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The existing interpretation models for the time spectrum of impulse neutron oxygen activation require interpreters to select the
peak range or background range manually from the time spectrum curve, and there is no adaptive interpretation model that can
determine the peak range or background range. In this paper, an adaptive selection rule for background segment is proposed, and
a semiautomatic interpretation model is constructed by combining background segment interpretation model. Firstly, the
interpretation operator selects the time spectrum curve, then the algorithm program adaptively determines the background
segment according to the rules, and then calculates and displays the transit time and volume flow according to the background
segment interpretation model. The processing results of the measured data show that the interpretation model in this paper not
only retains the interpretation precision of the background interpretation model, but also reduces the labor intensity of the
interpretation operator, realizing the semiautomatic interpretation of the time spectrum.

1. Introduction

Impulse neutron oxygen activation logging is suitable for
monitoring the flow direction and velocity of fluid con-
taining oxygen atoms, which is not affected by formation
porosity, fluid salinity, viscosity, and other factors. The
tested space includes the space inside the tubing, the an-
nulus space between the tubing and the casing, and the
channeling space outside the casing. Moreover, the flow
measurement has a wide range and has been widely used in
many oilfields, especially in the monitoring of oil pro-
duction by water and gas flooding. The literature [1–4]
introduced the improvement of the design of the impulse
neutron oxygen activation instrument. The literature [5]
makes further analysis and mining of time spectrum data.
The literature [6] introduced the methods to improve the
efficiency of oxygen activation logging. The literature [7, 8]
introduced the application of the oxygen activation logging

method in the low permeability oil field and tight reservoir.
A successful example of optimizing oil well production by
combining impulse neutron oxygen activation with inte-
grated production data analysis is presented in the liter-
ature [9]. The literature [10] used the method of function
fitting to fit the whole time spectrum curve to extract
velocity information. The literature [11] carried out a
numerical simulation of the impulse neutron activation
method. The literature [12] studied the feasibility of im-
proving the interpretation accuracy of impulse neutron
activation time spectrum.

In impulse neutron oxygen activation logging, the key to
interpret fluid velocity is to accurately extract the transit time
from the activation time spectrum, that is, the time it takes
for the activation fluid to travel from neutron source to
detector. The activation time spectrum reflects strong sta-
tistical fluctuation, which makes it difficult to accurately
calculate the transit time. Therefore, researchers have
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established a variety of transit time interpretation models,
mainly including three: traditional weighted average model
[13, 14], peak function fitting model [15, 16], and back-
ground segment model [17].

Because the pulse seed oxygen activation logging in-
strument can obtain multiple time spectrum curve data in
one measurement, the first step of all interpretation pro-
cesses is to select a time spectrum curve for subsequent
interpretation model invocation.

The peak function fitting interpretation model [15, 16]
requires interpreters to set appropriate peak shape function
according to the specific shape of spectrum peaks. However,
the actual spectrum peaks and peaks are diverse, lacking
quantitative discrimination standards, and interpretation
results are greatly influenced by interpreters.

The traditional weighted average interpretation model is
also called the Kappa Peak model [13, 14], which requires
interpreters to manually select spectrum peak segments to
participate in the calculation. As there is no unified selection
standard for spectrum peak segments, interpretation results
depend on interpreters’ personal experience [17].

The background segment interpretation model [17] re-
quires interpreters to select background segments, and its
workload is equivalent to that of the traditional weighted
average interpretation model. However, literature [17]
shows that this interpretation model is little influenced by
interpreters.

Existing interpretation models require interpreters to
participate in specific interpretation processes, or set in-
terpretation parameters, or select peaks, or select back-
ground sections. After a brief analysis of the existing
interpretation models, this paper proposes a semiautomatic
algorithm to select the background segment and constructs a
new semiautomatic interpretation model based on the
background segment model. Finally, the effectiveness of the
new model is verified by the measured data, and the con-
clusion is given.

2. Introduction of Existing Time Spectrum
Interpretation Models

The structure diagram of the impulse neutron oxygen ac-
tivation instrument is shown in Figure 1. The oxygenated
fluid (such as water) flows from the left side to the right side
along the outside of the instrument. The neutron source
bursts will activate some of the oxygen atoms in the fluid.
The activated oxygen atoms will decay and emit gamma rays,
which are received by the probe. The instrument records the
gamma ray intensity data at a certain time interval, which is
called the time spectrum data, and the corresponding curve
is called the time spectrum curve.

The measured time spectrum is shown in Figure 2.
The time spectrum data in Figure 2 comes from the field

measured data. It shows the time spectrum data recorded by
D1 probes (blue), D2 probes (orange), D3 probes (yellow),
and D4 probes (purple) in the impulse neutron oxygen
activation instrument. The abscissa represents the time in
seconds. The ordinate represents the count rate, which

indicates the strength of the received signal. The value of the
count rate reflects the relative strength of the signal at each
moment in a measurement period without units. The sta-
tistical fluctuation of this time spectrum is very strong,
which is not conducive to subsequent interpretation.
Generally, a multipoint moving average method is adopted
for filtering. In this paper, a 9-point average filtering method
is adopted for three times filtering. The method takes out 9
data successively and calculates the arithmetic mean of these
9 data as the value of the fifth data. The filtering effect of the
time spectrum in Figure 2 is shown in Figure 3. (Due to the
difference in the ordinate display range, the data corre-
sponding to the D4 probe in Figure 2 is not displayed in
Figure 3).

2.1. Peak Function Fitting Model. Optional peak shape
functions include Gaussian function, logarithmic Gaussian
function [13], gamma function [13, 14], etc.

The Figure 4 is the fitting result of the Gaussian function
selected for a symmetric spectral peak in literature [14].

In the interpretation model, the symmetry of the
spectrum peak needs to be recognized and judged by the
interpreter with naked eyes, then the peak shape function is
set, and the fitting is realized by the program, and the transit
time is calculated according to the fitting parameters.

2.2.WeightedAverageModel. Theweighted average model is
shown in the following equation [14]:

tm �
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i�T1

yiti( 


T2
i�T1

yi

−
1
2
tb, (1)

where tm is transit time, s. T1 is the start time of the selected
peak segment, s. T2 is the end time of the selected peak
segment, s. ti is the counting time between the start time and
end time of the selected peak segment, s; yi is the count rate
corresponding to time ti. tb is the length of time for the
neutron to explode.

As shown in Figure 5, the peak starting position needs to
be manually selected. After selecting the starting position,
the program automatically determines the termination
position of the peak segment.

2.3. Background Segment Model. The background segment
model comes from literature [17], and the results of com-
parative experiments show that this model is superior to the
weighted average model. The background segment is the
nearly horizontal segment in the time spectrum image, and
its selection method is shown in Figure 6.

1 2 3 4 5 6

Figure 1: The structure diagram of the instrument (Meaning of
codes, 1. Impulse neutron source; 2. Shield; 3. D4 probes; 4. D3
probes; 5. D2 probes; 6. D1 probes).
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In literature [17], the interpreter identifies the horizontal
segment manually and selects the background segment by
dragging themouse.The background segment interpretation
model is different from the traditional weighted average
model, which essentially increases the weight of points with
a high count rate.

3. Semiautomatic Selection Method of
Background Section

Literature [17] points out that the background segment is
“the near-horizontal segment close to the spectral peak.”
“Near horizontal refers to the fact that in the selected range,
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Figure 3: The results after 3 times of 9 points mean filtering method.
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Figure 2: Time spectrum measured on well site.
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the count rate fluctuates around a horizontal line with ba-
sically the same fluctuation amplitude, and the overall
change trend is like horizontal.

Figure 5 shows that the test period of time spectrum data
is 40 seconds (neutron activation time is 2 seconds). As can
be seen from Figure 5, for the filtered time spectrum curve,
the spectrum peak should contain the maximum value of the
spectrum curve, and the maximum value should not be
within the neutron burst period (generally 0.8–2 seconds).

Nor at the end of a test cycle (that is, near 40 in Figure 5);The
approximate horizontal segment is located on the left or
right side of the maximum value of the spectrum curve, and
the duration of the approximate horizontal segment is more
than 5 seconds, and the overall change trend of the ap-
proximate horizontal segment.

The original time spectral sequence is filtered by 9-point
moving average for 3 times, and the subsequence with length
N is selected, denoted as xi , i � 1, 2, . . . , N. The sequence
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Figure 5: Peak selection schematic diagram of the traditional weighted average model.
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Figure 4: Fitting results of peak function.

4 Computational Intelligence and Neuroscience



is fitted by a linear function and the fitting equation is
obtained.

y � ax + b, (2)

At the same time, the improved relative mean deviation
of the subsequence is calculated.

r d �
1

N × max |x|, 1{ }


N

i�1
xi − x


, (3)

where x � 1/N 
N
i�1 xi.

When the absolute value of the slope of the fitting line is
small and RD is small, we can think that the subsequence is
approximately horizontal. Combined with the calculation
results of some data, the threshold recognition rules
established in this paper are as follows:

|a|< 0.1,

r d< 0.15.
(4)

Taking the time spectrum of the 40-second test period as
an example, the automatic identification process of the near-
horizontal segment is as follows:

(1) For the time spectrum curve selected by the inter-
preter, the 9-point mean filtering is automatically
performed three times, and the filtered data is
denoted as ti, i � 1, 2, . . . , N, N indicates the data
length.

(2) Determine the time corresponding to the maximum
value of the spectrum curve within the time range of
2 to 38 seconds, denoted as tmax. If tm > 20, we
calculate parameters ai and rdi respectively for the

time spectrum data in the following 5-second pe-
riods according to equations (2) and (3), the 5-
second periods consist of [1 + i, 6 + i] second,
i � 1, 2, . . . , 9. If tm ≤ 20, we calculate parameters ai

and rdi, respectively, for the time spectrum data in
the following 5-second periods according to equa-
tions (2) and (3), the 5-second periods consist of
[24 + i, 29 + i] second, i � 1, 2, · · · , 9.

(3) Select a ai and rdi that meet the threshold rule,
determine the corresponding time segment, and use
the time spectrum data corresponding to the time
segment as the near-horizontal segment.

4. Semiautomatic InterpretationModel of Time
Spectrum and Its Verification

4.1. Semi-Automatic Interpretation Model.
(1) The time spectrum curve specified by the interpreter

for interpretation.
(2) Automatically determine the near-horizontal seg-

ment according to segment 2.
(3) The near-horizontal segment determined in the

previous step is taken as the background segment
and interpreted according to the background seg-
ment model [17].

4.2. Verification of Semiautomatic Interpretation Model.
The interpretation effect of the semiautomatic interpretation
model is verified from two aspects. First, for the measured
spectrum shown in Figure 1, the processing results of the
background interpretation model and the model in this
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Figure 6: Schematic diagram of background section selection.
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paper are compared. The second is to analyze the inter-
pretation effect of the model based on the measured data of
different Wells and different depths.

The volumetric flow interpretation model is as follows
[17]:

QV � PC ×
L

tm

, (5)

where tm represents the transit time, s; PC represents the
cross section area of the runner, m2; L is the source distance,
m.

4.3. Comparison between Semiautomatic Model and Back-
ground Segment Model. Literature [17] has pointed out that
the background segment model is superior to the traditional
weighted average model and function fitting model.

As shown in Figure 2, after three times of 9-point
moving average filtering, the spectral peak of the time
spectrum corresponding to the D2 probe is obvious, and the
near-horizontal segment is obvious. Therefore, THE TIME
spectrum data of D2 is selected for interpretation.

The comparison of interpretation results between the
automatic interpretation model and the background seg-
ment model in this paper is shown in Table 1.

For the semiautomatic interpretation model, repeat 10
times, the volumetric flow rate of interpretation remains
unchanged.

It can be seen from the data in column 2 of Table 1 that
the near-horizontal segment [26.00, 31.00] determined by
the semiautomatic model is inside the near-horizontal
segment manually selected in the background segment
model, indicating the feasibility of the semiautomatic model.

The data in column 3 of Table 1 show that the inter-
pretation result of the semiautomatic model is consistent
with that of the background segment model.

4.4. Interpretation Effect of Repeated Measurement Data.
In the actual logging process, some depth points will be
measured repeatedly. The instrument depth remained fixed
during the two measurements, and the measurements were
taken only 1-2 minutes apart.Therefore, it can be considered
that the volume flow rate of the fluid is approximately stable
with little change in the repeated test process, and its cor-
responding time spectrum should be consistent to a certain
extent, and the flow rate obtained by interpretation should
also be approximately consistent. For repeated measurement
data from different Wells and different depth measurement
points, the measurement point information and explained
flow are shown in Table 2.where the relative error is defined
by the following equation:

Relative error �
Maximum interpretive f low − Minimum interpretive f low

Minimum interpretive f low
. (6)

Table 1: Treatment effect of different model.

Model Near-horizontal segment (s) Volumetric flow rate (m3/d)

Background segment model

20.85–26.35 29.86
25.75–31.85 29.84
23.05–26.90 29.86
23.55–37.15 29.86

Semiautomatic model 26.00–31.00 29.87

Table 2: Treatment effect of model in this paper.

Well
number

Depth
(m)

Pressure
(MPa)

Temperature
(°C)

Near
horizontal
segment (s)

Volumetric
flow rate
(m3/d)

Relative
error (%)

Well 1 175.5 9.01 −1.46 32–37 174.49 1.69.0 −1.49 32–37 177.22

Well 2 810.1 8.33 33.4 33–38 29.95 1.28.33 33.4 33–38 29.60

Well 3 2266.0
20.2 67 25–30 138.20

1.720.2 67 28–33 140.60
20.2 67 27–32 138.60

Well 4 2310.1 21.9 68.6 30–35 78.59 0.821.9 68.6 28–33 79.21
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As we can see from columns 1 and 2 of Table 2, the
measurement points are in different Wells at different
depths. Repeat the program five times and the result remains
the same. As can be seen from columns 3 and 4 of Table 2,
pressure and temperature recorded by repeated measure-
ments are basically consistent at the same measurement
point. As can be seen from column 5 of Table 2, the near-
horizontal segment recognized by the semiautomatic model
is not completely the same at the same measurement point,
which reflects the randomness of the oxygen activation time
spectrum signal. As can be seen from Columns 6 and 7 of
Table 2, the flow interpreted based on repeated test data
within a short period of time at the same measurement point
has a high consistency, and its relative error is less than 2%. It
shows that the semiautomatic interpretation model shows
that the semiautomated model has high interpretation
stability and accuracy.

5. Conclusion

(1) Compared with the traditional weighted average
interpretation model, function fitting model, and
background segment interpretation model, the au-
tomatic interpretation model in this paper further
reduces the workload of interpreters, it only needs
the time spectrum curve selected by the interpreter
for calculation, which is conducive to the design of
fully automated interpretation model.

(2) The automatic model in this paper further reduces
the influence of the interpreter’s experience on the
interpretation results and has the same precision and
interpretation stability as the background segment
model.
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