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Detecting distracted driving accurately and quickly with limited resources is an essential yet underexplored problem. Most of the
existing works ignore the resource-limited reality. In this work, we aim to achieve accurate and fast distracted driver detection in
the context of embedded devices where only limited memory and computing resources are available. Specifcally, we propose a
novel convolutional neural network (CNN) light-weighting method via adjusting block layers and shrinking network channels
without compromising the model’s accuracy. Finally, the model is deployed on multiple devices with real-time detection of
driving behaviour. Te experimental results for the American University in Cairo (AUC) and StateFarm datasets demonstrate the
efectiveness of the proposed method. For instance, for the AUC dataset, the proposed MobileNetV2-tiny model achieves 1.63%
higher accuracy with just 78% of the model parameters of the original MobileNetV2 model. Te inference speed of the proposed
MobileNetV2-tiny model on resource-limited devices is on average 1.5 times that of the original MobileNetV2 model, which can
meet real-time requirements.

1. Introduction

According to the Association for the World Health Orga-
nization (WHO), more than 1.35 million people die in road
trafc accidents every year [1]. Distracted driving has been
one of the leading causes [2]. Te National Highway Trafc
Safety Administration (NHTSA) reports that 3,142 people
were killed on US roads involving distracted drivers in 2019
[3]. It is necessary to design a system to detect distractions,
helping alleviate the current serious situation.

A visual feature-based approach to capturing distraction
behaviour has been widely used in intelligent transportation
systems with the help of deep neural networks. At present,
edge-based advanced driver assistance (ADAS) [4] or driver
status monitoring (DSM) [5] systems are now an important
module for collaborative driving. Te edge central processing
units (CPUs) and graphics processing units (GPUs) of systems
are generally powerless [6]. Ziran et al. [7] proposed a vehicle-
to-cloud method for driver assistance systems. Abdu et al. [6]

deployed the training and validation modules in the cloud
environment; that is, the edge device data are directly uploaded
to cloud and the distracted driver detection task is performed
on cloud servers, where abundant computing and storage
resources are available to realize real-time inference [8].

However, several faws in cloud computing make it less
favourable for applications enabled by edge devices. First, the
speed of data transmission highly depends on the Internet
connection. Especially for some high-speed moving scenes, for
example, in vehicles, data transmission may not be complete in
the case of poor network signals. More importantly, as the
number of edge devices is growing exponentially, data trans-
mission speed is becoming the bottleneck of cloud computing.
Second, high-end GPUs are expensive, bulky, and have high
power consumption, which makes it challenging to deploy
devices on resource-limited edge devices. Tird, data trans-
mission to a centralized cloud server also leads to security and
privacy issues [9].Hence, it is necessary to process the data at the
site where it is collected rather than in “cloud computing” [10].
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One of the current research studies on detecting dis-
tracted driving on edge devices with limited resources is the
pruning method that introduces flters and weights on large
CNNs such as ResNet50 [11] and VGG [12]. However, the
large pruning ratio easily leads to a loss of accuracy. Another
suitable approach is introducing lightweight models such as
MobileNetV2 [13]. For example, MobileNetV2 is seven
times faster than ResNet50 but has a 3.6% lower accuracy.
However, due to the low hardware utilization of compact
operators commonly adopted by these lightweight models,
existing lightweight models are still limited in their ability to
improve practical hardware efciency.

Tis paper focuses on detecting distracted driving with
resource-limited edge devices. We design a new strategy to
develop efcient CNNs that maintain model accuracy while
increasing inference speed. Specifcally, the blocks and
channels of the network are optimized by analyzing the
sensitivity of the model’s performance. Te innovation of
our method is compatible layer pruning and flter pruning to
obtain a novel model lightweight way. Te experiments
showed that our approach can be applied to in-vehicle
terminals to provide real-time reminders.

Te contributions are summarized as follows:

(1) Block-level architecture redesign is proposed to
make the model more suitable for driving behaviour
analysis scenarios. Unlike the direct compression of
the block layer in the past, the distribution of the
block layer is automatically adjusted according to the
task, which helps the network learn more abstract
and detailed features to improve its accuracy. Sen-
sitivity information is used to adjust the number of
residual bottleneck block layers.

(2) Channel-level architecture redesign is proposed via
pruning flters at each layer of the network with dy-
namic pruning ratios. Tose flters of “relatively little”
importance are pruned to compress the CNN model.
Fine-tuning is applied to reduce the loss of accuracy.

(3) We conduct extensive experiments on multiple
lightweight CNNs on the AUC and StateFarm-dis-
tracted driving datasets, and our method achieves
accurate, fast, and lightweight CNNs. At the same
time, our model is deployed on resource-limited
devices, which confrms that our method can achieve
the efect of real-time distraction detection processing.

For the AUC dataset, the proposed method applied to
the MobileNetV2 network achieves 1.63% higher accuracy
than the original MobileNetV2 network with only 2.78M
parameters. Te results show 99.81% accuracy for the
StateFarm dataset. Te detection speeds of the Xiaoyi Smart
Rearview Mirror equipment and HUAWEI MediaPad c5
device are almost 1.5 times faster than before.

2. Related Work

2.1. Distracted Driver Detection. Due to the increasing
number of trafc accidents caused by distracted driving,
detecting distracted driving has attracted considerable

attention from the research and the industry community.
Zhao et al. [14] created the Southeast University Driving
Posture (SEU-DP) dataset in 2011, which includes four types
of behaviours: safe driving, operating the shift lever, calling
and eating, and talking on a phone. K-nearest neighbour
(KNN), random forest (RF) [15], Ger-
onimo–Hardin–Massopust (GHM) multiwavelet transform
[16], and the pyramid histogram of oriented gradient
(PHOG) [17] methods were used for driving posture feature
extraction and distraction detection. However, the SEU-DP
dataset was not publicly available.

Te StateFarm dataset was the frst published dataset in
the distracted driving detection competition on Kaggle in
2016, which contains ten types of distracted driving be-
haviours: driving safely, texting with the right hand, calling
with the right hand, texting with the left hand, calling with
the left hand, operating the radio, drinking, reaching back,
hair and makeup, and talking with passengers [18].
Abouelnaga et al. [19, 20] created the AUC-distracted driver
dataset, which contains the same ten types as the StateFarm
dataset, in 2019. Compared to traditional machine learning
methods such as RF and KNN, the CNN method can ef-
fectively improve accuracy and handle more complex
classifcation problems. More and more researchers tend to
use deep learning to solve this problem.Te visual geometry
group (VGG) [21], InceptionV3 [22], ResNet [23], and
video-based methods [24] were used to improve distraction
detection accuracy. Improved ReSVM [25] is a method that
combines in-depth features from ResNet with a support
vector machine (SVM) classifer for driver distraction
detection.

To improve recognition accuracy, facial expressions,
hand gestures [26], and human body key points [27] are also
used in the feature extraction of driving behaviour. Chiou
et al. [28] used a cascaded face detector to detect the face area
and obtain the coordinates of the face, eyes, and mouth to
judge whether the driver was driving normally or not
according to the coordinates. When abnormal driving be-
haviour is detected, it is further determined whether the
behaviour is drowsy driving behaviour or distracted driving
behaviour. Facial landmark detection [29] was used for
distraction detection due to the driver’s head panning. Te
proposed method increases the feature extraction capability
through novel geometric and spatial scale-invariant features
and outperforms the existing state-of-the-art approaches in
detection accuracy for multiple datasets.

However, early distraction detection research focused on
improving recognition accuracy. Most current studies are
based on traditional deep CNN models [30], such as ResNet
and VGG. Although they can achieve high accuracy, they are
not friendly to embedded systems with limited memory
space and computing resources. At present, some re-
searchers have begun to study distraction detection light-
weight methods. Binbin et al. [31] proposed a new neural
network model based on decreasing the size of the flter. Te
model had only 0.76 parameters, and the results were 95.59%
and 99.87% accurate for the AUC and StateFarm datasets,
respectively. Dropout, L2 regularization, and batch nor-
malization [32] were used on VGG-16 to reduce the number
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of parameters from 140M to 15M only. Bhakti et al. [33]
proposed a new structure network mobileVGG with only
2.2M parameters. Zuopeng et al. [34] introduced a light-
weight microscopic detection network (LMS-DN) for
lightweight distraction detection.

At present, the research on the lightweight of distracted
driving is relatively scarce and constantly developing.
Terefore, we were committed to fnding a novel lightweight
method for resource-limited devices to detect distracted
driving in real time. Tis paper focuses on reducing the
number of parameters and increasing speed while main-
taining high accuracy.

2.2. CNN Compression Techniques. To deploy CNNs on
resource-limited devices, pruning [35] has often been used
to reduce the model’s complexity while trying to maintain
decent accuracy.

Many model pruning methods for flters and weights
have been proposed in recent years [36]. Hao et al. [35]
proposed reducing the number of convolutional channels in
the convolutional layer to reduce the size of the model and
computational complexity. Te L1-norm statistic was used
to select less signifcant flters. Sensitivity information was
used to evaluate the infuence of each layer of the network.
Te FPGM strategy [37] was proposed to assess the im-
portance of flters in a single convolution by calculating the
geometric distance between flters. Liu et al. [38] suggested
that researchers consider model pruning as a model design
process, using diferent pruning rates on diferent layers
according to various tasks. Learning flter pruning criteria
[39] were proposed to learn and select the most appropriate
pruning criteria for each functional layer.

Compared with flters and weights pruning, pruning an
entire layer/block is more efective in reducing model
complexity and hardware latency [40]. Block-level pruning
[41] adopts a multiobjective optimization paradigm to re-
duce the blocks of the model while avoiding accuracy
degradation. Xu et al. [42] proposed a fusible residual
convolutional block for layer pruning. Te convolutional
layers of the network were converted into a residual con-
volutional block with a layer scaling factor for layer pruning.
A DepthShrinker framework [43] was proposed by
shrinking the basic building blocks of CNNs with irregular
computation patterns into dense networks.

However, the previous work was mainly based on
pruning large models. Compared with the pruning of large
models, pruning of lightweight networks such as Mobile-
NetV2 is more difcult. In this paper, we propose a new
lightweight model compression method for MobilevetV2.
Tismethod will be compatible with block-level pruning and
channel-level pruning. Diferent from previous block-level
pruning methods, we mainly prune the multigroup residual
modules for networks.

2.3. Resource-Limited Device. Resource-limited devices,
such as embedded devices, mobile devices, and other In-
ternet of things devices [44], have limited memory and
processing resources. Deep learning algorithms are often

computationally and memory-intensive and, therefore,
unsuitable for resource-limited devices [45]. Computational
processing units on resource-limited devices typically in-
clude integrated CPUs [46] and GPUs [47]. Extensive re-
search is underway to develop suitable hardware
acceleration units, such as FPGA [48], ASIC [49], TPU [50],
and NPU [51], to create distributed systems to meet the high
computational demands of deep learning models.

Another solution is to use lightweight networks, such as
MobileNetV2, SqueezeNet [52], MobileNetV3 [53], and
EfcientNet [54], which enable feasible embedded deploy-
ment. However, these lightweight models are still difcult to
balance in terms of speed and accuracy. MobileNetV2 is
3.6% less accurate than ResNet50.

In this work, we designed an improved method based on
the lightweight model that considers the speed and accuracy
of inference. We chose two devices: the Xiaoyi Smart
Rearview Mirror equipment and HUAWEI MediaPad c5
device, which can be used for the actual car driving recorder
intelligent system.With the resource-limited CPU and GPU,
the devices can be used to verify the efectiveness of our
method in edge device deployment.

3. Method

Te overall framework of the proposed model is shown in
Figure 1. First, L1-norm regularization and sensitivity
methods are used for block-level architecture redesign to
improve accuracy. Ten, flter pruning and fne-tuning
methods are introduced for channel-level architecture re-
design to reduce the number of parameters. Te model is
optimized and trained on the server side. Te improved
method is deployed on embedded systems for model in-
ference. We use MobilevetV2 as the basic model for the
experiment and, at the same time, we apply our improved
method to multiple lightweight models, such as SqueezeNet
[52], MobileNetV3 [53], and EfcientNet [54].

3.1. L1-Norm and Sensitivity. L1-norm regularization was
used to select pruned flters. Let Xi ∈ Rni×wi×hi denote the
input feature maps for the i th convolutional layer and
Xi+1 ∈ Rni+1×wi+1×hi+1 be the feature maps for the next con-
volutional layer. ni+1 3D flters Fi,j ∈ Rni×k×k are applied to
the i th convolution layer. k × k is the size of the convolution
flter.

Te L1-norm of Fi,j is

Fl � ‖ Fi,j‖1. (1)

Te relative importance of the flter Fi,j can be measured
by calculating the sum of its absolute weights, and the sum of
Fi,j absolute weights is

sj � |Fi, j|. (2)

Based on L1-norm regularization, the sum of the ab-
solute weights of Fi,j shows the weight to the magnitude of
the output feature map. Compared with other flters in this
layer, flters with smaller absolute weights tend to generate
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feature maps with weak activation. Te smaller the absolute
weight result, the less signifcant the flter.

By pruning each layer independently, each layer’s sen-
sitivity can be understood.Te sensitivity of each layer of the
convolutional network could be used to represent the im-
portance of the convolutional network layer, which can
visually display the impact of each layer of the network and
flter on accuracy. Sensitivity is obtained by pruning the
flters of each layer independently and evaluating the ac-
curacy of the verifcation set. After calculating the sensitivity,
less essential layers/flters will be pruned frst.

3.2. Block-Level Architecture Redesign

3.2.1. Motivation. Sensitivity was analyzed to understand
the applicability of MobilenetV2 in distracted detection
tasks. MobileNetV2 contains 19 residual bottleneck blocks,
of whichmultiple residual bottleneck blocks are generated in
a cycle. Taking the residual unit of MobilenetV2 as a whole
bottleneck block, the method only counts the sensitivity of
the frst-layer network of the residual unit. Te sensitivity of
the AUC dataset can be obtained by applying diferent
pruning ratios on the convolutional layer.

Sensitivity analysis can be used to optimize existing
open-source models for driving behaviour analysis scenar-
ios.We observe that the sensitivity of layers in the same cycle
stage (with the same feature map size) is diferent. Te more
the number of cycles, the smaller the contribution of the
subsequent layers to accuracy. Layers with relatively fat
slopes are less sensitive for accuracy. We can reduce the
model sublayers that have a relatively small impact on ac-
curacy. At the same time, for precision-sensitive layers, we
can increase the number of cycles of the module sublayer to
improve precision. Our idea is conducive to improving the
accuracy of MobileNetV2 in driving behaviour tasks, given
that the distribution of MobileNetV2’s block layers is
designed based on the benchmark dataset.

3.2.2. Block-Level Optimization. Our method optimizes the
layout of the network layer from a well-trained model to
improve accuracy and increase the model’s applicability in
specifc task scenarios. For the network structure of
MobilenetV2, it is mainly to optimize the number of cycles
of blocks in the same stage.

For multiple cycles of residual blocks, the number of
cycles can be adjusted according to the infuence of the
sensitivity results on accuracy. For the residual block with a
slight change in sensitivity, the number of cycles can be
reduced,the residual block of the cycles whose impact on the
accuracy is controlled within k%. For the residual block with
a signifcant change in sensitivity, the number of cycles can
be increased until the increased cycle modules have less than
k% impact on accuracy.

Nevertheless, layer-by-layer optimization and retraining
can be a very time-consuming process. We design an au-
tomatic optimization adjustment strategy, which can cal-
culate the importance score of each layer using the same
sensitivity analysis criteria and adjust the distribution
number of block layers of the task adaptively according to
the value of k. Our strategy achieves comparable accuracy to
the original.

At the same time, a fne-tuning process is introduced to
speed up the training process of the tuned network. Same as
the original training process parameters, the fne-tuning
process is obtained by retraining on the basis of original
network weights. By adopting block-level optimization, the
network can increase its adaptability to specifc tasks.

Figure 2 shows the optimization of the layout of
MobilenetV2 network layers. Te layers of con4_3, con5_2,
con5_3, and con5_4, which have a relatively small impact on
accuracy, were reduced. Te residual unit after con7_3 and
con8, which signifcantly afected accuracy, was increased.
Te adjustment of the block layer, which we designed, can
automatically adjust the distribution number of the block
layer according to the task. In particular, increasing the
number of deep block layer loops helps the network learn
more abstract and detailed features to improve accuracy.

3.3. Channel-Level Architecture Redesign. Te sensitivity
analysis helps explain the principle of network layer opti-
mization and improve the model’s accuracy. However, many
network flters after network layer optimization still do not
contribute much to the fnal result and appear redundant.
Te method of pruning flters is used to compress the
network.

In our algorithm, the pruning ratio is dynamically cal-
culated based on sensitivity information, and the pruning
ratio of each layer flter is diferent. Te dynamic pruning
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Figure 1: An overview of our framework.
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rate ensures that the accuracy loss after pruning is as tiny as
possible. According to the sensitivity information, the im-
pact of the pruning ratio of each layer flter on accuracy is
controlled within k%. Fine-tuning is used after pruning to
ensure that the accuracy loss of the network after pruning is
as tiny as possible.

Te procedure of pruning is as follows:

Step 1: we calculate the pruning ratios of each con-
volutional layer flter based on sensitivity information.
Step 2: We set diferent pruning ratios for each con-
volutional layer flter. We prune a small number of
flters layer by layer and count foat point operations
(FLOPs) and accuracy. If FLOPS and accuracy havemet
the requirements, we go to Step 4. Otherwise, we go to
Step 3.
Step 3: we perform epoch fne-tuning on the network
and enter Step 2.
Step 4: we perform fne-tune training to convergence.

3.4. Overall Optimization. We get the fnal distribution for
all layers with block-level and channel-level optimization.
Te pruned network is then fne-tuned to obtain the fnal
accuracy. Te whole process of the proposed CNN light-
weighting method is explained in Algorithm 1.

4. Results and Discussion

Te experiments use the AUC dataset and the StateFarm
dataset to verify the efectiveness of the improved method.
Finally, the model is deployed on embedded devices for
validity and real-time testing. Tis improved design could
achieve real-time goals with lower computational com-
plexity and memory requirements while maintaining good
driver posture classifcation accuracy. Te top-1 accuracy,
the approximate number of parameters, FLOPs, and frames
per second (FPS) were used to evaluate the performance of
the proposed design.

4.1. Datasets. Te AUC dataset contains ten types of dis-
tracted driving behaviours. Figure 3 shows the sample im-
ages of ten types of distracted driving behaviours from the
AUC dataset. Te camera was placed on the upper right of
the front passenger seat to record the simulated behaviour of
the driver. Te videos were cut into single-frame pictures,

with each frame size of 1080×1920 pixels. Te dataset has 31
participants from 7 diferent countries, with 17,308 images,
including 12,977 images in the training set and 4331 images
in the test set.

Te StateFarm-distracted driving detection dataset was
used in the experiment to verify the method’s applicability.
Te StateFarm dataset has 26 participants (13 males and 13
females), including 22,424 training set images and 79,726
test set images, and each image has a size of 640 × 480 pixels.
Figure 4 shows the sample images of ten types of distracted
driving behaviours from the StateFarm dataset. After the
competition, the labels of the test set were not available. Te
training set was processed in two groups of experiments: In
the frst set of experiments, the StateFarm training set was
randomly divided into a 90% training set (17934 images) and
10% validation set (4490 images) for performance evaluation
and verifcation. In the second set of experiments, the
StateFarm training set was divided into 70% and 30%
randomly referring to other literature methods. In the third
set of experiments, the StateFarm training set was randomly
divided into a 60% training set, 20% test set, and 20%
validation set for the cross-validation experiment.

4.2. Results for the AUC and StateFarmDataset. Te method
was developed in PaddlePaddle [55] with the programming
language Python3.7. A single NVIDIA GeForce GTX 1080Ti
GPUwith 12GB system RAMwas used to train the network.
Te cosine function was adopted as the function of learning
rate decay in the training process.Te learning rate was 0.05,
the epoch was 100, and the image shape was [3, 224, 224].
Te batch size was set to 32.Te optimizer used SGD utilized
with momentum� 0.9 and weight decay� 5×10−3. Te
ImageNet pretrained model was used as initialization to
speed up model convergence.

Table 1 shows the change in the residual bottleneck block
of MobileNetV2 from n to n′ in the global block layout
optimization step, with channels changing from c to c′ in the
pruning step. Each line describes a sequence of 1 or more
residual bottleneck layers, repeated from n times to n′ times.
n′ is the number of cycles adjusted according to the sen-
sitivity result. Tis optimization can improve the accuracy of
the network in detecting distracted driving. c′ is the channel
of each block improved by the pruning step. Te feature
maps for each convolutional layer can drop at least 10% of
channels without afecting accuracy. Reducing the number
of flters can efectively reduce the number of parameters.

Figure 5 shows the sensitivity of MobilenetV2 and
MobilenetV2-tiny for the AUC dataset. Te abscissa is the
ratio of flters cropped, and the vertical coordinate is the loss of
accuracy. Each coloured dotted line represents a convolutional
layer in the network. It shows the relationship between the
accuracy and the pruning ratio of each layer of the module for
the AUC dataset. Accuracy decreases slowly with the cropping
rate from 0 to 0.9, which means that the corresponding
convolutional layer is relatively insensitive, and the contri-
bution to network accuracy is relatively low. It shows the
relationship between the accuracy and the pruning ratio for
the AUC dataset. Te inverted residual modules of con4_3,

1 2 3 4 3 3 1

1 2 2 1 3 4 2

Bottleneck block: Inverted Residual units

Figure 2: Te block-level optimization of MobilenetV2 network
layers.
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con5_2, con5_3, and con5_4 have a relatively small impact on
accuracy. Te modules of con7_3 and con8 have a more
signifcant efect on accuracy. Compared with Figure 5(a), the
sensitivity of MobilenetV2-tiny shown in Figure 5(b) reduces
the residual bottleneck layer, whose impact on accuracy is less
than 1%. We can reduce the model sublayers that have a

relatively small impact on accuracy. At the same time, for
precision-sensitive layers, we can increase the number of cycles
of the module sublayer to improve precision.

Te experimental results of the improved MobileNetV2-
tiny model for the AUC dataset are shown in Table 2.
Compared with the original models, the MobileNetV2-tiny

Input: training data X, validation data Y;
the i th convolution layer with flters Fi,j;
the i th convolution layer bottleneck residual block number n;
the i th convolution layer channel number c;
Output: the light-weighting model and the updated n, c, and Fi,j.

(1) fori in convolution layers do
(2) Optimization n and c based on (2);
(3) Fine-tuning the module;
(4) Update n and c based on Y accuracy;
(5) for pruning ratios⟵ 0.1 to 0.9 do
(6) Fine-tuning the module;
(7) Update pruning ratios based on Y accuracy controlled decrease within k%;
(8) end for
(9) end for
(10) Get fnal parameters n, c, and Fi,j and fne-tuning the pruned model with X.

ALGORITHM 1: Te proposed CNN light-weighting method.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 3: Sample images of ten types of distracted driving behaviours in the AUC dataset. (a) Driver safe. (b) Text right. (c) Talk right.
(d) Text left. (e) Talk left. (f ) Adjust the radio. (g) Drink. (h) Reaching behind. (i) Hair and makeup. (j) Talk to passengers.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 4: Sample images of ten types of distracted driving in the StateFarm dataset. (a) Driver safe. (b) Text right. (c) Talk right. (d) Text left.
(e) Talk left. (f ) Adjust the radio. (g) Drink. (h) Reaching behind. (i) Hair and makeup. (j) Talk to passengers.
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model has fewer parameters. Te MobileNetV2-tiny model
has a 1.63% higher accuracy than the original MobileNetV2,
with only 78.06% of the original MobileNetV2 parameters.
Tis new design reduces computational complexity while
maintaining the accuracy of driver posture classifcation,
which is necessary for embedded applications. FLOPS are
directly reduced by 71.6%, which is very suitable for de-
ployment on resource-limited devices.

Table 3 shows the results compared with the latest
methods in the literature. Te number of parameters of our
model is relatively small, while the accuracy of the network is
relatively high. Our method is the optimization of the
existing mature algorithm, which is a diferent way of
improvement.

Table 4 shows the verifcation results for the StateFarm
dataset. Te StateFarm dataset was randomly split into a
training data set : test data set = 9 :1. A total of 100 epochs
were trained. Input parameters are the same as those in the
training AUC dataset. Te improved MobileNetV2-tiny’s
accuracy rate is 0.19% higher than that of the original model.
Other studies, such as Dhakate and Dash [22] randomly split
the national train data set: test data set = 7 : 3. By dividing the
dataset in this way, the results are shown in Table 5. Our
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Figure 5: Te sensitivity of MobilenetV2 and MobilenetV2-tiny for the AUC dataset. (a) Te sensitivity of MobilenetV2. (b)Te sensitivity
of MobilenetV2-tiny.

Table 1: Te architecture of MobileNetV2-tiny transforming the
bottleneck residual block from n to n′, with channels ranging from
c to c′.

Layer Operator Input n n′ c c′

Conv1 Conv2d 224× 224× 3 1 1 32 22
Conv2 Bottleneck 112×112× 32 1 1 16 11
Conv3 Bottleneck 112×112× 16 2 2 24 17
Conv4 Bottleneck 56× 56× 24 3 2 32 22
Conv5 Bottleneck 28× 28× 32 4 1 64 45
Conv6 Bottleneck 14×14× 64 3 3 96 67
Conv7 Bottleneck 14×14× 96 3 4 160 144
Conv8 Bottleneck 7× 7× 160 1 2 320 288
Conv9 Conv2d 7× 7× 320 1 1 1280 1152
AvgPool AvgPool 7× 7× 1280 1 1 — —
Fc Linear 1280 10 — — — —

Table 2: Te results of the improved MobileNetV2-tiny model for
the AUC dataset.

Model Source Top-1 acc
(%)

Params
(M)

FLOPS
(G)

MobileNetV2 AUC 93.14 3.572 0.6
MobileNetV2-
tiny AUC 94.  2. 88 0.43
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method achieves the highest accuracy rate of 99.88%, and the
amount of parameters is signifcantly reduced compared to
InceptionV3 and Xception. Our method has achieved a good
performance for StateFarm. Table 6 shows the test results for
the StateFarm dataset with the dataset split by 6 : 2 : 2. We
achieved 99.78% in the MobileNetV2-tiny module, which
shows the validity of our method.

4.2.1. Training time. Both the block-level and channel-level
stages of pruning add additional overheads. However, we
introduce fne-tuning to avoid the complete forward and
backward retraining process. Our method requires about
three times the training time compared to regular training.
Since our model is lightweight, there is reduced time needed
for validation. We consider the increase in training time to
be acceptable.

4.3. Results of Other Network Models. SqueezeNet1_1, Ef-
cientNetB0, and MobileNetV3_large_x1_0 models were
used to apply the proposed lightweight method to verify
adaptability. Te performance of accuracy and the number
of parameters are summarized in Table 7. It can be observed
that SqueezeNet, EfcientNet, and MobileNetV3 maintain
good accuracy with design. Especially for MobileNetV3, the
number of parameters has been reduced by 66.17% and the
accuracy rate has reached 95.45%.

Te accuracy of improved SqueezeNet has less improved,
which may be due to SqueezeNet having fewer network
layers and a reasonable and streamlined structure. It can also

Table 3: Comparisons with the state-of-the-art methods in the literature for the AUC dataset.

Model Source Top-1 acc (%) Params (M)

AlexNet [20]

Original AUC 93.65 62
Skin segmented 93.60 62

Face 84.28 62
Hands 89.52 62

Face + hands 86.68 62

InceptionV3 [20]

Original AUC 95.17 24
Skin segmented 94.57 24

Face 88.82 24
Hands 88.82 24

Face + hands 90.88 24
GA weighted ensemble of all 5 [20] 95.98 120
VGG [32] Original AUC 94.44 140
VGG with regularization [32] Original AUC 96.31 15
Our method Original AUC 94.  2. 8

Table 4: Te results of the improved MobileNetV2-tiny model for the StateFarm dataset with the dataset randomly split by 9 :1.

Model Source Top-1 acc(%)
MobileNetV2 StateFarm 99.62
CDCNN [6] StateFarm 99.73
MobileNetV2-tiny StateFarm 99.81

Table 5: Comparisons with the state-of- the-art methods in the literature for the StateFarm dataset with the dataset randomly split by 7 : 3.

Model Top-1 acc (%) Params (M)
InceptionV3 [22] 92.90 25.6
Xception [22] 82.50 22.9
InceptionV3 +Xception [22] 90.00 46.7
InceptionV3 +Xception +ResNet50 +VGG-19 [22] 97.00 214.3
D-HCNN [31] 99.82 0.76
MobileNetV2 99.57 3.5
MobileNetV2-tiny 99.88 2. 8

Table 6: Te results for the StateFarm test set with the dataset
randomly split by 6 : 2 : 2.

Model Source Top-1 Acc (%)
MobileNetV2 StateFarm 99.56
MobileNetV2-tiny StateFarm 99. 8

Table 7: Performance of our method with diferent models for the
AUC dataset.

Model Top-1 acc
(%)

Params
(M)

FLOPS
(G)

SqueezeNet1_1 92.03 2.26 0.69
EfcientNetB0 93.05 5.1 0.72
MobileNetV3_large_x1_0 95.15 5.47 0.45
SqueezeNet1_1-tiny 92.54 2.18 0.64
EfcientNetB0-tiny 94.49 4.35 0.62
MobileNetV3_large_x1_0-
tiny 96.01 4.42 0.33
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Figure 6: Te sensitivity of SqueezeNet, EfcientNet, and MobileNetV3 for the AUC dataset. (a) Te sensitivity of SqueezeNet. (b) Te
sensitivity of EfcientNet. (c) Te sensitivity of MobileNetV3.
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be seen from Figure 6 that compared with EfcientNet and
MobileNetV3, each layer of SqueezeNet is susceptible to
accuracy. Modifying the layers and flters of SqueezeNet
afects the change in accuracy. Unlike VGG or ResNet,
which are often used to demonstrate model compression,
MobileNetV2, SqueezeNet, EfcientNet, and MobileNetV3
networks have relatively fewer parameters in layers. Hence,
lightweighting for these networks is challenging, and even
the efect is not ideal.

4.4. Deployment on Embedded Devices. Paddlepaddle’s
Paddle-Lite tool was used to assist deployment. Te model
was deployed on embedded devices of Xiaoyi Smart Rear-
view Mirror and HUAWEI MediaPad c5. Xiaoyi Smart
RearviewMirror is intelligent vehicle monitoring equipment
that integrates quad-core ARM Cortex-A53 MPCoreTM
with CPU MT8665 and a GPU OpenGL|ES 3.0 image
processor. It is currently used in various vehicle terminals for
ADAS and driving records. HUAWEI MediaPad c5 is a
high-performance mobile processor with CPU HUAWEI
Kirin990, a GPU Turbo 1.0 processor, and NPU dual large
core +microcore computing architecture. Te conversion
tool Paddle-Lite converts the trained model on the server

platform into an inference model that can be applied in an
embedded environment, including data structure conver-
sion and fle parameter conversion.

Figure 7 shows the FPS to infer frames on the embedded
platform. On the Xiaoyi platform, the optimized model
inference speed has been signifcantly improved. Te pro-
cessing time for one frame is faster than that of the original
model, which can meet real-time processing requirements.
Te reasoning speed of HUAWEI MediaPad c5 is faster and
can reach the level of real-time processing of video frames. In
general, the proposed approach can achieve real-time pro-
cessing speed and can be applied to actual distracted driving
scenarios, which have a certain practical reference value for
the research on the deployment of driving behaviour de-
tection end to end.

5. Conclusion

Although some studies have considered distracted driving
detection, the current works are less focused on real-time
detection for embedded devices. We develop a lightweight
design model for real-time monitoring of driving behaviour,
which can be applied to vehicle-mounted terminals to
provide real-time reminders. We adopted the method of
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pruning, but diferent from the direct compression of layers
and flters in the past, our method was to automatically
adjust the distribution of layers according to the task, which
can increase the cycle of critical layers while pruning the least
essential layers. Te proposed MobilevetV2-tiny FLOP
model is only 0.7 MobileNetV2 and obtains an accuracy of
1.63%, which is higher than that of the original MobileNetV2
model for the AUC dataset. Compared with the advanced
methods in the existing literature, the results show that our
method has advantages in terms of speed and model size
while maintaining high accuracy. Te lightweight method
can meet real-time processing requirements for embedded
devices.

However, there are still some problems. First, we notice
that in the SqueezeNet model, the improvement of the
proposed method is relatively small (only 0.51% improve-
ment). Second, the training time of the proposed method
becomes longer. (1) Next, we will continue to improve the
method in order to reduce the time consumption of pruning.
(2) We will further investigate other methods to improve the
actual hardware efciency of the model. In the future, we
wish to comprehensively analyze the degree of dangerous
driving behaviours by integrating information such as ve-
hicle speed to meet the needs of practical applications.

Data Availability

Te AUC public dataset and the StateFarm open training
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