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Human activity recognition (HAR) using radar micro-Doppler has attracted the attention of researchers in the last decade. Using
radar for human activity recognition has been very practical because of its unique advantages. %ere are several classifiers for the
recognition of these activities, all of which require a rich database to produce fine output. Due to the limitations of providing and
building a large database, radar micro-Doppler databases are usually limited in number. In this paper, a new method for the
generation of radar micro-Doppler of the human body based on the deep convolutional generating adversarial network (DCGAN)
is proposed. To generate the database, the required input is also generated by converting the existing motion database to simulated
model-based radar data. %e simulation results show the success of this method, even on a small amount of data.

1. Introduction

Human activity recognition (HAR) has been a popular field
of study in the last decade [1–5]. %is field of research has
attracted the attention of data scientists since the 1980s.
HAR is a technology that tries to recognize the activities or
movements of the human body through a computer. %e
purpose of HAR is to recognize the activity of an individual
using a series of observations of human behaviors and
environmental conditions. In recent decades, various
methods have been used to recognize human activities. %e
methods used can be divided into two main categories: those
based on wearable sensors and those based on nonwearable
sensors. Wearable sensors require some markers to be at-
tached to a part of the human body for their functionality
[6–8]. In applications such as clinical care of the elderly and
disabled people, the sensor must be attached to the patient’s
body and cause inconvenience to them, which is their
disadvantage. In contrast, nonwearable sensors such as video

surveillance cameras, infrared sensors, and radars do not
encounter these problems.

Among the nonwearable sensors, radar has shown its
application as well. %e advantages of using radar for HAR
are as follows:

(1) Radar is resistant to light and weather conditions.
%erefore, it can be used in environments with
adverse conditions.

(2) %e radar sensor maintains the visual privacy of
people. Because instead of extracting the visual form
of the body, it uses target-modulated return signals
that contain valuable information about the range
and speed of the moving target.

(3) Radar can detect humans even through walls, which
makes it useful in more scenarios.

(4) Radar does not need to attach a marker to a human
target for its operation. %is makes it more user-
friendly.
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%e human body is a nonrigid target. In addition to the
translational motion of the whole body, the locomotion of
the body parts is also significant. %e instantaneous distance
of the body parts to the radar changes with micromotions,
and it induces the effects of micro-Doppler on the echo
signal [9]. %e radar micro-Doppler signature carries unique
and valuable information about moving targets, which has
received much attention in the classification, recognition,
and identification of human targets.

An issue that has always been a major concern in ma-
chine learning-based classification problems is how to
prepare a standard, large, and diverse enough database. In
camera-based classification methods, the camera sensor is
publicly available, many images and videos of people’s daily
lives and activities are recorded, and usually many databases
are available for these sensors [10, 11]. However, radar is not
a typical sensor and is accessible only to certain people. So,
the radar databases are very limited and sometimes not
available due to some security issues. Lack of sufficient
volunteer humans, costly radar data recording tests, long
preparation time of the test environment, and such issues
make providing radar database very difficult and rather
challenging. %erefore, the challenge we are dealing with is
the collection of diverse and appropriate data. Attempts have
been made to increase the data in a way other than direct
testing.

One of the methods used in various literature is the
computer simulation method. In this method, data are
generated statistically from scratch using human kinematic
models.%emost famous kinematic model of the body is the
Boulic gait model [12]. In this model, given a limited number
of body parameters such as height and thigh length, the
human gait model can be simulated. %is method has been
validated many times, including [13, 14]. It has been used as
a reference for walking simulation. Although this method
can generate an unlimited amount of data for deep network
training, it is limited to the walking model and can also be
used for running with little modification, but it is not ap-
plicable for other activities, such as crawling and sitting. In
[15], a method for simulating micro-Doppler signatures of
running and crawling in addition to walking activity has
been proposed using virtual reality animation. However, the
diversity of models is not significant.

%e most widely used method is using the Kinect sensor
for Microsoft’s Xbox game console [16, 17]. %is camera has
two optical sensors and an IR sensor. By integrating the data
from these three cameras, it has been able to measure the
depth and instantaneous location of the joints in the human
body with an accuracy of better than 1 cm. %us, a model
provides a simplified point of the human body at about 18 to
30 frames per second (depending on software and hardware
conditions) in 3D space.

%e locations of these body joints can be used to simulate
the radar echo signal [9, 18], which is a widely usedmethod that
is close to reality. In this method, a 17-point model equivalent
to the Boulic model is extracted from the joints of the test
object. Each limb is then assigned a simple geometric shape. All
body parts (except the head) are assigned an ellipse, and a
sphere is assigned to the head. By calculating the RCS of each

limb according to physical relations, the radar echo can be
simulated. After that, the echo in the time domain is trans-
formed to the time-frequency domain by a transform such as
the STFT. %is method has also proven its efficiency and
closeness to reality. %e use of the Kinect will be limited due to
the very short operational range (less than 2meters) and the
missed detection of some limbs, such as the legs [17].

Another method to solve the problem of data shortages is
using a method known as transfer learning. In this tech-
nique, a few network layers that have already been trained on
a large database are used in the designed network. %e initial
database should be somewhat close to our desired task.
Usually, the primary layers of the deep grid are responsible
for extracting general and basic features, and therefore, a
series of general features can be extracted regardless of the
input contents. In contrast to deeper layers, they extract
minor features. So, if we maintain the primary layers of a
deep network trained with a large database and retrain and
replace the deep layers with a database of related data, which
is called “fine-tuning,” then we will be able to achieve the
required accuracy with a small amount of data. References
[19–25] have used this method to improve classification with
a small amount of data. However, it is often difficult to find a
database close enough to the radar micro-Doppler problem.
Although using heterogeneous and irrelevant databases can
train the primary layers of the network, they can also take us
away from our destination. Radar micro-Doppler images are
composed of several lines and curves and using natural
pictures to train the transferred network will produce un-
promising results as they contain completely different
content.

A new method that has recently been discussed to
produce a realistic image [26–29] is the use of generating
adversarial networks, or GAN for short.%e faces in Figure 1
are simulated using the DCGAN network trained with the
CelebA database [30]. %is database contains more than
200,000 faces of Hollywood actors and singers around the
world.%e faces in Figure 1 do not exist in the real world, but
they look like real faces, and that shows the power of GAN.

Due to the weakness of the mentioned methods and the
novelty and power of GAN networks in making realistic
images, in this paper, we have proposed a new method for
generating human body radar micro-Doppler based on the
deep convolutional generative adversarial network
(DCGAN) using a simulated database. %e structure of the
paper is as follows: Section 2 describes how to generate our
database. Section 3 provides an overview of GANs. Section 4
introduces the proposed GAN network. Section 5 presents
the results of the simulations. Finally, Section 6 is devoted to
the discussion and conclusion.

2. Database Preparation

We used the MoCap motion capture database of CMU [31]
to simulate radar echo. In this relatively rich database,
various activities have been performed by volunteers, and
their body locomotions, have been recorded by very accurate
multi-modal motion sensors. %ey are a combination of
cameras and inertial sensors like gyroscopes and
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accelerometers. We have focused only on walking activities.
%e data recorded in the MoCap output related to the bodies
of walking people was first extracted in the point model. %e
number of points is up to 40, but we used only 17 points,
according to [9]. Figure 2 shows a frame of the 17-point body
model extracted from the CMU database and simulated by
the routine of [9].

According to this method, an ellipsoid is assigned to each
limb except for the head, which is spherical. %ese geometric
shapes move according to the instant locations of body
joints. %e temporal coordinates of the body parts are
extracted from data provided by [32] in the form of [x(t),
y(t), z(t)]T. By micromotion of these shapes, radar echo data
is simulated. %e signal at this stage is generated in the
range-time domain. Finally, the simulated echo signal is
transformed into the time-frequency domain. We used the
FSST transform introduced in [33], whose time-frequency
resolution is better than STFT. A synchro-squeezing process
is applied to the time-frequency domain to make it sharper
along the frequency axis. A comparison of FSSTand STFT is
performed in [34] and is depicted in Figure 3. As we can see,
the resolution of FSST is better than that of STFT.

After transforming into the T-F domain, the echo signal
of each trial is stored as an image like Figure 3(a). In this way,
the initial data were generated to enter the DCGAN.

3. Generative Adversarial Networks

%e GAN network, first introduced in [26], implements the
game theory method by training two different networks, one
as a generator and the other as a discriminator. %e gen-
erator network is represented by the G function and is
parameterized by θg and initialized with an input noise
vector z, which consists of samples of a normal distribution.
(Pnoise (z)) and its output is Î.

%e discriminator network is a convolutional neural
network (CNN) represented by the D function and is pa-
rameterized by θd. Its input is a real image I or a fake image Î,
and its output is a number between 0 and 1 that indicates the
probability that the input is real or fake. Training of the GAN
includes a minimax game [35] in which the generator tries to
fool the discriminator so that it cannot recognize fake images
from real ones. Meanwhile, the discriminator is trying to
identify them correctly.

D is trained to maximize the probability of assigning the
correct label to both training samples and generated samples
of G. At the same time, G is trained to minimize the
log(1−D(G(z)), in other words, D and G play the minimax
game with the value of the V(G, D) as given inthe following
equation:

min
G

max
D

V(D, G) � Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))], (1)

Figure 1: Simulated faces with DCGAN [29].
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where Pg is the probability distribution of G on set x,
G(z, θg) is a differentiable function with parameters θg, and
D (x;θd) is a differentiable function with parameters θd.

After several training iterations, if G and D have enough
training capacity, they will reach a final point in which the
training error does not decrease further. At this point,
Pg � pdata and the discriminator does not have enough power
to discriminate between two distributions. Now network G is
ready to generate fake samples withmaximum similarity to real
samples andwith the same statistical distribution. A basic GAN
block diagram is depicted in Figure 4.

4. Proposed DCGAN Network

In [29], a kind of convolutional GAN network called
DCGAN is used to produce realistic images. Due to the
success of GAN networks in various studies, in this paper,
we have used a kind of DCGAN to generate the micro-
Doppler signal of the walking human in the T-F domain.
%e original DCGAN was trained on the LSUN database
[36], Imagenet-1k [37], and CelebA [30]. %e contents of
these databases are about natural scenes, which have many
details. Our proposed discriminator network structure
has only four convolutional layers. %e purposes for re-
ducing the convolutional layers are as follows:

(1) %e network is trained to generate the micro-
Doppler signal in the time-frequency domain, which
is composed of some periodic curves, and unlike
natural images, it does not have much detailed
information.

(2) Computational load could be reduced by the sim-
plification of network structure.

%e architecture of the generator network is shown in
Figure 5 and the discriminator network in Figure 6.

%e generator network is composed of five transposed
convolutional layers followed by a batch normalization
layer for the stability of training progress and an acti-
vation layer of type rectified linear unit (ReLU). Table 1
lists the parameters of the generator network.

%e parameters of discriminator network are listed in
Table 2.

%ese two networks are trained simultaneously on our
database using the Adam optimization method. %e
output images from the simulated database described in
Section 2 will enter into the discriminator network of
Figure 5. Simultaneously, noise with a length of 100
samples enters the generator network of Figure 6. As a
result of the training described previously, the statistics of
the data generated by the generator network gradually
approach the statistics of the samples within the database.

5. Simulation Results

In this section, we have reported the simulation results of
generating curves by the proposed DCGAN network.

5.1. Simulation Platform. Training of deep neural networks
usually encounters challenges. %e first challenge is the high
computational load, which forces us to use powerful pro-
cessing platforms. In the simulations presented in this paper,
due to the modifications that are performed on the network
structure and the small number of input trials in the da-
tabase, a CPU-based platform has been used.

5.2. Training Options. Hyperparameters of training are se-
lected as in Table 3.

According to Table 1, the number of trials in the sim-
ulated database is only 81. However, the output is very close
to reality and promising. In the simulation process, as the

Figure 2: 17-point simulated body.
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training epochs increase, the input noise gradually proceeds
to true form. Figures 7(a) to 7(c) show the network output at
different stages of training. As the training progresses, the

output gets closer to the expected shape. Figure 7(d) shows a
comparison of one of the real samples of the database, which
is very close to output 5c.

Input Noise TCONV 1 ReLU 1 TCONV 2 ReLU 2BN 2

TCONV 4

BN 1

ReLU 4BN 4 TCONV 5 TanhTCONV 3 ReLU 3BN 3

Figure 5: Generator network.
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Figure 6: Discriminator network.
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Figure 4: Block diagram of a basic generative adversarial network.

Table 1: Parameters of generator network.

Row Layer name Layer type Attribute
1 Input noise Image input 1× 1× 100 noise vector
2 TConv 1 Transposed convolutional 512 tconv filters of size 4× 4 with stride [2, 2] and cropping [0, 0]
3 BN1 Batch normalization —
4 ReLU 1 ReLU —
5 TConv 2 Transposed convolutional 512 tconv filters of size 4× 4 with stride [2, 2] and cropping [0, 0]
6 BN2 Batch normalization —
7 ReLU 2 ReLU —
8 TConv 3 Transposed convolutional 512 tconv filters of size 4× 4 with stride [2, 2] and cropping [0, 0]
9 BN3 Batch normalization —
10 ReLU 3 ReLU —
11 TConv 4 Transposed convolutional 512 tconv filters of size 4× 4 with stride [2, 2] and cropping [0, 0]
12 BN4 Batch normalization —
13 ReLU 4 ReLU —
14 TConv 4 Transposed convolutional 512 tconv filters of size 4× 4 with stride [2, 2] and cropping [0, 0]
15 tanh Hyperbolic tangent —

Computational Intelligence and Neuroscience 5



5.3. Evaluation. Because the output of the DCGAN net-
work is random, it cannot be evaluated in terms of tra-
ditional image comparison criteria such as PSNR because
the ground truth could not exist. However, it is important
to note that the matching of generated data statistics and
database statistics is the optimization criterion of the

adversarial learning process, and it converges when these
statistics are matched. %us, the adversarial network
ensures that the output image statistics and the database
images are the same, which can be considered a quanti-
tative evaluation and a complement to the visual
evaluation.

Table 3: Training hyperparameters.

Parameter Value
Epoch 1000
Mini batch size 8
Generator learning rate 2×10−4

Discriminator learning rate 1× 10−4

Gradient decay factor 0.5
Squared gradient decay factor 0.999
Number of samples 81

Table 2: Parameters of discriminator network.

Row Layer name Layer type Attribute
1 Input image Image input 64× 64× 3 images
2 Conv 1 Convolutional 64 conv filters of size 4× 4 with stride [2, 2] and padding [1, 1]
3 Leaky ReLU 1 Leaky ReLU Scale of 0.2
4 Conv 2 Convolutional 128 conv filters of size 4× 4 with stride [2, 2] and padding [1, 1]
5 BN2 Batch normalization —
6 Leaky ReLU 2 Leaky ReLU Scale of 0.2
7 Conv 3 Convolutional 256 conv filters of size 4× 4 with stride [2, 2] and padding [1, 1]
8 BN3 Batch normalization —
9 Leaky ReLU 3 Leaky ReLU Scale of 0.2
10 Conv 4 Convolutional 1 conv filter of size 8× 8 with stride [1, 1] and padding [0, 0]

(a) (b)

(c) (d)

Figure 7: (a) Input noise to GAN. (b) Output after 150 epochs. (c) Output after 1000 epochs. (d) A real sample.
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%e histogram of an image is a demonstration of the
intensity levels and can represent the distribution of these
intensities. To show that the trained network is able to
generate good fake results, we have compared the average
histogram of some samples in the database with some
generated samples. Figure 8, shows the results. %e result
demonstrates the similarity of statistics.

As a secondmetric for similarity measurement of the real
and fake images, we used the structural similarity index
measure (SSIM) [38]. SSIM is a good metric to show per-
ception and saliency-based errors. %erefore, we can con-
clude that SSIM could be comparatively a better metric than
mean square error (MSE) and PSNR metrics from a human
visual perspective. %e term structural information em-
phasizes pixels of the image that are strongly interdependent
or pixels that are spatially interconnected. Highly dependent
image pixels provide more valuable information than visual

objects in the image domain [39]. %e SSIM metric is an
index in [0,1] with 0 indicating no similarity and one in-
dicating maximum similarity.

For comparison, we have calculated SSIM between 100
generated images and every image in the database and av-
eraged them, as shown in Figure 9. %e consequent average
value is about 0.94, which represents a very high similarity
between generated images and real samples.

6. Conclusions

In this paper, a new method based on the use of the DCGAN
for the production of micro-Doppler of the human body is
presented. %e database required for this work was gener-
ated using a computer simulation of the radar echo signal
based on the 17-point body model while considering the
system parameters of a typical radar. Motion data of 17 body
parts and their kinematics are taken from the MoCap da-
tabase of CMU University. %e production database for the
input of the proposed method has only 81 members, but the
result is very promising. In the future, we will seek to in-
crease the database and train this network with more diverse
data. %e results of this work provide a valuable tool for
future research in the field of classification of human ac-
tivities based on radar micro-Doppler.

Data Availability

%e data we have used is given from the publicly available
online Carnegie Mellon University (CMU) motion capture
database [32], [online] available from https://mocap.cs.cmu.
edu/.
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