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Sciatica has been widely studied, but the association of sciatica with immune infiltration has not been studied. We aimed to screen
key genes and to further investigate the impact of immune infiltration in patients with sciatica. )e bioinformatics analyzes were
performed based on the GSE150408 dataset. Subsequently, we used CIBERSORT to study the immune infiltration in the disease
group. Results showed that 13 genes were with differentially expressions in the sciatica group compared to healthy participants,
including 8 up-regulated and 5 down-regulated genes. )rough the LASSO model and SVM-RFE analysis, a total of 6 genes have
intersections, namely SLED1, CHRNB3, BEGAIN, SPTBN2, HRASLS2, and OSR2. )e ROC curve area also confirmed the
reliability of this method. CIBERPORTanalysis showed that T cell gamma delta infiltration decreased and neutrophil infiltration
increased in the disease group.)en the association of these six key genes with immune infiltration was further verified. We found
six overlapping genes and found that they were closely associated with the total immune infiltration in the sciatic nerve disease
group. )ese findings may provide new ideas for the diagnosis and therapeutics of patients with sciatica.

1. Introduction

Sciatica is commonly caused by lumbar disc herniation
involving peripheral neuropathy [1, 2]. According to sta-
tistics, the incidence of sciatica in one’s life is as high as 40%.
)e common treatment methods for sciatica include non-
surgical conservative treatment and nonsurgical treatment.
90% of acute sciatica can be effectively relieved by non-
surgical treatment [3].

Proteomic analysis has identified proteins related to
sciatica or intervertebral disc degeneration, which may be
involved in the pathophysiological process of sciatica [4]. It
is generally believed that mechanical compression combined
with immunity and inflammation can lead to sciatica during
lumbar disc herniation. Many cytokines related to immunity
and inflammation are activated in lumbar disc herniation
[5, 6].

In this study, we used two machine learning methods to
explore and identify the key genes of patients with sciatica
and preliminarily analyzed the immune cell infiltration.

)en further evaluate the correlation between immune cell
infiltration and the central gene in sciatica so as to provide
new research ideas for the treatment and early detection of
sciatica.

2. Materials and Methods

2.1. Screening of Differentially Expressed Genes (DEGs).
We downloaded GSE150408 in the GEO database (https://
www.ncbi.nlm.nih.gov/geo/). )e platform of the
GSE150408mRNAmicroarray is GPL21185, which was used
for the following analyzes.

2.2. Identification of Feature Gene. )e feature genes were
screened by two machine learning algorithms, least ab-
solute convergence and selection operator (LASSO) and
support vector machine-recursive feature elimination
(SVM-RFE) and validated in the validation dataset. Ma-
chine learning is a new type of algorithm analysis tool. )is
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study used the method of machine learning to identify
features for algorithm analysis. Two machine learning al-
gorithms, LASSO and SVM-RFE, were applied for marker
screening. LASSO is a regression algorithm regularized
through “glmnet” package in R. SVM-RFE is a supervised
learning technique that can rank features based on re-
cursion. We adopted the “e1071” package to complete the
SVM algorithm.

2.3. Analyzes of Immune Infiltration. )e CIBERSORT
deconvolution algorithm was adopted for the estimation of
different immune cell proportions. Totally, we obtained
twenty-two types of immune cells. CIBERSORT filters data
with p< 0.05. We then calculated each immune cell type’s
percentage and displayed it as a bar graph. )e “pheatmap”
package was adopted for the construction of the heat map of
the twenty-two types of immune cells. Comparisons of levels
of the twenty-two types of immune cells were done using a
package.

2.4. Statistical Analysis. Analyzes of the association of im-
mune cells with feature genes were performed using
Spearman’s rank via R software. We used the “ggplot2”
package for the visualization of the plot. P< 0.05 indicated
statistically significant.

3. Result

3.1. Diagnostic Feature Biomarkers Screening. After remov-
ing the batch effects, thirteen DEGs were screened out: 8
significantly up-regulated and 5 significantly down-regu-
lated (Figures 1(a) and 1(b)). Using the LASSO regression
algorithm, we found 8 potential Figure 1(b) variables for the
disease group (Figure 2(a)). A total of thirteen features were
determined in Figure 2(b). SLED1, CHRNB3, BEGAIN,
SPTBN2, HRASLS, and OSR2 were finally selected in
Figure 2(c). )en, ROC was performed for the evaluation of
the value of the prediction of the 6 characteristic genes. )e
AUCs for all 6 genes were greater than 0.8 (Figure 3(a)). It
showed that the characteristic biomarkers have a high di-
agnostic ability, Figure 3(f ).

3.2. Analyzes of Immune Infiltration. Immune infiltration in
control and sciatica groups was explored with the twenty-
two subpopulations of immune cells. )e percentage of the
twenty-two types of immune cells was visually displayed in
Figure 4(a). CIBERPORT analysis showed that T cells
gamma delta infiltration decreased and the degree of neu-
trophils infiltration increased in the sciatica group
(Figure 4(b)).

3.3. Relationship of Central Genes with Immune Cells. As
shown in Figure 5(a), SLED1 was related tomacrophagesM0
(R� 0.38, P � 0.025), B cells memory (R� 0.42, P � 0.014),
neutrophils (R� 0.56, P � 0.00073) positively and correlated
with monocytes (R� −0.43, P � 0.011), T cells gamma delta
(R� −0.53, P � 0.0016) negatively. CHRNB3 was positively

associated with Tcells gamma delta (R� 0.72, P � 3.8e − 06)
and negatively associated with neutrophils (R� −0.39,
P � 0.022), T cells CD4 naive (R� −0.45, P � 0.0081)
(Figure 5(b)).

SPTBN2 had a positive correlation with CD4 memory-
activated T cells (R� 0.38, P � 0.025) and a negative cor-
relation with neutrophils (R� −0.37, P � 0.033), T cells
(CD4 naı̈ve) (R� −0.41, P � 0.017) (Figure 5(d)). CHRNB3
had a positive correlation with gamma delta-Tcells (R� 0.72,
P � 3.8e − 06) and a negative correlation with neutrophils
(R� −0.39, P � 0.022). No correlation was found between
BEGAIN, HRASLS2, OSR2, and immune cell infiltration
(Figures 5(c)–5(f)).

4. Discussion

So far, there is no specific diagnostic method for sciatica.
Combining medical history with a physical examination is
the most common diagnostic method [7]. As a common
clinical syndrome, sciatica is caused by two causes: one is
internal and the other is external factors [8, 9]. When sciatica
occurs, it often causes pain in the legs, back and below the
knee, usually accompanied by tingling in the legs, numbness
or muscle weakness [10, 11].

)is study showed that 13 genes were differentially
expressed in patients with sciatica. )rough two methods,
we identified six key genes, which are SLED1, CHRNB3,
BEGAIN, SPTBN2, HRASLS2, and OSR2. We determined
the association of these differentially expressed genes and
immune infiltration in patients with sciatica. CIBERPORT
analysis showed that T cell gamma delta infiltration de-
creased and neutrophil infiltration increased in the sciatica
group. Up to now, there has still been a lack of research on
brain-enriched guanylate kinase-associated protein. Studies
have shown that brain-enriched guanylate kinase-associated
protein participates in chronic pain.We demonstrated in the
SNI model that mechanical abnormal pain, an abnormal
pain condition caused by harmless stimuli, was significantly
attenuated in BEGAIN deficient mice [12, 13]. Another key
gene found is SPTBN2. It is the research on SPTBN2. At
present, it is mainly used in research on congenital cerebellar
ataxia and various cancers. In the study of cancer, miR-424-
5p was found to be able to accelerate the development of
endometrial cancer through regulating SPTBN2 and then
the cldn4/PI3K/Akt axis [14–16]. Combined with bio-
informatics and cell experiments, SPTBN2 may become a
novel target of lung adenocarcinoma. SPTBN2, highly
expressed in LUAD, might indicate poor prognosis. Cell
experiments confirmed that SPTBN2 could promote the
proliferative, migrative, and invasive abilities of LUAD cells
[17].

)e researchers found that glia was significantly acti-
vated in the brains of patients who experienced chronic pain,
indicating that immune cells can spread and maintain
disease states, including neuropathic pain, through com-
munication with neurons rather than being regarded as
bystanders [18]. During nerve injury, neuronal activity will
be activated, resulting in the recruitment of monocytes/
macrophages (peripheral) to the injured site. At the same
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Figure 1: Continued.
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Figure 1: Differential analyzes based on the datasets: (a) heat map of DEGs (adjust P< 0.05, |logFC| >1) and (b) the volcano map of DEGs.
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Figure 2: Continued.
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time, microglia will release inflammatory-related mediators
after activation, resulting in neuronal sensitivity [19].

)e signal molecules of the immune system are cyto-
kines. An increase of proinflammatory cytokines is related to
the existence of pain after nerve injury, while antiin-
flammatory cytokines are related to the down regulation of
the immune system and the relief of neuropathic pain

[20, 21]. Immune system activation has been shown to
promote and increase neuropathic pain [22].

Immune cells play an important role in different path-
ophysiological processes in the state of neuropathic pain. It
brings the pain field to different directions and provides
opportunities for new methods for the treatment of chronic
pain.

LASSO SVM – RFE

6 5

(c)

Figure 2: Establishment of prognostic genes: (a) selection of tuning feature in LASSO models, (b) selection of biomarkers using SVM-RFE
and (c) the overlapped feature genes between 2 methods.
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Figure 3: Diagnosis efficiency ROC curve of the feature genes: (a)–(f ) ROC curve of SLED1 (a), CHRNB3 (b), BEGAIN (c), SPTBN2 (d),
HRASLS2 (e), and OSR2 (f).
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However, there are still some limitations to the
present study. )is is a purely bioinformatics study
without further experiments for validation, which
weakened the evidence level of our results. In the future,

we will conduct in vivo and in vitro assays to further
explore the exact effects of the abovementioned immune-
related genes and the potential underlying mechanisms
on sciatica.
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Figure 4: Visualization and evaluation of immune cell infiltration: (a) relative percentage of 22 kinds of immune cells, and (b) immune cells’
violin plot image.
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5. Conclusions

In summary, we systematically discussed the functions of
immune-related genes of sciatica and provided new ideas for
new methods for the treatment of chronic pain.

Data Availability

)e datasets used and analyzed during the current study are
available from the corresponding author on reasonable
request.
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Figure 5: Correlation analyzes between immune cells and SLED1, CHRNB3, BEGAIN, SPTBN2, HRASLS2, and OSR2. (a) Association of
SLED1 with immune cells. (b) Association of CHRNB3 with immune cells. (c) Association of BEGAINwith immune cells. (d) Association of
SPTBN2 with immune cells. (e) Association of HRASLS2 with immune cells. (f ) Association of OSR2 with immune cells.
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