating machinery often include feature extraction process
based on manual operation., Personnel with certain prior
knowledge are required to preprocess the sensor signals of
the operating equipment, from the original to extract and
select characteristic information that can effectively reflect
the operating state of the equipment from the sensor signals.
-e process of fault identification depends on the operator’s
understanding of a sensor signal. Background knowledge and
the effectiveness of feature extraction and selection methods
will greatly affect the quality of feature extraction and selection.
Influence the accuracy of final fault diagnosis, and for different
rotating mechanical components in different environments,
even in suitable feature extraction, feature selection methods
are different between different types of sensor information. In
the line monitoring and fault diagnosis tasks, the requirements
for operators are higher. From methods based on artificial
feature extraction, in the past, it will add some uncertainty to
the fault diagnosis system, and the success or failure of me-
chanical equipment fault diagnosis depends on the charac-
teristics. Good or bad, it is, therefore, desirable to obtain an
intelligent mechanical fault diagnosis method that does not
rely on artificial feature extraction. Using machine learning
and deep learning, a fault diagnosis model based on feature
learning is constructed, and the features are extracted.
Combined with fault identification, it becomes a complete
fault diagnosis system. -e system can learn from the data
samples and automatically adjust the network model pa-
rameters according to the purpose of accurate fault identifi-
cation so that the model can change from the original sensing.

2.2. Deep Network Fault Diagnosis Method Based on Multi-
sensor Information Fusion. In the current research situation,
most of the mechanical fault diagnosis methods are based on
a single sensor signal. For example, for motor fault diagnosis,
current signal is often used for feature extraction and rec-
ognition analysis and identification. For fault diagnosis of
bearing gearbox, data analysis and processing are generally
based on vibration signals. For a simplemechanical system, a
single sensor information can meet the requirements of fault
diagnosis and identification. However, for complex me-
chanical equipment systems, the mechanical equipment
characteristics are contained in a single type of sensor in-
formation. -e information is limited, and the presence of
noise signal, harmonic signal, and other influencing factors
will greatly affect the fault diagnosis the recognition effect of
the system; at this time, we need to integrate various and
multidirectional sensor information to make different sen-
sors; the information can complement each other and ex-
pand the feature space, so as to improve the robustness of the

whole fault diagnosis model to achieve stable and accurate
fault diagnosis of rotating machinery.

2.3. Fault Diagnosis Method Based on Small Sample Training.
-e design of fault diagnosis system based on deep learning
technology often depends on the quality of training data set
and needs class; the balanced large-scale labeled data can
obtain a more reasonable network model only after sufficient
training and learning of the network model data modeling to
achieve the final fault diagnosis. However, in the actual
application process, for the rotating machinery in terms of
line status, most of the mechanical equipment operates
under normal status, and sufficient normal status data
samples can be obtained. However, the fault status of me-
chanical equipment is often a small probability event;
corresponding to the collected fault status, the samples are
also limited, and it is a time-consuming work to label the
fault status. About deep network model, training needs to
rely on class balanced datasets. For class unbalanced data-
sets, size of data often depends on the minimum amount of
data, which also limits the deep learning technology in the
field of fault diagnosis.-erefore, we hope to make use of the
generation model in the field of deep learning; and the data
increase strong technology to expand the training dataset,
supplement such unbalanced data samples, and increase the
data space of the training set; the reasonable fault diagnosis
model is obtained by training the layer network model, and
the learning modeling of small sample dataset is realized.

2.4. Design of Fault Diagnosis Model Based on Large Deep
Network Structure. At present, intelligent mechanical fault
diagnosismodels based on deep learning often contain only a
few hidden layers; the deep neural network structure with no
more than five hidden layers is applied to the fault diagnosis
task of rotating machinery. On the one hand, it is difficult to
collect labeled fault samples due to the limited data sets in the
fieldofmechanical fault diagnosis, especially the small sample
events in some fault states.When the deepnetworkmodel has
more hidden layers, it is very difficult to train large-scale
networks based on small sample data. On the other hand,
large-scale deep network models often contain more model
parameters and super parameter combinations. Training
large-scale deep network models to complete convergence
requires not only a large amount of labeled data but also a
large amountof training time,which increases the costof fault
diagnosis models. However, for the network model with few
hidden layers, its feature learning ability is limited, and it
cannot effectively model the operation state of mechanical
equipment under complex working conditions. -e large-
scale deep network model with multilayer hidden layers has
higher data processing ability and nonlinearity mapping
ability, better model generalization ability, and stable model
expressiveness. -e feature information extracted from the
high level is also more abstract and conducive to the dis-
tinction between fault states.-erefore, it is hoped to propose
a general-purposemechanical fault diagnosismodel based on
large-scale deep networkmodel to achieve rapid and accurate
fault identification.
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2.5. Application of Iterative Learning to Update Weight in
Signal. -ere are many deep learning models, and there
seems to be no clearway to solve a problem in the field of fault
diagnosis.Most of the existing studies aremodified according
to the existing deep learningmodel.Whether the idea of deep
learning can be applied and a more suitable deep learning
model can be designed according to the characteristics of
vibration signals may be a direction of future research.When
traditionalmethods solve the problemof fault diagnosis, they
are often the combination of multiple methods: first is
extracting features and then is pattern recognition. Deep
learning brings these processes together and completes “end-
to-end” fault diagnosis. Is this the most perfect solution?
Should feature extraction methods be eliminated?

3. Establishment of Random Field for Rotating
Machinery Condition

3.1. Basic 1eory of Conditional Random Fields. In 2001,
Laffertyet al.firstproposedtheconditional randomfield (CRF)
theory andgave its definition, pointingout that it not onlydoes
not require the independenceassumptionofgenerativemodels
(such as HMM) but also overcomes the maximum entropy
Markov model (MEMM) label bias problem [15].

-e basic definition of conditional random field: if G �

(V, E) represents an undirected graph, Y � (Yv)vϵV, the
elements in Y correspond to the vertices in the undirected
graph G one-to-one, and X is the observed value of Y. When
X is known, if the conditional probability distribution of the
random variable obeys the Markov property, P � (Yv |

X, Yw, w≠ v) � P � (Yv | X, Yw, w ∼ v), and w ∼ v repre-
sents (w, v), the neighbor node of the undirected graph G,
and (X, Y) is said to be a conditional random field.

ACRF is essentially aMarkov RandomField (MRF) given
a set of observations. MRF is a random field restricted by the
Markov property. -e Markov property means that, for any
random variable in (MRF), the distribution of the variable
under all other variables in the given field is equivalent to that
in the given field. -e distribution of the variable under the
neighbornodeof the variable: themain idea is that the variable

far away from the variable has little influence on the current
variable. -e correlation between conditional random field
and other fields is shown in Figure 1.

-e Hammersley–Clifford [16] theorem proves that the
Gibbs distribution and the MRF are equivalent. -e core
idea of Gibbs distribution is that the probability of an un-
directed graph can be factored, that is to say, the joint
probability of the entire graph can be expressed as the
product of the potential functions on all the largest groups
contained in the graph, where V represents the set of all
nodes in the graph and E represents the set of all adjacent
edges in the graph. In order to ensure that the product of
potential functions satisfies the probability axiom, a nor-
malization factor Z is introduced to obtain the joint prob-
ability formula of MRF as follows:

P(x) �
1
Z


cϵC
ΨC XC( , (1)

where C represents the set of the largest clique c.
If there are corresponding observations for each random

variable in a given, then the MRF distribution when these
observations are known is the conditional distribution, and
the MRF can also be called CRF.-e graph corresponding to
CRF is an undirected graph model, so CRF is essentially an
MRF given a set of observations, so there are
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where Z is a normalization constant, ΨC(x, yc) is the po-
tential function of the cth clique, and yc represents the
random variable of the cth clique.

-erefore, thegeneral formof a conditional randomfield is

P(y|x) �
1

Z(x)

cϵC
ΨC x, yc( ,

Z(x) � 

y‘


cϵC
ΨC x, y

‘
c .

(3)

Lafferty’s choice of the CRF potential function is largely
influenced by the maximum entropy model, and each po-
tential function is defined as follows:

ΨC x, yc(  � exp 
k

θkfk c, yc, x( ⎛⎝ ⎞⎠, (4)

where fk is a Boolean feature function and θk is the weight
corresponding to the feature function.

-erefore, P(y|x) can be expressed as
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Figure 1: Probability diagram representation of a similar model.
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P(y|x) � exp 
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(5)

3.2. Kriging 1eory. In order to make the prediction model
for rotating machinery established by the conditional ran-
dom field more accurate, the Kriging theory was introduced
to improve the basic conditional random field [17]. -e
Kriging method is a frequently used optimal linear unbiased
estimation method, which can obtain the predicted value by
weighting the existing data linearly. Since the error of this
method is as close to 0 as possible, the Kriging method is not
biased. -e most important thing is that compared with
other forecasting methods, the Kriging method has the
smallest variance of forecast error and is the best linear
unbiased estimation method [18].

In the Kriging method, all samples will participate in
the estimation of unknown points, and in the case that the
variation function increases with distance, the samples
close to the unknown point have more influence. In
practical application, in order to highlight the local char-
acteristics of the random field, the influence range of the
point can be set artificially, without considering the in-
fluence of samples outside the range. -is property also
means that if there is no adjacent sample somewhere in the
random field, the Kriging variance will increase, so the
Kriging method is only applicable to the interpolation of
lattice data. -e extrapolation results of ordinary Kriging
approach the sample average value with the increase of the
point distance. Pan Kriging will extrapolate the drift in-
finitely during extrapolation.

-e estimated x0 value at the location Z∗(x0) can be
expressed as

Z
∗

x0(  � 
n

i�1
λiZ xi( , (6)

where Z(xi) is the measurement value at the position xi and
λi is the residual weight of the measurement value; then, the
average value of the estimated error is

E Z
∗

x0(  − Z x0(   � E 

n

i�1
λiZ xi(  − Z x0( ⎡⎣ ⎤⎦

� E Z x0(   

n

i�1
λi − 1⎛⎝ ⎞⎠.

(7)

Since the unbiased estimate is satisfied in Kriging theory,
E[Z∗ − Z] � 0, it can be obtained from equation (7) that



n

i�1
λi � 1. (8)

So, the variance of the estimation error can be expressed as

S � Var Z
∗

x0(  − Z x0(  

� 2
n

i�1
λic xi − x0(  − 

n

i�1


n

j�1
λiλjc xi − xj .

(9)

Since equation (9) needs to satisfy the unbiased esti-
mation, a Lagrange multiplier needs to be introduced to
solve the minimum variance of the estimation error, so
equation (15) can be expressed as

S�2
n

i�1
λic xi − x0(  − 

n

i�1


n

j�1
λiλjc xi − xj  − 2μ 

n

i�1
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(10)

Since equation (10) satisfies

zS

zλ1
� 0, . . . . . . ,

zS

zλn

� 0, (11)

therefore, we can get the following formula:



n

i�1
λic xi − x0(  + μ � c xj − x0 j � 1, . . . . . . , n. (12)

-e estimated value Z∗(x0) can be calculated by the
formula, and the variance S of the estimated error can be
expressed as

S � 
n

i�1
λic xi − x0(  + μ. (13)

3.3. Random Field Modeling Method for Rotating Machinery
Conditions. If it is assumed that there are n measurement
points on the rotating machine and the spatial positions of
the measurement points are xa(a � 1, 2, . . . , n), then the
measured rotation parameters are z(xa), and the corre-
sponding conditional random field Zc(x) is [19]

Zc(x) � Z(x)|z xa( , a � 1, 2, . . . , n . (14)

In order to obtain the final conditional random field
Zc(x), it will be divided Zc(x) into two parts in space:

(1) -e position of xa(a � 1, 2, . . . , n), the known
measurement point, and the measured parameter
value z(xa).

(2) Other unknown points on the rotating machine,
which represent the known points: the number of
information points represents the number of un-
known information points, and N is the number of
points in the conditional random field.

-e conditional random field Zc(x) can then be
expressed as

Zc(x) � Zu(x) + Zk(x) − Zs(x) , (15)

where Zu(x) is the unconditional random field, Zk(x) is the
field variable calculated by the optimal linear unbiased esti-
mation based on the known spatial positionxa(a � 1, 2, . . . , n)

of the measurement point and the measured parameter
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valuez(xa), and Zs(x) is based on the spatial position Zu(x)

of the unconditional random field and the corresponding
parameter value. Field xa(a � 1, 2, . . . , n) variables are cal-
culated by optimal linear unbiased estimation.

Since Zk(xa) � zk(xa) and Zs(xa) � Zu(xa) are satis-
fied at each known measurement point position xa, the
formula can be deduced to obtain

Zc xa(  � Zu xa(  + z xa(  − Zs xa(   � z xa( . (16)

It can be seen from formula (14) that the conditional
random field Zc(x) calculated according to formula (16)
satisfies the measured parameter value xa at each known
measurement point position z(xa).

3.4. Rotating Machinery Condition Random Field Modeling
Process and Steps. Generally speaking, in the data-based
prediction model, the reliability of the rotating machinery
after modeling according to the conditional random field
can directly, accurately, and quickly reflect the working state
of the rotating machinery [20], as shown in Figure 2. It can
be divided into three stages. First, divide the acquired data
into training samples and samples to be tested and use the
training samples to mine data patterns to obtain a well-
trained prediction model; then, by using the trained pre-
diction model and the data to be tested, predict the expected
degradation index of a certain rotating machinery; finally,
the failure probability analysis or reliability analysis is
carried out according to the degradation index. -e relevant
process is shown in Figure 2.

Correspondingly, the rotating mechanical condition
random field is divided into five steps:

(1) Firstly, random field theory is used to analyze the
measured data of rotating machinery, and the un-
certainty of rotating machinery is characterized, and
the average value, standard deviation, and fluctua-
tion range of rotating machinery parameters are
obtained

(2) -e Kriging random field (known point) is obtained
by using Kriging theory based on the known point
survey data collected in practice Zk(x)

(3) -e unconditional random field Zu(x) is generated
by the covariance matrix method through the pa-
rameters such as the mean value, standard deviation,
fluctuation range, and autocorrelation function of the
rotating machinery parameters obtained in step (1)

(4) Based on the unconditional random field Zu(x) of
the rotating machinery parameters obtained in step
(3), the simulated values Zs(x) at the known points
are obtained by Kriging theory

(5) On the basis of the random field calculated in steps
(2) to (4), the conditional random field Zc(x) of the
rotating machinery parameters that conform to the
actual engineering survey information can be ob-
tained by the formula

4. Case Analysis

4.1. Project Background. Cincinnati University Center for
Intelligent Maintenance Systems (UC-IMS) published the
vibration acceleration data of the rolling bearing life cycle
[21] to establish a rotating machinery model based on
conditional random fields. -e layout of the rolling bearing
test bench and sensor is shown in Figure 3.-e four ZA-2115
double row roller bearings produced by Rexnord Company
(bearing parameters are as follows: the number of rotors in
each row is 16, and the roller diameter� 0.331 inch (i.e.,
0.841 cm) and pitch diameter� 2.815 inch (i.e., 7.150 cm) are
installed on the rotating shaft with a speed of 2000r/min. A
radial load of 6000lbs (26.689 kN) is applied to the bearing
and shaft through a spring mechanism. At the same time, a
high-sensitivity ICP accelerometer (model: PCB353B33) was
installed on the four bearing housings, and 20,480 data
points were collected every 10minutes at a sampling fre-
quency of 20 kHz to realize the acquisition of vibration
acceleration signals.

Acquired Data Samples

Training Sample Sample To Be Tested

Model Waiting for
Training

Trained Prediction
Model

Predicted Degradation
Model

Reliability Analysis

Training Process Prediction Process Calculation Process

Figure 2: Flowchart of reliability analysis.
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4.2. Establishment of Random Field of Rotating Machinery
Condition Based onMeasured Data. In this study, the whole
life vibration acceleration data of 1#–4# bearings are used to
establish a random field based on rotating machinery
conditions. -is group of experiments started and ended
from 2004/02/12/10:32 to 2004/02/19/6:22, a total of
9840min. During the experiment, the DAQCardTM-6062E
data acquisition card of National Instruments was used to
collect the vibration acceleration signal every 10 minutes.
-e length of each collected data point was 20480, and the
total collected was 984 times. In the final stage of bearing
operation, the metal structure of the outer ring falls off,
which eventually leads to the failure of the bearing due to
serious outer ring failure.

It can be seen from Figure 4 that the power spectra of
different bearings show the same trend with the increase of
time, showing a trend of increasing first, then decreasing,
and finally stabilizing. -e decreasing fluctuation of the
trend indicates that there are material differences between
the bearings. -e failure time points of 1–4 # bearings are
located at the lowest point of their respective data change
curves and are mostly located at the place with a time series

of about 530. Because of the different properties of bearings,
the dissipation energy of bearings 1# and 4 # is relatively low
because there is no radial shaft load, and the dissipation
energy of bearings 2 # and 3 # is relatively high because there
is radial shaft load. However, because there are certain
differences among the bearings, the curves cannot com-
pletely coincide, Now, list the different parameters in
Table 1.

Table 1 shows that the average crack depth of 1 #–4 #
bearing is 5.82mm, the average bearing speed is 895 rpm, the
average input load is 5.5 nm, and the bearing failure time is
27.8. -e coefficient of variation of these four parameters is
less than 0.1, and the standard deviation is less than 0.5.
-erefore, it is considered that these four parameters can be
used as the characterization parameters of rotating ma-
chinery failure during the test. However, the calculation
amount of establishing the conditional random field of
rotating machinery with four parameters is complex.
-erefore, after the parameters of 1 #–4 # bearing are sta-
tistically obtained, the Pearson correlation coefficient
analysis can be used to obtain the correlation coefficient
between the parameters, so as to obtain the most closely
related parameters. -e conditional random field can be
established based on this parameter, which can simplify the
calculation amount of establishing the conditional random
field with little impact on the results.

From Figure 5, it can be seen that the Pearson correlation
coefficient between each parameter is greater than zero, so
the all four parameters show a positive correlation trend.
However, compared with the correlation between other
parameters, the failure time is highly correlated with other
parameters, so the failure time can be used to characterize
other parameters. -erefore, the conditional random field of
rotating machinery can be established according to the
parameter of failure time. the failure time is positively
correlated with other parameters, so the failure time is used
to establish the conditional random field, refer to Section 3.4.

Figure 6 shows the conditional random field of the
failure time of no. 1 bearing. It can be seen from Figure 6 that
the data of the conditional random field of the failure time
generated in this study and the failure time data measured by
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Figure 3: Schematic diagram of test machinery. (a) Test bench physical map. (b) Schematic diagram of test bench layout.
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Figure 4: Power spectrum entropy of bearings.
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the bearing sampling have the same trend after removing
some data outliers, and the values of the data points are
relatively consistent.

After the establishment of the conditional random field
based on the failure time of 1# bearing, in order to verify the
difference between the conditional random field and the
nonconditional random field and the accuracy of data
prediction by different random fields, the Markov model in
Section 3.1 is now used as the model resume basis of the
nonconditional random field, and the failure time of 1#–4 #
bearing is used to establish the conditional random field and

the nonconditional random field, -e comparison diagram
is shown in Figure 7.

It can be shown from Figure 7 that the range of the data
prediction model established by the conditional random
field is larger than the model established by the non-
conditional random field in the two dimensions of data
sequence and power spectrum, and the range of the non-
conditional random field is smaller than the model estab-
lished by the nonconditional random field in the dimension
of failure time. However, the failure time of the conditional
random prediction is 25.6 h, which is closer to the measured
data value than the 32.2 h predicted by the nonconditional
random field. -erefore, the conditional random field
established according to the failure time is closer to the real
value than the predicted value of the nonconditional random
section.

4.3. ReliabilityAnalysis of RotatingMachinery. -e vibration
acceleration data of the rolling bearing in the whole life cycle
disclosed by uc-ims is relatively complex; because in the
process simulation of rotating machinery operation, con-
sidering the reliability analysis of rotating machinery, in
order to simplify the simulation process and reduce the
calculation workload as much as possible, only the failure
time is used for analysis Matlab is used to analyze the re-
liability of rotating machinery. -ere are six main processes
as shown in Figure 8:

(1) Random field generation: based on the statistical
characteristics of rotating machinery parameters, the
random field files of relevant rock mass parameters
are generated by MATLAB software.

(2) -emainprogramof calculation: this programmainly
realizes the mutual call and automatic generation of
subprograms. It is the core code of the random finite
difference method calculation program.

(3) Random field storage program: the main program
calls the random field storage program, reads the
random field file obtained by the random field
generation program, and stores the random field of
the rotating machine parameters in the finite dif-
ference software in the form of an array.

(4) Random field assignment procedure: the random
field stored in the random field storage program is
assigned to the model unit through cell traversal by
calling the random field assignment program by the
main calculation program.

(5) Numerical model calculation program: this part is a
model calculation command flow written for ro-
tating machinery objects. Users can modify this
subroutine as required.

Table 1: Rotating machinery statistical parameters.

Number Parameter Crack depth (mm) Bearing speed (rpm) Load (Nm) Failure time (h)

1–4#
Average 5.82 895 5.5 27.8

Standard deviation 0.33 0.16 0.05 0.28
Coefficient of variation 0.25 0.48 0.11 0.34
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Figure 5: Pearson’s correlation coefficient for each statistical
parameter.
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Figure 6: Failure time conditional random field of no. 1 bearing.
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(6) Circular calculation program: through the main
calculation program, the circular calculation pro-
gram of the model is automatically generated by the
circular command, and the Monte Carlo simulation
of the model is completed for hundreds of times.
Based on the step-by-step decomposition method
and the finite difference method, the generation of
huge calculation code is avoided, and the storage

space of the random finite difference method cal-
culation program is saved.

In this studu, the reliability analysis of rotatingmachinery
is carried out by using the failure probability calculation
method in the literature. Based on the failure time samples of
rotating machinery calculated 500 times, the probability
distribution function of the failure time samples of rotating
machinery is obtained by MATLAB software fitting.

As shown in Figure 9, it can be seen that the maximum
settlement value using the unconditional random field and
the conditional random field follows the normal distribu-
tion. It can be seen that, after 500 Monte Carlo simulations,
the average value and standard deviation of the maximum
failure time sample value have converged. With the increase
of Monte Carlo simulation, the probability distribution of
the maximum settlement value of the tunnel vault will not
change basically. -e fitting function of the probability
distribution of maximum failure time sample value is

f(S; μ, σ) �
1

sσ
���
2π

√ e
− (lns− μ)2/2σ2

, (17)

where S is the maximum failure time of rotating machinery,
μ is the sample mean value of the maximum failure time of
rotating machinery obtained by fitting, and σ is the standard
deviation of the maximum failure time sample of the ro-
tating machinery obtained by fitting. -e sample mean and
standard deviation of the maximum failure time of the
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Figure 7: Failure time conditional random field.
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tunnel based on the unconditional random field and the
conditional random field are shown in Table 2.

In order to analyze the failure probability of rotating
machinery based on conditional random field, the calcu-
lation of tunnel failure probability of unconditional ran-
dom field of rotating machinery under ordinary conditions
is increased and compared with it. Monte Carlo simulation
method based on hypercube Latin sampling method is
adopted to establish the samples of conditional random

field and unconditional random field of rotating
machinery.

In Table 2, the failure probability of rotating machinery
based on the unconditional random field Pf � 0.113%, and
the reliability index β� 2.4527. -e failure probability ro-
tating machinery calculated based on the conditional ran-
dom field generated from the borehole survey data is 0.019%,
and the reliability index is β� 3.5678. When the conditional
random field is used to describe the spatial variability of rock
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Figure 9: Histogram of failure time distribution of rotating machinery.

Table 2: Reliability index of different random fields.

Field type
Failure time of rotating machinery (h)

Failure probability Reliability index (β)
Mean (μ) Standard deviation (σ)

Unconditional random field 27.8944 2.5984 0.108 2.4527
Conditional random field 26.8753 2.2558 0.019 3.3359
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Figure 10: Failure probability distribution diagram. (a) Failure probability distribution. (b) Cumulative probability distribution.
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mass parameters of rotating machinery, the reliability index
is increased by 0.8832.

Figure 10 shows the failure probability distribution and
cumulative probability distribution of rotating machinery.
For the failure time threshold of rotating machinery, the
tunnel failure probability calculated based on the conditional
random field is smaller than the failure probability of ro-
tating machinery calculated based on the unconditional
random field. -erefore, in the reliability analysis of actual
rotating machinery, the random field theory cannot be
simply used to describe the spatial variability of rotating
machinery. -e random field corresponding to the site
should be generated based on the known information;
otherwise, the calculation result will be too large.

5. Conclusion

Taking the database of Cincinnati University as the source of
data as the engineering background, this study establishes
the method of generating conditional random fields de-
scribing rotating machinery and introduces the generated
conditional random fields into the numerical calculation
model of rotating machinery. Based on the Monte Carlo
simulation results, the reliability index of rotatingmachinery
is calculated according to the reliability theory. -e fol-
lowing conclusions are obtained through the research:

(1) -e conditional random field generation method
based on Kriging theory can describe the spatial
variability of rotating machinery parameters effi-
ciently. -e stochastic finite difference calculation
program can effectively avoid the huge calculation
code in the traditional stochastic finite difference
calculationprogramandgreatly save the storage space;

(2) In the analysis of rotating machinery in the database
of Cincinnati University, the failure probability
during rotation is only 0.019%, and the reliability
index β� 3.3359, meeting the construction re-
quirements of the project;

(3) -e failure probability of rotating machinery cal-
culated by the conditional random field generated
based on the measured information is smaller than
the tunnel failure probability calculated by the
conventional nonconditional random field generated
without considering the survey information. When
the data in the site are considered, the failure
probability of rotating machinery based on the
unconditional random field Pf � 0.113%, and the
reliability index β� 2.4527. -e failure probability
rotating machinery calculated based on the condi-
tional random field generated from the borehole
survey data is 0.019%, and the reliability index is
β� 3.5678. -e reliability index of the failure time of
rotating machinery is increased by 0.8823.
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