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In recent years, the use of long short-term memory (LSTM) has made signi�cant contributions to various �elds and the use of
intelligent optimization algorithms combined with LSTM is also one of the best ways to improvemodel shortcomings and increase
classi�cation accuracy. Reservoir identi�cation is a key and di�cult point in the process of logging, so using LSTM to identify the
reservoir is very important. To improve the logging reservoir identi�cation accuracy of LSTM, an improved equalization optimizer
algorithm (TAFEO) is proposed in this paper to optimize the number of neurons and various parameters of LSTM.  e TAFEO
algorithm mainly employs tent chaotic mapping to enhance the population diversity of the algorithm, convergence factor is
introduced to better balance the local and global search, and then, a premature disturbance strategy is employed to overcome the
shortcomings of local minima. e optimization performance of the TAFEO algorithm is tested with 16 benchmark test functions
and Wilcoxon rank-sum test for optimization results.  e improved algorithm is superior to many intelligent optimization
algorithms in accuracy and convergence speed and has good robustness. e receiver operating characteristic (ROC) curve is used
to evaluate the performance of the optimized LSTM model.  rough the simulation and comparison of UCI datasets, the results
show that the performance of the LSTM model based on TAFEO has been signi�cantly improved, and the maximum area under
the ROC curve value can get 99.43%. In practical logging applications, LSTM based on an equalization optimizer is e�ective in
well-logging reservoir identi�cation, the highest recognition accuracy can get 95.01%, and the accuracy of reservoir identi�cation
is better than other existing identi�cation methods.

1. Introduction

With the development of logging technology, the inter-
pretation technology associated with it is gradually moving
from qualitative and quantitative manual processing to the
era of quantitative processing using machines. Traditional
reservoir identi�cation mainly relies on expert experience,
construction of rendezvous plates, and other methods, but
the conventional reservoir identi�cationmethods are subject
to many human in¡uence factors. Currently, increasingly
scholars are proposing the use of arti�cial neural networks to
solve the reservoir identi�cation problem, thus e�ectively
avoiding errors and improving production e�ciency [1–3].
 is study provides a basis for reservoir quality and oil-
bearing evaluation of terrestrial shale reservoirs. However,
these methods ignore the time-series nature of logging data

and do not conform to the practical geological thinking and
the logic of traditional geological analysis.

 e reservoir data are temporal in nature, with strong
backward and forward correlation, so the use of long short-
term memory networks is considered for the processing of
reservoir data. Long short-term memory (LSTM) is a special
type of RNN that can solve the gradient explosion and
gradient disappearance problems during the training of long
sequences.  ey can also improve the performance of long
sequences. At present, some scholars use LSTM to identify
reservoirs. For example, Zhou et al. [4] established a Bi-
LSTM network model, which can accurately identify dif-
ferent types of strata developed in storage space and sig-
ni�cantly improve the accuracy of reservoir identi�cation.
Chen et al. [5]constructed a multilayer LSTM for �ne res-
ervoir parameter prediction.  e results show that
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multilayer LSTM has better robustness and accuracy in
prediction.

In recent years, LSTM has made breakthroughs in many
fields, and the use of intelligent optimization algorithms
combined with LSTM is also one of the best ways to improve
model shortcomings and increase classification accuracy.
For example, Xie et al. [6] used the enhanced gray wolf
optimization(GWO) algorithm for the CNN-LSTM model
of time-series prediction and indicated that the classification
accuracy was improved. Peng et al. [7] applied the fruit fly
algorithm (FOA) to optimize the hyperparameters of the
LSTM neural network, and the results showed that the
prediction accuracy of the FOA-LSTM model was greatly
improved. Yang et al. [8] build an improved lion swarm
algorithm (LSO) for the LSTM to optimize the hyper-
parameters of the LSTM model, and the results showed that
the enhanced model has strong generalization ability and
higher prediction accuracy. When using the LSTM model
for reservoir identification, various parameters of the LSTM
need to be artificially selected, resulting in insufficient ac-
curacy in reservoir identification. A strategy is proposed to
optimize the number of neurons and hyperparameters of the
LSTM model by gradient descent using an improved
equilibrium optimizer.

With the rapid development of intelligent algorithms,
more and more intelligent algorithms are available. For
example, in 2017, Mohamed et al. [9] proposed the moth
swarm algorithm; Yang et al. [10] proposed the hunger
games search algorithm in 2021; in 2022, Ia et al. [11]
proposed the weighted mean of vector algorithm. ,e
equilibrium optimizer (EO) is a new optimization algorithm
inspired by the physical phenomenon of control volume
mass balance proposed in 2020, and it is characterized by its
high optimization finding capability and simple parameters
[12], but it still suffers from a tendency to fall into local
optima and slow convergence in practical applications.
,erefore, it is necessary to improve the algorithm of the
equilibrium optimizer to ensure the stability and effective-
ness of the algorithm.Wang et al. [13] used backpropagation
neural networks to predict more output data, which can
achieve more efficient optimization and more reasonable
fitness functions; Fan et al. [14] proposed a definition of
certain particle concentrations based on OBL, a new non-
linear time control strategy, a novel population update, and a
chaos-based strategy. Fu et al. [15] combined the strategies of
the modal algorithm and fused EO and heat exchange op-
timization (TEO) to obtain a new highly equilibrium op-
timizer (HEO). Gupta et al. [16] used Gaussian variation and
an additional exploratory search mechanism based on the
concept of population partitioning and reconstruction to
improve the convergence speed of the algorithm and obtain
more accurate optimal solutions; although these methods
achieved good results, the EO algorithm still needs to be
improved in terms of convergence speed and accuracy.

,is paper proposes a TAFEO algorithm to increase the
convergence speed, improve the convergence accuracy, and
avoid falling into the local optimum. To verify the effec-
tiveness of the improved algorithm, an LSTM model based
on the equilibrium optimizer is then constructed and

applied to log reservoir identification to achieve desirable
practical application results.

2. Materials and Methods

2.1. "e Equilibrium Optimizer Algorithm and Its
Improvements

2.1.1. Equalization Optimizer Algorithm. ,e equilibrium
optimizer (EO) is primarily a physically heuristic optimi-
zation algorithm for dynamic mass balance in a strongly
mixed type of controlled volume.,emass balance equation
embodies the physical processes of mass entry, departure,
and generation in the controlled volume and is generally
described using a first-order differential equation as shown
in

V
dC

dt
� QCeq − QC + G, (1)

where V is the control volume; C is the concentration in the
control volume; Q is the volumetric flow rate into or out of
the control volume; Ceq is the concentration within the
control volume in the absence of mass production (i.e., at
equilibrium); and G is the mass production rate within the
control volume.

By solving the differential equation described by equa-
tion (1), we can find that

C � Ceq + C0 − Ceq􏼐 􏼑F +
G(1 − F)

λV
, (2)

F � exp − λ t − t0( 􏼁( 􏼁, (3)

where F is the exponential term factor, λ is the flow rate, and
C0 is the initial concentration of the control volume at time
t0.

2.2. Improvement of the Equalization Optimizer Algorithm.
At present, the equilibrium optimizer algorithm has an
excellent performance in intelligent algorithms and has been
applied to specific problems with significant effects, but it
still suffers from slow convergence speed, insufficient initial
population diversity, and ease to fall into local extremes. In
this paper, three strategies are proposed to better the
equilibrium optimizer algorithm: using tent chaotic map-
ping to enhance population diversity; introducing conver-
gence factors to accelerate the convergence speed of the
algorithm in the early stage, and the ability to search locally
in the late stage; and using an early perturbation strategy to
enhance the ability of the algorithm to jump out of the local
optimum.

2.2.1. Improvement Strategies

(1) Tent Chaotic Mapping. ,e traversal of tent mapping has
uniformity and randomness, which enables the algorithm to
easily escape from local optimal solutions, thus maintaining
the diversity of the population while improving the global
search ability. ,erefore, to obtain a good initial solution
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position with a greater chance and speed up the convergence
of the population, this paper adopts the tent chaotic map-
ping method with better traversal uniformity and faster
iteration speed to improve the coverage space of the initial
solution, which is calculated as shown

x(t + 1) �

x(t)

0.6
, x(t)< 0.6,

1 − x(t)

0.4
, x(t)≥ 0.6.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Among others, x(t) ∈ [0, 1].

(2) Convergence Factor. ,e exponential term coefficient F
used to balance the local search and global search ability in
the equalization optimizer algorithm uses constant coeffi-
cient weights, and the tendency of the obtained coefficients
to change tends to be constant, which does not conform to
the nonlinear optimization search law in the algorithm it-
eration process. To address the problem of slow convergence
and low precision in the EO algorithm, a nonlinear de-
creasing strategy is proposed to balance the local and global
search capabilities of the algorithm so that the algorithm has
enough steps to search for spatially dispersed populations in
the early iterative stage, and reduces the step size to facilitate
local search in the late iterative stage of the algorithm, with
the convergence factor A defined as shown in

A �
2 e

1− t/tmax( )
2

− 1􏼔 􏼕

(e − 1)
,

(5)

where t is the current number of iterations, and tmax is the
maximum number of iterations.

(3) Early Perturbation Strategy. For the disadvantage that the
equilibrium optimizer algorithm is easy to fall into the local
optimum set, condition to determine whether the particles
fall into the local optimum, and update the particle positions
when the condition of falling into the local optimum is
satisfied, thus introducing the early perturbation strategy, as
shown in equations (6) and (7), when equation (12) is
satisfied, we reset the positions of the particles so that they
are randomly distributed around the gbest thereby jumping
out of the local optimum, i.e.,

Fg(t) − Fg(t − 1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 0.01 · Fg(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (6)

x(t) � (gbest(t) + gbest(t − 1)) · ra, (7)

where Fg(t)/Fg(t − 1) is the value of the function corre-
sponding to the global optimum of the t/t − 1 generation,
respectively, and ra is a random number of [− 1, 1].

2.2.2. Improved Algorithms. Based on the above three im-
provement strategies, this paper’s specific operation process
and parameters of the improved algorithm are designed as
follows:

(1) Initialization. ,e algorithm performs random ini-
tialization within the upper and lower bounds of
each optimization variable, as shown in

C
0
i � Cmin + ri Cmax − Cmin( 􏼁, i � 1, 2, . . . , n, (8)

where Cmin and Cmax are the lower and upper bound
vectors of the optimization variables, respectively; ri

represents a vector of random numbers for indi-
vidual i, whose dimension is the same as the di-
mension of the optimization space, with each
element value being a random number from 0 to 1.
Using equation (4), the solution is generated by the
random initialization.

(2) Equilibrium State Pool. To improve the global search
capability of the algorithm and avoid falling into
low-quality local optimal solutions, the equilibrium
state (i.e., the optimal individual) in equation (9) will
be selected from within the five currently optimal
candidate solutions, which constitute the equilib-
rium state pool as follows:

Ceq,pool � Ceq,1, Ceq,2, Ceq,3, Ceq,4, Ceq,ave􏽮 􏽯, (9)

where Ceq,1, Ceq,2, Ceq,3, Ceq,4 are the best four solu-
tions found as of the current iteration; Ceq,ave rep-
resents the average state of these four solutions. It is
worth noting that these five candidate solutions are
chosen with the same probability of 0.2.

(3) Exponential Term CoefficientF. To better balance the
local and global search of the algorithm, equation (3)
is improved as follows:

F � a1 ∗ sign(r − 0.5) e
− λt

− 1􏽨 􏽩, (10)

where a1 is the constant coefficient of the weight of
the global search; sign is the symbolic function; and
r, λ all represent vectors of random numbers whose
dimensions are the same as the dimension of the
optimization space, with each element value being a
random number from 0 to 1.
,e constant factor weights a1 are replaced by A in
equation (5).

(4) Mass Generation RateG. To enhance the local search
capability of the algorithm, the generation rate is
designed as shown in

G � GCP Ceq − λC􏼐 􏼑, (11)

GCP �
0.5ri, if r2 ≥ 0.5,

0, otherwise,
􏼨 (12)

where GCP is a vector of generation rate control
parameters; ri is a vector of random numbers whose
dimension is the same as the dimension of the op-
timization space, with each element value being a
random number from 0 to 1; and r2 is a random
number range from 0 to 1.
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(5) Solution Update. For optimization problems, the
individual solutions can be updated as follows, based
on what is shown in

C � Ceq + C0 − Ceq􏼐 􏼑F +
G(1 − F)

λV
. (13)

We use equation (6) to determine whether it is the
optimal solution. If the current output is not the optimal
solution, we use equation (7) to reset the particle position.

In summary, the above improvement algorithm that
incorporates the three improvement strategies is named
TAFEO, and the specific steps of the TAFEO algorithm are
shown in Table 1.

2.3. Simulation Experiments and Analysis of Results. ,e
computer configuration used for the simulation experiments
was Intel Core i7 6700HQ with 3.6GHz main frequency,
16GB of memory, 64-bit operating system, and MATLAB
R2020b as the computing environment. In the following
experiments, we set the number of evaluations to
M�N∗T� 30000, thenumberofpopulationsof all intelligent
optimization algorithms was set toN� 30, and the maximum
number of iterations toT�1000. For each basic algorithm, the
internal parameter settings are shown in Table 2.

To verify the effectiveness and generalization of the
TAFEO algorithm, 16 international standard test functions
are used, F1-F10 [17] is chosen from the common test
functions, and F11-F16 is from CEC2017 [18]. ,e details of
the test functions are shown in Table 3.

2.3.1. Performance Comparison of Various Improved EO
Algorithms. To verify the effectiveness of the improved
TAFEO algorithm, the performance of the search iterations
was compared with the basic EO algorithm, the m-EO al-
gorithm [16], and the MDSGEO [18] on test functions.
Among them, m-EO is proposed in the literature [16] as an
improved equilibrium optimizer algorithm using Gaussian
variance and based on population partitioning and recon-
struction, and the MDSGEO algorithm in literature [18] as an
enhanced equilibrium optimizer algorithm using sinusoidal
pooling strategy and adaptive preferential gravity strategy.
Sixteen benchmark test functions of Table 3 were selected to
test the four algorithms.,e simulation-optimization-seeking
iteration curves are shown in Figure 1.

As shown in Figure 1, the improved TAFEO algorithm
performs well in the tests of all the functions, the con-
vergence accuracy is better than all algorithms, and the
convergence speed is faster than other algorithms on most
test functions except F8, F12, and F14. ,e comparative
analysis shows that the improved strategy of this paper is
feasible.

Table 1: Algorithm steps of TAFEO.

Algorithm: TAFEO
Input: Population size: N, the maximum number of iterations: T, number of dimensions: D, parameters: a1, a2, GP
Output: Global optimal position gbest and global optimal position adaptation fgbest
1. Initializing the location of the population using the tent chaotic mapping
2. Set up four initial equilibrium candidate solutions
3. While t <T
4. For i� i: D
5. Calculate the fitness of the four equilibrium candidate solutions
6. findC

→
eq1 ∼ C

→
eq4

7. End for
8. For i� i: N
9: Find the best fit by comparing the fit between particles
10: End
11: Calculation C

→
ave

12: Building a balanced pool
13: For i� i: N
14: Generate the exponential term coefficients F, the mass generation rate G and calculate the optimal solution according to

equations (5), (10)–(12) and according to equation (13)
15. Introduce a premature perturbation strategy to determine whether to fall into a local optimum solution and to determine

whether to reset the particle position
16: End
17: Update the global optimal position gbest and the global optimal position adaptation fgbest

18: t� t+1
19: End while

Table 2: Parameter settings of the optimization algorithms.

Algorithms Parameter settings
EO a1 � 2, a2 � 1, GP � 0.5
m-EO a1 � 2, a2 � 1, GP � 0.5
MDSGEO a1 � 2, a2 � 1, GP � 0.5
TAFEO a1 � 2, a2 � 1, GP � 0.5
WOA a ∈ [2, 0], b � 1, l ∈ [− 1, 1]

GWO a ∈ [2, 0]

MPA FADs � 0.2, P � 0.5
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Table 4 shows the results of the different algorithms. To
demonstrate the repeatability of each algorithm, the optimal
solution and standard deviation in Table 4 are the averages of
30 optimization calculations for each algorithm on sixteen
benchmark test functions.

As can be seen from Table 4, the convergence accuracy of
the improved TAFEO algorithm is significantly better than
that of the original EO algorithm and the two improved EO
algorithms in sixteen benchmark functions. ,e compara-
tive analysis proves that the enhanced TAFEO algorithm in
this paper is effective.

2.3.2. Performance Comparison of the Improved EO with
Various Intelligent Algorithms. ,e TAFEO algorithm was
compared with the whale algorithm (WOA) [19], the marine

predator algorithm (MPA) [20], the wolf pack (GWO) al-
gorithm [21], and the EO algorithm to verify the perfor-
mance of the TAFEO algorithm.

To observe the performance of the five algorithms more
clearly, sixteen benchmark test functions were chosen for the
iterative graph of the simulation search, and the results are
shown in Figure 2.

In Figure 2, the improved TAFEO has the highest
convergence accuracy in all test functions except F12 and
F16, and the convergence speed is faster than other algo-
rithms in all test functions. Table 5 shows the results of the
different algorithms.

To demonstrate the repeatability of each algorithm, the
optimal solution and standard deviation in Table 5 are the
averages of 30 optimization calculations for each algorithm
on sixteen benchmark test functions.

Table 3: Sixteen benchmark functions.

Function Dim Range Optimal value
F1(x) � 􏽐

n
i�1 |xi| + 􏽑

n
i�1 |xi| 30 [− 10,10] 0

F2(x) � 􏽐
n
i�1 [xi + 0.5] 30 [− 100, 100] 0

F3(x) � 􏽐
n
i�1 ix4

i + random[0, 1) 30 [− 1.28, 1.28] 0

F4(x) � 􏽐
n
i�1[x2

i − 10 cos(2πxi) + 10] 30 [− 500, 500] 0

F5(x) � − 20 exp(− 0.2
���������
1/n 􏽐

n
i�1 x2

i

􏽱
) − exp(1/n 􏽐

n
i�1 cos(2πxi)) + 20 + e 30 [− 5.12, 5.12] 0

F6(x) � 􏽐
11
i�1[ai − x1(b2i + bix2)/b2i + bix3 + x4]

2 4 [− 5, 5] 0.00030
F7(x) � [1 + (x1 + x2 + 1)

2
(19 − 14x1 + 3x

2
1 − 14x2 + 6x1x2 + 3x

2
2)]×

[30 + (2x1 − 3x2)
2

× (18 − 32x1 + 12x
2
1 + 48x2 − 36x1x2 + 27x

2
2)]

2 [− 2, 2] 3

F8(x) � − 􏽐
4
i�1 ci exp(􏽐

6
j�1 aij(xj − pij)

2) 6 [0, 1] − 3.32

F9(x) � − 􏽐
5
i�1 [(X − ai)(X − ai)

I + ci]
− 1 4 [0, 10] − 10.1532

F10(x) � − 􏽐
10
i�1[(X − ai)(X − ai)

T + ci]
− 1 4 [0, 10] − 10.5363

F11(x) � f(M(2.048(x − o4)/100) + 1) + F11
∗

f(x) � 􏽐
D− 1
i�1 (100(x

2
i − xi+1)

2
+ (xi − 1)

2
)

30 [− 100, 100] 400

F12(x) � f(M(|x − o5)) + F12
∗

f(x) �􏽐
D− 1
i�1 (x

2
i − 10 cos(2πxi) + 10)

30 [− 100, 100] 500

F13(x) � f(M(0.5(x − o6)/|100)) + F13
∗

f(x) � g(x1, x2) + g(x2, x3) + · · · + g(xD− 1, xD) + g(xD, x1)

g(x, y) � 0.5 + (sin2(
������

x
2

+ y
2

􏽱

) − 0.5)/(1 + 0.001(x
2

+ y
2
))
2

30
[− 100, 100] 600

F14(x) � f(M(600(x − o7)/100)) + F14
∗

f(x) � min(􏽐
D− 1
i�1 (􏽢xi − μ0)

2
, dD + s􏽐

D− 1
i�1 (􏽢xi − μ1)

2
) + 10(D − 􏽐

D− 1
i�1 cos(2π􏽢zi))

μ0 � 2.5, μ1 � −

�������

μ20 − d/s
􏽱

, s � 1 − 1/2
������
D + 20

√
− 8.2, d � 1

y � 10(x − o)/100, 􏽢xi � 2sign(x
∗
i )yi + μ0, for i � 1, 2, . . . , D

z � Λ100(􏽢x − μ0)

30
[− 100, 100] 700

F15 composition function 1

30 [− 100, 100] 1100
N� 3 p� [0.2, 0.4, 0.4]

g1: Zakharov function
g2: Rosenbrock function
g3: Rastrigin’s function
F16 composition function 2

30 [− 100, 100] 1400

N� 4 p� [0.2, 0.2, 0.4, 0.4]
g1: High Conditioned elliptic function
g2: Ackley’s function
g3: Schaffer’s F7 function
g4: Rastrigin’s function
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Figure 1: Continued.
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Figure 1: Continued.
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As can be seen in Table 5, TAFEO outperformed the
other four algorithms in terms of both search accuracy and
performance stability in the benchmark function test.
,erefore, it can be verified that the convergence accuracy
and convergence speed of TAFEO are both higher than the
other four algorithms.

In summary, the improvements to the equilibrium op-
timizer algorithm in this paper are highly effective and
TAFEO outperforms several other intelligent algorithms
tested for the benchmark functions.

2.3.3. Wilcoxon Rank-Sum Test. To observe the statistical
difference between the TAFEO algorithm and other algo-
rithms, Wilcoxon rank-sum test[22] was used to verify the
results. We compare TAFEO with the EO algorithm, WOA
algorithm, MP algorithm, GWO algorithm, m-EO algo-
rithm, and MDSFEO algorithm through 18 test functions in
Table 3 to verify the statistical superiority of the TAFEO
algorithm. If the p-value is greater than 0.05 or NAN, it
means that TAFEO is not statistically significantly different
on this function. ,e Wilcoxon rank-sum test results are
shown in Table 6.

,e bold text in Table 6 indicates values greater than 5% or
NAN. From Table 6, on F1, the result of the MDSGEO test is
NAN, because both TAFEO and MDSGEO seek the best
theoretical solution at the same time, so there is no statistical
difference. ,ere was no significant difference on F7 between
TAFEO and m-EO. ,ere was no significant difference be-
tween TAFEO and MPA on F7 and F15. ,ere was no sig-
nificantdifferencebetweenTAFEOandGWOonF12andF16.

In addition to the above, there are statistical differences
between the TAFEO and other algorithms in the Wilcoxon
rank-sum test, which shows that the TAFEO algorithm has
great statistical advantages in the optimization results of
benchmark function and verifies the robustness of the
algorithm.

3. Improvements to the LSTM

3.1. LSTM Principle. ,e long short-term memory (LSTM)
network is a recurrent neural network responsible for
computing the dependencies between observations in a time
series. As such, it is commonly used for forecasting. Because
logging attribute data are time-series data, this paper uses
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Figure 1: Simulation optimization iteration curve of 16 test benchmark functions. (a) Function F1. (b) Function F2. (c) Function F3.
(d) Function F4. (e) Function F5. (f ) Function F6. (g) Function F7. (h) Function F8. (i) Function F9. (j) Function F10. (k) Function F11.
(l) Function F12. (m)Function F13. (n) Function F14. (o) Function F15. (p) Function F16.
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Table 4: Test results of different algorithms.

Functions Algorithms Optimum solution Standard deviation

F1

EO 4.950e − 48 8.168e − 48
m-EO 3.911–315 1.256e − 314

MDSGEO 0.000 + 00 0.000e+ 00
TAFEO 0.000 + 00 0.000e+ 00

F2

EO 4.205e+ 00 3.730e − 01
m-EO 3.492e − 01 1.435e − 01

MDSGEO 2.752–01 2.015–01
TAFEO 3.293e − 09 9.608–09

F3

EO 5.467e − 04 2.592e − 03
m-EO 6.068e − 05 5.926e − 05

MDSGEO 5.395e − 05 4.392e − 05
TAFEO 4.843e − 05 2.123e − 05

F4

EO 5.684e − 14 1.257e − 14
m-EO 1.023e − 12 3.854e − 12

MDSGEO 7.031e − 11 6.255e − 12
TAFEO 3.215e − 14 5.665e − 15

F5

EO 5.388e − 15 1.597e − 15
m-EO 9.613e − 16 3.236e − 16

MDSGEO 8.881e − 16 7.556e − 15
TAFEO 8.123e − 16 0.000e+ 00

F6

EO 3.082e − 03 1.439e − 05
m-EO 3.322e − 03 2.596e − 02

MDSGEO 2.342e − 04 1.183e − 02
TAFEO 1.235e − 05 1.233e − 07

F7

EO 3.000e+ 00 0.000e+ 00
m-EO 3.000e+ 00 0.000e+ 00

MDSGEO 3.001e+ 00 3.694e − 03
TAFEO 3.000e+ 00 0.000e+ 00

F8

EO − 3.264e+ 00 6.378e − 02
m-EO − 3.171e+ 00 7.977e − 02

MDSGEO − 3.296e+ 00 4.939e − 02
TAFEO − 3.304e+ 00 4.342e − 02

F9

EO − 4.910e+ 00 7.650e − 01
m-EO − 8.793e+ 00 2.292e+ 00

MDSGEO − 9.555e+ 00 5.905e − 01
TAFEO − 9.581e+ 00 5.871e − 01

F10

EO − 5.077e+ 00 9.873e − 01
m-EO − 10.08e+ 00 7.358e − 01

MDSGEO − 10.15e+ 00 6.072e − 01
TAFEO − 10.35e+ 00 3.018e − 01

F11

EO 4.231e+ 02 2.523e+ 01
m-EO 4.143e+ 02 3.311e+ 01

MDSGEO 4.169e+ 02 2.202e+ 01
TAFEO 4.046e+ 02 1.648e+ 00

F12

EO 5.182e+ 02 5.445e+ 01
m-EO 5.384e+ 02 6.240e+ 01

MDSGEO 5.318e+ 02 6.654e+ 01
TAFEO 5.121e+ 02 4.701e+ 01

F13

EO 6.036e+ 02 1.105e+ 00
m-EO 6.006e+ 02 2.452e+ 00

MDSGEO 6.021e+ 02 7.086e − 01
TAFEO 6.000e+ 02 2.986e − 04

F14

EO 7.323e+ 02 6.890e+ 00
m-EO 7.490e+ 02 6.892e+ 00

MDSGEO 7.441e+ 02 7.576e+ 00
TAFEO 7.242e+ 02 6.527e+ 00
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Figure 2: Continued.

Table 4: Continued.

Functions Algorithms Optimum solution Standard deviation

F15

EO 1.319e+ 03 1.431e+ 02
m-EO 1.155e+ 03 8.634e+ 01

MDSGEO 1.161e+ 03 7.213e+ 01
TAFEO 1.109e+ 03 6.124e+ 00

F16

EO 1.518e+ 03 4.208e+ 01
m-EO 1.623e+ 03 1.075e+ 02

MDSGEO 1.625e+ 03 1.482e+ 02
TAFEO 1.449e+ 03 1.829e+ 01
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LSTM as a classification prediction model for reservoir
identification.,e cell structure of the primary LSTM neural
network is shown in Figure 3.

An LSTM cell element includes the forgetting gateft, the
input gate it, and the output gate ot, which are used to
protect and control.

Information it determines the new information being
stored in the cell state, 􏽥Ct is used to determine the updated
information, and finally, the ot gate determines the output
value to the next LSTM cell element.

,e equation for each variable in the LSTM network is
shown in
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Figure 2: Simulation optimization iteration curve of 16 test benchmark functions. (a) Function F1. (b) Function F2. (c) Function F3.
(d) Function F4. (e) Function F5. (f ) Function F6. (g) Function F7. (h) Function F8. (i) Function F9. (j) Function F10. (k) Function F11.
(l) Function F12. (m) Function F13. (n) Function F14. (o) Function F15. (p) Function F16.
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ft � σ Wf ht− 1, xt􏼂 􏼃 + bf􏼐 􏼑,

it � σ Wi ht− 1, xt􏼂 􏼃 + bi( 􏼁,

ot � σ Wo ht− 1, xt􏼂 􏼃 + bo( 􏼁,

􏽥Ct � tanh Wc ht− 1, xt􏼂 􏼃 + bc( 􏼁,

Ct � ftCt− 1 + 􏽥Ct,

ht � Ottanh Ct( 􏼁,

(14)

where Wf, Wi, Wo, Wc are the weight matrix; bf, bi, bo, bc

are the offset vector; σ is the sigmoid activation function and
takes values in the range [0, 1]; and tanh is the tangent
activation function and takes values in the range [− 1, 1].

3.2. Research on the TAFEO-LSTM Model

3.2.1. Improvement Strategies. In the basic LSTM neural
network, the number of neurons in the hidden layer is
mainly chosen randomly or empirically, which leads to the
problems of low classification accuracy and unstable clas-
sification effect.When the number of Batchsize is too large, it
will increase the memory capacity and make the gradient
descent direction no longer change, which will easily fall into
the local optimal solution and reduce the accuracy. ,e size
of the Maxepoch determines whether the model can be fitted
or not; when the Maxepoch is too small, the model will be
underfitted, and when the Maxepoch is too large, the model

Table 5: Test results of different algorithms.

Functions Algorithms Optimum solution Standard deviation

F1

EO 2.372e − 48 4.099e − 48
WOA 1.467e − 101 7.826e − 101
GWO 1.830e − 33 1.377e − 33
MPA 6.855e − 27 1.199e − 26

TAFEO 4.129e− 309 0.000e+ 00

F2

EO 2.192e+ 00 1.504e+ 00
WOA 5.741e − 02 7.447e − 02
GWO 5.227e − 01 7.467e − 03
MPA 1.984e − 09 1.693e − 09

TAFEO 9.569e− 10 9.929e− 10

F3

EO 6.115e − 04 3.729e − 04
WOA 2.475e − 03 3.002e − 03
GWO 7.951e − 04 5.157e − 04
MPA 9.046e − 04 4.133e − 04

TAFEO 4.952e− 05 4.662e− 05

F4

EO 3.215e − 14 2.321e − 15
WOA 7.684e − 14 5.288e − 14
GWO 5.625e − 14 1.734e − 14
MPA 5.684e − 14 3.131e − 15

TAFEO 1.241 e − 14 8.654e − 16

F5

EO 5.033e − 15 1.346e − 15
WOA 4.204e − 15 2.627e − 15
GWO 1.604e − 14 4.268e − 15
MPA 4.204e − 15 9.013e − 16

TAFEO 8.881e− 16 1.256e− 16

F6

EO 3.082e − 04 1.439e − 06
WOA 3326e − 03 1.821e − 02
GWO 5.034e − 03 8.604e − 03
MPA 7.443e − 04 3.619e − 04

TAFEO 3.075e− 04 2.965e− 19

F7

EO 3.000e+ 00 0.000e+ 00
WOA 3.001e+ 00 3.731e − 05
GWO 3.001e+ 00 9.491e − 14
MPA 3.000e+ 00 0.000e+ 00

TAFEO 3.000e+ 00 0.000e+ 00

F8

EO − 3.252e+ 00 6.920e − 02
WOA − 3.206e+ 00 1.868e − 01
GWO − 3.263e+ 00 7.182e − 02
MPA − 3.266e+ 00 7.754e − 02

TAFEO − 3.321e+ 00 1.529e− 15

F9

EO − 8.628e+ 00 2.369e+ 00
WOA − 8.128e+ 00 2.990e+ 00
GWO − 9.646e+ 00 1.546e+ 00
MPA − 9.651e+ 00 5.676e − 01

TAFEO − 1.153e+ 01 5.760e− 15

F10

EO − 9.905e+ 00 1.968e+ 00
WOA − 9.587e+ 00 2.156e+ 00
GWO − 9.995e+ 00 2.058e+ 00
MPA − 1.018e+ 01 3.707e − 01

TAFEO − 1.015e+ 01 1.581e − 15

F11

EO 4.041e+ 02 1.923e+ 00
WOA 4.149e+ 02 2.371e+ 01
GWO 4.413e+ 02 5.487e+ 01
MPA 4.198e+ 02 2.541e+ 02

TAFEO 4.000e+ 02 1.599e − 02

Table 5: Continued.

Functions Algorithms Optimum solution Standard deviation

F12

EO 5.113e+ 02 4.856e+ 00
WOA 5.165e+ 02 4.753e+ 00
GWO 5.551e+ 02 2.008e+ 01
MPA 5.095e+ 02 7.990e+ 00

TAFEO 5.129e+ 02 3.401e+ 00

F13

EO 6.015e+ 02 2.472e+ 00
WOA 6.005e+ 02 1.591e − 01
GWO 6.356e+ 02 1.278e − 01
MPA 6.000e+ 02 4.117e − 03

TAFEO 6.001e+ 02 4.577e − 01

F14

EO 7.329e+ 02 1.197e+ 01
WOA 7.317e+ 02 6.667e+ 00
GWO 7.880e+ 02 2.475e+ 01
MPA 7.228e+ 02 4.043e+ 00

TAFEO 7.217e+ 02 6.230e+ 00

F15

EO 1.106e+ 03 3.223e+ 00
WOA 1.169e+ 03 1.028e+ 00
GWO 1.225e+ 03 6.739e+ 01
MPA 1.102e+ 03 5.712e+ 01

TAFEO 1.147e+ 03 1.28e+ 00

F16

EO 1.460e+ 03 3.483e+ 01
WOA 2.442e+ 03 4.952e+ 03
GWO 1.403e+ 03 7.159e+ 01
MPA 2.411e+ 03 1.583e+ 03

TAFEO 1.448e+ 03 2.150e+ 00
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Table 6: Wilcoxon rank-sum test results.

Function PEO PWOA PMPA PGWO Pm− EO PMDSGEO

F1 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12 NAN
F2 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12
F3 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12
F4 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12 1.212e − 12
F5 3.020e − 11 3.368e − 05 3.020e − 11 6.414e − 1 3.020e − 11 3.020e − 11
F6 7.389e − 11 1.856e − 09 2.609e − 10 6.695e − 11 3.019e − 11 9.918e − 11
F7 NAN 1.608e − 13 NAN 1.351e − 13 NAN 6.324e − 03
F8 2.708e − 14 1.997e − 11 3.941e − 12 1.195e − 13 3.941e − 12 3.941e − 12
F9 4.113e − 11 7.226e − 11 4.193e − 02 4.193e − 02 5.327e − 09 8.223e − 03
F10 1.193e − 06 2.068e − 02 2.945e − 11 2.773e − 05 2.945e − 11 2.945e − 11
F11 4.077e − 11 3.020e − 11 3.020e − 11 3.020e − 11 3.020e − 11 3.020e − 11
F12 2.010e − 11 3.020e − 11 3.182e − 04 2.196e− 01 3.020e − 11 3.690e − 11
F13 5.570e − 10 3.020e − 11 6.548e − 04 3.157e − 10 4.074e − 11 2.370e − 10
F14 4.801e − 07 4.203e − 11 1.907e − 02 1.325e − 04 3.690e − 11 7.389e − 11
F15 1.067e − 07 3.005e − 03 4.077e− 01 2.068e − 02 2.377e − 07 1.173e − 03
F16 8.484e − 09 3.020e − 11 8.684e − 03 5.692e− 01 1.040e − 04 2.157e − 03
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Figure 3: Cell unit structure of LSTM.
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Figure 4: Structure of the TAFEO-LSTM model.

Computational Intelligence and Neuroscience 13



will be overfitted.,erefore, the TAFEO algorithm can be used
to optimize the hyperparameters and the number of neurons of
the LSTM network to enhance the classification accuracy and
speed up the classification. In this paper, TAFEO is combined
with the LSTM network to optimize the number of neurons in
the hidden layer and the parameters batchsize and maxepoch
in gradient descent of the LSTM model.

,e improved TAFEO-LSTMmodel is shown in Figure 4.
,e algorithm table for the improved TAFEO-LSTM

model is shown in Table 7.

3.3. UCI Dataset Simulation Experiments. To test the su-
periority of the improved algorithm optimization model, six
sets of international general UCI binary classification
datasets were selected for comparison. ,e comparison
models include LSTM, EO-LSTM, and TAFEO-LSTM, and

the six datasets are banknote, blood, climate simulation,
Indian, Pima, and WDBC. ,e details of the six datasets are
shown in Table 8.

To evaluate the performance of the model more accu-
rately, the ROC [23] curve was introduced as an additional
metric for model evaluation in addition to the accuracy.

,e vertical coordinate of the ROC curve is the true-
positive rate (TPR), and the horizontal coordinate is the
false-positive rate (FPR). ,e true-positive rate represents
the proportion of predicted positive samples to all positive
samples, as shown in equation (15), and the false-positive
rate represents the proportion of predicted positive samples
to all negative samples, as shown in

TPR �
TP

(TP + FN)
, (15)

Table 7: Algorithm steps of the TAFEO-LSTM model.

Algorithm: the TAFEO-LSTM model algorithm
Inputs: Training set, test set, parameters of TAFEO
Output: TAFEO-LSTM model, test set labels, accuracy
1. Parameters for initializing the LSTM
2. Normalized data processing
3. Initializing the population
4. Calculate the fitness function fgbest � 1 − 1/N 􏽐

N
i�1(Yi � Ti) and find the current optimal solution

5. While t<T
6. For i� i: N
7. Determine particle state and update particle position
8. End for
9. Updating the TAFEO-LSTM models to predict classification accuracy
10. t� t+ 1
11. End while
12. ,e optimal number of neurons with the hyperparameters batchsize and maxepoch is given to the TAFEO-LSTM model for

retraining.
13. Building a TAFEO-LSTM model
14. Predictive classification of the test set
15. Calculate classification accuracy, AUC area, and draw ROC curves

Table 8: Datasets of UCI.

Datasets Sample size Number of features Training set Test set
Banknote 1000 4 700 300
Blood 700 4 490 210
Climate simulation 500 18 350 150
Indian 500 8 350 150
Pima 700 8 490 210
WDBC 500 30 350 150

Table 9: Comparison of classification results.

Data sets LSTM EO-LSTM TAFEO-LSTM
Banknote 91.89 92.14 99.43
Blood 71.56 79.67 96.53
Climate simulation 72.10 73.53 80.99
Indian 80.71 88.08 96.49
Pima 78.81 80.62 80.71
WDBC 89.47 93.39 94.72
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where TP is the number of positive examples of correctly
classified labels, and FN is the number of negative examples
of incorrectly classified labels.

FPR �
FP

(FP + TN)
, (16)

where TN is the number of negative examples of correctly
classified labels, and FP is the number of positive examples of
incorrectly classified labels.

In the ROC curve, the performance of the model is
usually evaluated by the value of AUC (area under ROC
curve), which is the area under the ROC curve, and the larger
the AUC value, the better the generalization performance of
the model. ,e formula for calculating AUC is shown in

AUC �
􏽐i∈positiveclassranki − (M(1 + M)/2)

M × N
, (17)

where M and N are the number of positive and negative
samples, respectively.
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Figure 5: ROC curves of six groups of UCI test sets. (a) Banknote. (b) Blood. (c) Climate simulation. (d) Indian. (e) Pima. (f ) WDBC.
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Figure 6: Attribute normalization graph of D1.
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Figure 7: Attribute normalization graph of D2.

Table 10: Parameter settings in the model.

Algorithms Number of neurons Batchsize Maxepoch
LSTM 150 15 18
MPA-LSTM 156 12 13
WOA-LSTM 140 13 16
GWO-LSTM 150 14 18
EO-LSTM 162 13 15
TAFEO-LSTM 141 12 15

Table 11: Data of two wells.

Well name Number of data Number of reservoir data Number of nonreservoir data

D1 Training well section 467 141 326
Test well section 200 70 130

D2 Training well section 1867 270 1597
Test well section 800 172 623
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Figure 8: Continued.
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In the simulation experiments, each UCI dataset was
divided into a 70% training set and a 30% test set. ,e
experimental results were averaged over ten experiments.
,e AUC values of classification results are shown in Table 9,
and the ROC prediction curves are shown in Figure 5.

From Figure 5, it can be seen that the strategy of using
TAFEO for the LSTM model with the number of neurons
seeking and hyperparameters batchsize and maxepoch
seeking is effective, and the AUC value of LSTM with the
original LSTM model has been improved than after EO
optimization. As can be seen from Table 8, the accuracy of
the LSTM model optimized by TAFEO is also improved.

4. Logging Reservoir Identification

4.1. Logging Dataset. To verify the effectiveness of the
TAFEO-LSTM model proposed in this paper in oil logging
data mining, actual oil and gas field data (D1 and D2) were
used for validation.
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Figure 8: ,e actual oil layer distribution of D1 and classification of LSTM. (a) Classification of LSTM. (b) Classification of MPA-LSTM.
(c) Classification of WOA-LSTM. (d) Classification of GWO-LSTM. (e) Classification of EO-LSTM. (f) Classification of TAFEO-LSTM.

Table 12: Comparison of application performance for D1.

Algorithms Accuracy (%)
LSTM 80.13
MPA-LSTM 84.77
WOA-LSTM 86.75
GWO-LSTM 90.63
EO-LSTM 92.72
TAFEO-LSTM 94.04

Table 13: Comparison of application performance for D2.

Algorithms Accuracy (%)
LSTM 87.52
MPA-LSTM 88.89
WOA-LSTM 90.76
GWO-LSTM 87.52
EO-LSTM 91.39
TAFEO-LSTM 95.01
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,e D1 well was attribute reduced to obtain five attri-
butes, namely, (AC, GR, RT, RXO, and SP), and the D2 well
was attribute reduced to obtain 13 attributes, namely, (GR,
DT, SP, WQ, LLD, LLS, DEN, NPHI, PE, U, TH, K, and

CALI). ,e attributes of D1 and D2 wells were applied in the
testing process after attribute simplification, and the data in
the training well segment were divided into 70% training set
and 30% test set. ,e attribute information from the D1 and
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Figure 9: ,e actual gas layer distribution of D2 and classification of LSTM. (a) Classification of LSTM. (b) Classification of MPA-LSTM.
(c) Classification of WOA-LSTM. (d) Classification of GWO-LSTM. (e) Classification of EO-LSTM. (f) Classification of TAFEO-LSTM.
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D2 wells was selected for normalization, and the five main
attributes from each of the D1 and D2 wells were selected to
draw their logging curves, as shown in Figures 6 and 7.

Toverify theperformanceof theTAFEO-LSTMmodel, five
models, LSTM, EO-LSTM, MPA-LSTM, WOA-LSTM, and
GWO-LSTM, are constructed for comparison experiments.
,e parameter settings in each model are shown in Table 10.

Information on the data from the two selected wells is
shown in Table 11.

4.2. Reservoir Identification Results. Figure 8 shows the ac-
tual formation results for each algorithm model in the test
well section of well D1 compared to the test oil results, where
vertical coordinate 2 represents the oil formation and ver-
tical coordinate 1 represents the nonoil formation.

From Figure 8, the TAFEO-LSTM model has higher
accuracy and the classification results can be closer to the
actual oil layer distribution than the LSTM, EO-LSTM,
MPA-LSTM, WOA-LSTM, and GWO-LSTM, and the
accuracy was used to assess the model performance. ,e
recognition accuracy was selected as the average value of
each algorithm after 30 runs. ,e results are shown in
Table 12.

FromTable 11, the classificationperformanceof theLSTM
optimized by applying the intelligent algorithm has signifi-
cantly improved, in which the recognition accuracy of the oil
layer can reach 94.04% by applying the TAFEO-LSTMmodel,
which indicates that it is feasible to apply TAFEO to optimize
the LSTM and identify the oil layer with significant effect.

Similar to D1, accuracy was used to assess model per-
formance and the average of results after 30 runs is shown in
Table 13.

FromTable 13, the classificationperformanceof theLSTM
optimizedby applying the intelligent algorithm is significantly
improved, in which the recognition accuracy of the gas layer
can reach 95.01% by applying the TAFEO-LSTM model,
which indicates that it is feasible to apply the TAFEO-opti-
mized LSTMand the recognition of the gas layer is significant.

Figure 9 shows the actual gas formation results for each
algorithmmodel in the test well section of well D2 compared
to the test gas results, where vertical coordinate 2 represents
the gas formation and vertical coordinate 1 represents the
nongas formation.

As can be seen from Figure 9, compared with LSTM, EO-
LSTM, WOA-LSTM, GWO-LSTM, and MPA-LSTM, the
TAFEO-LSTM model has a higher accuracy rate and the
classification results can be closer to the real gas layer
distribution.

4.3. Comparison of Reservoir IdentificationModels. To better
verify the validity of the improved model, several models
that have been applied to logging are compared with those
proposed in this paper. ,ese models are Fisher’s different
approach, BP neural network, ELM [24], SVM [25], and
CNN [26]. We use these models to identify well D2 logging
data. ,e comparison results are shown in Table 14.

FromTable 14, the TAFEO-LSTMmodel is more accurate
in identifying reservoirs than other models because it takes
into account the temporal characteristics of logging data.

In summary, the improved TAFEO strategy applying
LSTM classification is effective in practical logging reservoir
identification.

5. Conclusions

(1) An improved equilibrium optimizer algorithm,
TAFEO, is proposed, and tent mapping is introduced
to increase the population diversity. ,e introduc-
tion of a convergence factor is to effectively accel-
erate the convergence speed of the algorithm and
balance the local and global optimization-seeking
ability, and finally, adding a premature perturbation
strategy can prevent the algorithm from falling into
the local optimum. ,rough the simulation of 16
benchmark functions and Wilcoxon rank-sum test
for optimization results, the improved algorithm
outperforms various intelligent optimization algo-
rithms in terms of accuracy and convergence speed
and has good robustness.

(2) ,e TAFEO algorithm is applied to the LSTM pa-
rameter optimization; then, a reservoir identification
TAFEO-LSTM model is established. Simulation
experiments on the UCI dataset demonstrate that the
improved model has a strong generalization ability
and high recognition rate. ,e TAFEO-LSTMmodel
is then applied to identify the reservoirs, and the
results are compared with those of five reservoir
identification models, namely, LSTM, EO-LSTM,
WOA-LSTM, GWO-LSTM, and MPA-LSTM. ,e
results show that the proposed TAFEO-LSTMmodel
is more accurate than the other five models in
identifying reservoirs, with the highest accuracy of
94.04% for the oil layer and 95.01% for the gas layer.
Subsequently, TAFEO-LSTM still performs well
compared with the other models used for reservoir
identification. Obviously, the improved model is
effective in reservoir identification and has broad
application prospects.
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Table 14: Results of reservoir identification and comparison of
models.
Model Name Accuracy
Fisher different approach 76.00%
BP neural network 85.75%
ELM 91.13%
SVM 87.75%
CNN 93.25%
TAFEO-LSTM 95.01%
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