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�ere is a wide variety of e�ects of Alzheimer’s disease (AD), a neurodegenerative disease that can lead to cognitive decline,
deterioration of daily life, and behavioral and psychological changes. A polymorphism of the ApoE gene ε 4 is considered a genetic
risk factor for Alzheimer’s disease. �e purpose of this paper is to demonstrate that single-nucleotide polymorphic markers
(SNPs) have a causal relationship with quantitative PET imaging traits. Additionally, the classi�cation of AD is based on the
frequency of brain tissue variations in PET images using a combination of k-nearest-neighbor (KNN), support vector machine
(SVM), linear discrimination analysis (LDA), and convolutional neural network (CNN) techniques. According to the results, the
suggested SNPs appear to be associated with quantitative traits more strongly than the SNPs in the ApoE genes. Regarding the
classi�cation result, the highest accuracy is obtained by the CNN with 91.1%. �ese results indicate that the KNN and CNN
methods are bene�cial in diagnosing AD. Nevertheless, the LDA and SVM are demonstrated with a lower level of accuracy.

1. Introduction

AD is de�ned by irregular extracellular β-amyloid plaques
and intraneuronal tau aggregation on a neuropathological
level (neuro�brillary tangles). �e concept of an AD con-
tinuum, which contains both typical and atypical manifes-
tations of the disease, arose from observations that patients
with various clinical appearances and progressions have
identical neuropathological features [1, 2]. AD is a late-onset
condition in more than 80% of patients (de�ned haphaz-
ardly as cases with 65 years or older). Mild cognitive im-
pairment (MCI) is a dementia prodromal phase that a�ects
the voice, visuospatial, praxis, and executive domains and
worsens over time. On the other hand, patients with early-
onset AD usually present with a more severe multidomain
cognitive disorder impacting memory, concentration,

vocabulary, visuospatial, and executive functions at the time
of diagnosis. In patients with early-onset AD, except for the
elderly, MCI rarely precedes primary cognitive dysfunction,
which also develops more rapidly to severe steps. As a result,
in 2010, 2011 [3, 4], and 2014, atypical AD variations were
applied to the updated diagnosis guidelines for AD. �e
most recent updated form [5] involves (1) a clinical phe-
notype associated with one of the atypical forms of domi-
nant, progressive, frontal and (6) logopenic variant, visual/
posterior variant and (2) biochemical, genetic, and/or in vivo
molecular imaging symptoms con�rming AD diagnosis.
Nevertheless, new clinical phenotypes of AD have been
recorded recently in patients with semantic variant pre-
dominantly progressive aphasia [6] or corticobasal syn-
drome [7]. �ese innovative clinical variations add to the
taxonomy of AD, accentuate a broad range of patient
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features. Most notably, the diagnosis of early-onset variants
of Alzheimer’s poses critical challenges [8] underlines the
significance of biomarkers for detection in vivo.

FDG-PET is a promising modality for forecasting
adaptive brain alterations in AD, detecting variations early
in the disease, and recognizing AD from other dementias.
Several studies on the efficacy of FDG-PET in AD have been
published over the last three decades. A meta-analysis of 27
FDG-PET investigations in the diagnosis of AD finds a 91%
(95% confidence interval, 86%–94%) and 86% (95% CI,
79%–91%) pooled sensitivity, and 86% (95% CI). )e study
included 119 papers examining the function of different
diagnostic methods in AD. )e meta-analyzes find that
FDG-PET has outstanding diagnostic accuracy [9, 10]
compared to other diagnostic approaches such as clinical
guidance, MRI, CT, SPECT, and biomarkers. Besides, tests
have shown that FDG-PET can differentiate patients with
AD from stable controls and dementia from other diseases.
)e FDG-PET is to recognize 98 and 99 percent AD patients
with normal SN and SP subjects, 99 and 98 percent DLBwith
SN and SP patients with 99% and 71 percent SN and SP and
99 and 65 percent FTD patients with SN and SP, according
to Mosconi et al. [11]. Neuroimaging has been critical in
supporting underlying pathophysiological hypotheses re-
garding the condition over the past two decades, and it has
primarily been linked to the evolution of diagnostic
methods. )e conditions for amnestic (typical) AD causes
have been revised: MRI hippocampal atrophy, tempor-
oparietal hypometabolism of FDG-PET, and elevated fi-
brillar amyloid PET-amyloid accumulation in the brain. In
particular, exposure to imaging biomarkers raises the like-
lihood of an AD diagnosis even under preclinical/pre-
dementia circumstances [5].

Is molecular PET imagery able to explain the phenotypic
variety of AD and explain whether and how pathologic
β-amyloid and tau proteins show the clinical appearance of
the disease? To date, amyloid PET tests have seen diffuse
cortical β-amyloid deposits in patients with average or
atypical early-onset AD, irrespective of clinical presentation.
)e relationship between cognitive profile, metabolic
transition, and irregular protein distribution has been small.
Furthermore, this radiotracer family has not shown a dis-
tinct geographic trend between focal and diffuse AD [12, 13].
On the other hand, PET tracers that target tau have revealed
a close link between tau deposit distribution and clinical
phenotype.

For the purposes of monitoring the progression of AD,
we examined genes that have significant correlations with
statistical properties of three PET tracers other than the
ApoE genotype. In this article, 37 characteristics are dis-
cussed to assist in diagnosing Alzheimer’s disease. PET
images provide inputs for different parts of the brain
depending on their frequency dependence. Nearest-neigh-
bor (KNN), support vector machine (SVM), linear dis-
crimination analysis (LDA), and convolutional neural
network (CNN) are four machine learning approaches used
to diagnose Alzheimer’s disease. Several reduced features are
used to create the input layer, while two MCI labels and the
normal value are used to construct the output layer.

)e following sections of the present paper outline:
Section 1 describes medical imaging and key medical im-
aging characteristics and quality factors. Section 2 reviews
many relevant papers in medical image processing and
studies some image processing methods for improving
medical images that researchers have proposed in their
papers. Section 3 is the core of the present research paper.
)is section explains some of the significant engineering
subjects related to image processing, general, and medical
imaging, particularly in Section 4.)e evaluation metrics are
discussed in Section 5. Finally, Section 6 summarized the
numerical results and future works.

2. Literature Review

Alzheimer’s disease is a neurodegenerative disease with
distinct pathologic characteristics. Although cortical and
hippocampal neuronal dysfunction and generalized gray
matter atrophy are hallmarks of Alzheimer’s disease, pa-
tients can also experience gradual disconnection of cortical
and subcortical regions attributable to white matter injury.
AD is a progressive disease that worsens over time. )e
ApoE genotype ε4 is well known as a genetic risk factor for
AD. Furthermore, PET/MRI is a systematic instrument for
clinical detection of AD by identifying changes in the brain.
We looked at single-nucleotide polymorphisms (SNPs) fo-
cused on whole-genome sequencing (WGS) data in this
research.

)e biochemical structures found with the gold standard
of PET imaging of fluorodeoxyglucose (FDG) strongly
mimic the cortical distribution of tau protein: hypo-
metabolism is a pathologically intimate result of tau de-
position [13, 14]. In short, in the early-onset Alzheimer
varieties, the function and density of tau aggregation are
locally linked to cognitive effects, cerebral blood pressure,
atrophy, and metabolic changes, while β-amyloid is diffusing
[13].)e area of study in brain imaging genetics explores the
effect of genetic variations on brain imaging phenotypes. It
examines how genetic variations such as single-nucleotide
polymorphisms (SNPs) and quantitative traits (QTs) derived
from brain imaging evidence contribute to phenotypical
features and molecular mechanics in complicated brain
conditions. Single voxels [14] or regions of interest (ROIs)
[15–17] in the brain are used to calculate imaging QTs. An
ROI is a predetermined brain region consisting of an an-
atomical/functionally annotation similar cluster of voxels.
)e ROI number (ten hundred) in the cortex is significantly
smaller than the voxel number (tens of thousands to many
millions).

Recent advancements in obtaining multimodal neuro-
imaging technology inherently have precise voxel-level
knowledge, which opens up a plethora of possibilities for
investigating fine-grained brain anomalies. Voxelwise
methods to investigate genetic implications for voxel-based
brain measures have been suggested in brain imaging ge-
netics. Stein et al. [14] suggested that GWAS (vGWAS) could
be included in an AD analysis to evaluate relationships
paired by 448,293 SNPs and 31,622 voxels. Hibar et al. [18]
proposed the voxelwise gene-wide interaction study
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(vGeneWAS), which compared the combined influence of
several SNPs within a gene to voxel-level measures using a
multivariate model. In their study, He et al. [19] studied
several methods for selecting data features to achieve di-
mensionality reduction. Chen et al. [20] developed Deep-
M6ASeq-EL, which utilizes an ensemble of five LSTMs and
CNNs with a hard voting strategy. According to Xu et al.
[21], pathogenesis can be represented using a directed graph
(PN) in a heuristic way.

When vGWAS (e.g., CSMD2 and CADPS2) and vGe-
neWAS (e.g., GAB2) have detected specific genes, no pri-
mary genetic imaging links have been found have survived
the correction of several tests. In organized sparse learning,
Du et al. [40] proposed two new penalties to strengthen the
fused lasso and the graph/network-driven lasso penalties.
)ey penalized the SCCA model in both ways and proposed
an optimization algorithm to solve it. )e suggested SCCA
approach had a clear upper limit on grouping results pos-
itively and negatively correlated variables. In discovering
biologically significant imaging genetic associations, the
suggested technique detected higher canonical correlation
coefficients and captured simpler canonical weight patterns.
Auditory verbal learning test delayed recall (AVLT-DR)
regressing 6-month AVLT-DR (AD neuroimaging Initiative
database) scores in 394 individuals with adequate knowledge
at baseline AVLT-DR scores. According to the findings, loss
of practice effect over six months can be as effective as
biomarkers in predicting 6-year AD risk.

)e study by Yao et al. [41] proposed voxel-wise en-
richment analysis that integrates brain-anatomic annota-
tion results as an efficient and robust means for mining
regionally based imaging genetic associations recognizing
the mutual impact of weak voxel-level signals. In order to
investigate the genetic effects of imaging on the brain, the
proposed technique has demonstrated to be both scalable
and effective. In a study by Zhao et al. [42], the Multiple
Kernel-based Fuzzy SVMModel with Support Vector Data
Description (MK-FSVM-SVDD) was proposed in order to
predict DBPs. In Yan et al. [43], plasma-activated water
(PAW) and heat-moisture treatments (HMT) were com-
bined to study the structure, physical properties, and in
vitro digestibility of waxy (WMS) and normal maize
starches (NMS). In Shi et al. [44], the effect of WSG and its
impact on steamed bread quality were studied. Increasing
ultrasonic intensity first increased and then decreased the
complex index (CI) of the WSG. Nejatishahidin et al. [45]
developed a novel pose estimation model for object cate-
gories that can be effectively applied to previously un-
known environments. Eslami et al. [46] showed that
attention-based multiscale convolutional neural networks
(A+MCNNs) could improve the automated detection of
common distress and nondistress objects in pavement
images. In this study, Dubois et al. [47] investigated epi-
genetic processes as they relate to psychiatric disorders and
traumatic or stressful events, family relationships, and also
gut microbiota. Wang et al. [48] used the BP neural net-
work algorithm to train the input value of the network
marketing and to judge the risk. Prasad et al. [49] used
response surface methodology (RSM) and artificial neural

network (ANN) to predict the color removal by adsorption.
Rezaei et al. [50] introduced a data-driven method to
segment hand parts from depth maps without requiring
any additional effort to obtain segmentation labels. In their
study, Chandra et al. [51] examined in vivo molecular
imaging in relation to amyloid, tau, and microglial acti-
vation in AD pathology. As part of the study, PET imaging
tests were examined as possible biomarkers and ways to
control disease development (see Table 1). In recent re-
search, metaheuristic optimization methods have grown
more attractive [52, 53]. Because they can solve multiple-
objective solutions and nonlinear formulations, meta-
heuristics are increasingly being utilized to find high-
quality solutions to a growing number of complex real-
world problems [54–58]. Optimization approaches un-
derpin a wide range of essential tasks, and they may be used
to solve a wide range of image segmentation issues in
medicine [59–63]. In summary, imaging genetics investi-
gation focuses on ROI-level phenotypes such as (i) low
dimensionality relative to voxel-based computational
strength approaches and (ii) structural or functional ROI
annotations to indefinite analysis. AD is a progressive
disease that worsens over time. )e ApoE genotype ε4 is
well known as a genetic risk factor for AD. Furthermore,
PET/MRI is a systematic instrument for clinical detection
of AD by identifying changes in the brain. We looked at
single-nucleotide polymorphisms (SNPs) focused on
whole-genome sequencing (WGS) data in this research. We
discovered several SNPs that have a strong link to PET
imaging quantitative traits (QTs). Moreover, the classifi-
cation is done to diagnose AD based on the frequency of
different brain parts in PET images. Analysis metrics are
used to illustrate the results. Machine learning is also
widely used in biological applications, such as optimization
[63, 64], feature extraction [65, 66], and diagnosis of tu-
mors [67]. )e applications of deep learning method are
infection disease detection [68], economical application
[69], cancer research [70], brain tumor detection [71, 72],
fatigue detection [73], environmental science [74], feder-
ated learning [75], facial expression detection [76], and
healthcare analysis [77]. Moreover, some metaheuristic
methods are aquila optimization [78], reptile search
method [79], genetic algorithm [74], and so on [80].

3. Methods and Materials

3.1. PET Imaging Genetics. PET imaging genetic expression
can be precisely accomplished by radiolabeling samples that
only bind certain parts of the target molecule (e.g., protein,
mRNA, or DNA) or radiolabeling samples, which are ex-
plicitly metabolized by a particular enzyme or sequence of
reactions leading to a radiolabeling complex that is “trapped”
in the tissue. )ere are also instances of the nuclear medicine
direct imaging model. In various areas, including neurosci-
ence studies, PET imagery of receptor density/occupancy with
little radio-labeled molecular sensors is widely used. Another
instance of direct molecular imaging that has progressed over
the last 30 years [81] is picking cell surface-specific antigens or
epitopes with radiation-labeled antibodies.
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Table 1: )e literature reviews.

Ref Probe Results

[22] [11C]PBB3 [11C] PBB3 was substantially higher in Alzheimer’s disease than controls in medial temporal areas, including the
hippocampus

[23] [11C]PBB3

In neocortical regions, particularly the medial temporal-co, significant variations in tracer uptake were found, while
the Alzheimer’s disease spectrum was comparable to normal controls. )e group also experienced MRI medial time

atrophy. Besides, the intake of cognitive status in front and temporoparietal joints, limbic, paralimbic, and
frontoparietal zones, was positively linked with dementia, and frontal uptake of Alzheimer’s patients in frontal

regions was also correlated positively with frontal executive dysfunction

[24]

[11C]PBB3 [11C]THK5351 displayed larger percept in the temporal lobe of the medium and lateral lobe, and the reverse was
shown in a combination of patients of Alzheimer’s disease and mild cognitive impairment. [11C]PBB3 is implicated
in the uptake of PET amyloid. )e brain uptake of [11C]THK5351 and [11C]PBB3 has shown to be adversely

linked to cognitive efficiency

[11C]
THK5351

[25] [18F]
THK5317

)e lat-temporal, lat-occipital-, inf-parietal, anterior, lat-occipital-co, and precuneus patients with mild cognitive
impairment and Alzheimer’s disease have greater tau connection than in healthy individuals. In PET, tau retention
and fluorodeoxyglucose uptake were harmful in the frontal-Co, but the tau and the amyloid bonding were positive in

the neocortex

[26] [18F]
THK5351

As contrasted to healthy controls, the eroded WM, fusiform gyrus, inf-temporal-co, lingual gyrus, mid-temporal
gyrus, occipital-Co, parietal-Co, post-cingulate, and precuneus all indicated increment tracer absorption

[27] [18F]
THK5317

)e occipital regions, the mid-frontal and post-cingulate gyri, the parietal operculum, the precuneus, and the
parahippocampal, fusiform, intermediate, lower, and superior temporal gyri, were observed to be adversely linked to
memory in Alzheimer’s patients. Fluorodeoxyglucose-PET studies, which revealed an essential correlation between

tau binding and cognition, affected the impact of in vivo tau binding on cognition

[28]
[18F]

THK5351 Uptake of [18F]THK5351 was greater in Alzheimer’s patients in the cerebral temporal and occipital regions than in
healthy controls; in the hippocampus, [18F]AV1451 uptakewas higher[18F]AV-1451

[29] [18F]AV-1451 In all four lobes of the cortex as well as of the hippocampus, the connections with Alzheimer’s disease were more
robust in comparison with stable controls

[30] [18F]AV-1451 In Alzheimer’s disease patients in hippocampal and extensive cortical areas, tracer retention was more remarkable
compared to control

[31] [18F]AV-1451 A significant proportion of cortical regions examined in Alzheimer’s disease have greater tau uptake than controls.
)is condition persisted in mild cognitive impairment for the entorhinal-Co

[33] [18F]AV-1451

)e cortical preservation of [18F]AV1451 was higher than the controls for the temporoparietal, parietooccipital,
precuneus post-cingulate, and frontal areas in mixed patient groups. In the entorhinal, parahippocampal, inferior
temporal, and fusiform-Co also variations were reported. Cognitive impairment and dementia severe were associated

with increased inferior uptake for patients

[34] [18F]AV-1451

)e frontal, occipital, parietal, and temporal-co, as well as the amygdala, anterior and post-parahippocampus, and
fusiform areas, displayed elevated levels of tau binding relative to controls in the frontal, occipital, parietal, and
temporal-co, as well as the amygdala, anterior and post-parahippocampus, and fusiform sections of Alzheimer’s

disease and mild cognitive impairment patients

[35] [18F]AV-1451

Variation of entorhinal and neocortical tau binding was observed in patients with classic Alzheimer’s disease. )e
tremendous memory damage being found by people with higher entorhinal and neocortical tracer retention, while
those with low entorhinal and elevated neocortical attachment were the most deteriorating in other areas of

neuropsychology, according to a cluster study contrasting high and low uptake groups

[36] [18F]
THK5317

In Alzheimer’s disease patients, in addition to the midbrain, [18F]THK5317 binding was found in basal ganglia and
thalamus. )e isocratic temporal lobe and lateral parietal and frontal lobes retention were observed in the tracer

retention

[37] [18F]MK-
6240

In the medial temporal lobe, both amygdala, hippocampus, and parahippocampal gyrus demonstrated increased
tracer uptake in patients with AS/Mild cognitive impairment. In the neocortical temporal, frontal, and parietal

regions, two patients with progressive disease were taken up

[38] [18F]PI-2620
In the temporal areas, the precuneus, and the post cingulate, three Alzheimer’s disease patients had asymmetric
distributions of tracer retention. One Alzheimer’s disease patient, who was in the early stages of the disorder, h

Alzheimer’s disease little absorption

[39] [18F]RO-948
Alzheimer’s disease patients had higher tracer attachment than older controls in the right hippocampus, entorhinal
area, parahippocampus, left middle-middle front lobe, fusiform gyrus, mid temporal-Co, inferior lobe, and right

inferior parietal lobe

[40] [18F]GTP1 Braak stage I/II brain regions have better retention of tracer inmild to moderate Alzheimer’s disease patients than CN
brain regions, and braak stage V/VI brain regions have higher retention of tracer
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3.2. Convolutional Neural Network. A CNN is a deep
learning (DL) method that can take an input matrix and
assign importance (learnable weights and biases) to different
aspects/objects while also distinguishing between them. In
comparison to other classification methods, a CNN requires
significantly less preprocessing. In spite of the rudimentary
design of filters, CNN can learn these filters/characteristics
with enough training. CNN architecture was inspired by the
structure of the visual cortex, which is similar to the pattern
of communication between neurons in the human brain.
Individual neurons are only capable of responding to stimuli
that are located within the receptive field, a small portion of
the visual field. When multiple such fields collide, the entire
visual field becomes occupied [82]. Manual attribute ex-
traction methods, including such texture analysis, are used
in the majority of recent radionics experiments, accompa-
nied by traditional machine learning (ML) methods, like
random forests and support vector machines (SVM) [83].
)ere are a few distinctions to be made between those
approaches and CNN. To begin with, CNN does not ne-
cessitate feature extraction by hand. Second, human experts
are rarely used to segment tumors or organs in CNN ar-
chitectures. )ird, because millions of learning parameters
are necessary to predict, CNN is much more data hungry
and computer intensive, and GPUs are required for model
training. Among the building blocks of CNN architecture
are convolution layers, pooling layers, and fully connected
layers. One or two fully connected layers follow a stack of
multiple convolution layers and a pooling layer in the typical
architecture. )e way the input data is converted to output
data that uses these layers is called forward propagation.
)ough 2D-CNN is used for convolution and pooling, the
associated three-dimensional (3D)-CNN operations can also
be applied [84].

3.3. Support Vector Machine (SVM). SVM is the most used
(ML)-based pattern classification technique today. It was
created by Vapnik in 1995 and is centered on mathematical
learning theory. )e main goal of this methodology is to use
various types of kernel functions to project nonlinearly
separable samples onto a higher dimensional space. Kernel
methods have gotten much attention recently, thanks to the
growing success of SVM [85]. Kernel functions are essential
in SVM for bridging the gap between linearity and non-
linearity. )e least-square SVM technique is another helpful
SVM methodology for classification tasks. For grouping,
extreme learning machines, fuzzy SVMs, and genetic al-
gorithm-tuned expert models can all be used.)ree different
kernel functions, namely linear, polynomial, and RBF ker-
nels, were tested in this analytical work [85].

3.4. K-Nearest-Neighbor Classifier (KNN). )e KNN clas-
sifier is a common and useful data mining tool. KNN
classifies each test sample based on its k nearest neighbors.
)e distance between the research samples and all training
samples should be determined to locate the k nearest
neighbors. It necessitates a significant amount of com-
puting overhead in the case of big data. To discover the k

nearest neighbors total training sets, some researchers use
distributed frameworks like Hadoop [86]. )ese methods
usually yield the same k nearest neighbors but at the ex-
pense of a massively distributed system. On the other hand,
other authors consider searching for the closest neighbors
in a smaller training data set. Using a KNN classifier on big
data necessitates many computing resources. )e class
mark of a test sample is calculated using the k closest
samples from the training data set in this classification
process. )e distance between the research samples and all
training samples should be measured to locate the k closest
neighbors [86].

3.5. Linear Discriminant Analysis (LDA). Fisher’s linear
discriminant is a statistical and another tool for evaluating a
linear mixture of features that describes or distinguishes two
or more types of objects or events. Fisher’s linear dis-
criminant is a generalization of LDA. )e resulting com-
bination may be utilized as a linear classifier or, more
broadly, as a dimensionality reducer before additional
classification. Discriminant analysis is employed where
categories are known a priori (unlike in cluster analysis).
Each scenario requires a score on one or more quantitative
predictor variables and a score on a group indicator [87]. In
its most abstract form, discriminant function analysis in-
volves grouping, classifying, or categorizing objects into
related groups, classes, or categories.

3.6. Performance Metrics. Patients are assigned to one of the
four cells identified as d in Figure 1 according to classification
outcomes and regardless of whether or not the target diagnosis
is focused on the classification result and whether this eval-
uation has produced either a positive outcome (the individual
seems to be the person) or a negative outcome (the person does
not seem to have the condition) (the person seems not to have
the condition). )e numbers of individuals in each of the four
cells will then be employed to calculate sensitivity, specificity,
and predictive values, which are based on the following for-
mulas [88] as expressed as percentages:

Negative Positive

N
eg

at
iv

e
Po

sit
iv

e

TN

FP

Specificity (TNR)
FPR

FN

TP

Sensitivity (TPR)
FNR

Negative Predictive
Value (NPV)

FOR

Precision (PPV)
FDR

Accuracy
Error

Figure 1: )e confusion matrix.
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Sensitivity �
TP

TP + FN
  × 100,

Specificity �
TN

TN + FP
  × 100,

Positive predictive value (PPV) �
TP

TP + FP
  × 100,

Negative predictive value (NPV) �
TN

TN + FN
  × 100,

Accuracy (ACC) �
TP + TN

TP + TN + FP + FN
  × 100.

(1)

)ese are the criteria cited by researchers and clinicians
related to sensitivity, specificity, and predictive values to
determine the impact of a classifier outcome—i.e., often as
percentages but usually as decimal fractions, preferably
with an acceptable confidence interval of 95 percent. )e
simplicity, and even familiarity, of these four metrics, on
the other hand, can obscure the existence of several
complications that are often ignored. )ere could be flaws
in either the comparison standard or the exam or both. )e
four metrics cannot be considered indisputable and un-
changeable test characteristics: the rigor of the evaluation
and the occurrence of the target condition in the study
determine the measurements inserted into the cells of
Figure 1 [88].

4. Results and Discussion

4.1. Data Collection. For this paper, the information was
collected for the ADNI data set. )e ADNI was founded by
Principal Investigator Michael W. Weiner, MD, in 2003 as a
public-private study. )e primary objective of ADNI was to
determine whether it was possible to track the progression of
MCI and early AD with serial RMI, PET, and other bio-
logical markers, as well as clinical and neuropsychological
evaluations. Several of the participants were able to obtain
baseline and follow-up measurements of FDG. During the
study trials, PET scans with 18F-AV45 as well as 11C-PiB
were conducted for imaging of amyloid plaques. For each
baseline and study, structural MRIs (1.5T or 3T, magneti-
zation prepared rapid acquisition gradient echo) are ob-
tained. )e ADNI database also included Apolipoprotein E
(APOE) genotypes, CSF scales, and clinical evaluations.

4.2. Descriptive Statistics. In this study, 75 topics were se-
lected from the ADNI GWAS data set [89] with more than
seven years of FDG PET, structural MRI, [18F] AV45, and
[11C] PIB scans. All PET images accompanied by structural
MRIs were imported into the ADNI database.)e regions of
interest (ROI) in a high-resolution MRI prototype were
drawn manually. )e variables used are presented in Table 2.
)e orbital cortical, prefrontal, superior frontal, lateral
temporal, parietal, medial precuneus, occipital, anterior
cingulate, and posterior cingulate make up the global cortex.
)e ROI of gray matter in the cerebellum is utilized as target

Table 2: Different parts of brain as feature of diagnosis.

1. Orbital frontal cortex 2. Anterior cingulate 3. Putamen
4. Prefrontal cortex 5. Posterior cingulate 6. Putamen LR
7. Superior frontal cortex 8. Occipital 9. Putamen L
10. Lateral temporal cortex 11. Global cortex 12. Putamen R
13. Medial temporal cortex 14. Amygdala 15. Putamen La
16. Posterior precuneus 17. Hippocampus 18. Putamen Lp
19. Ventral striatum 20. Caudate 21. Putamen Ra
22. Ventral striatum _LR 23. Caudate _LR 24. Putamen RP
25. Pons 26. )alamus 27. Raphe
28. Gray matter VBM8 29. Substantia nigra 30. Raphe dorsal
31. White matter VBM8 32. Midbrain 33. Raphe nuclei
34. Brain mask GM_WM_CSF 35. Medulla 36. Centrum semiovale
37. Parietal

Figure 2: )e anatomy of the cerebrum in the human brain [89].
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tissue, and the 34 ROIs in the normal MNI space that
consists of cerebellum were used as template ROIs for all
subjects. Refer to Figure 2 for an illustration of the brain’s
configuration.

)e comparative study of the patients with Alz-
heimer’s disease is seen in Figure 3. Longitudinal Alz-
heimer’s research is critical because the abnormality and
order of shifts with each biomarker vary dramatically as
Alzheimer’s progresses over time (see Figures 3(a) and
3(b)). )e quantitative PET approach is regarded as a
crucial method for tracking and assessing Alzheimer’s
disease development. Standardization and optimum use
of PET in AD imaging include evaluating single or
multiparametric PET output in the evaluation of patients.
Based on the analysis of 32 patients, some of them
changed the progression and Alzheimer’s between normal

to MCI of Alzheimer and MCI to AD. Based on the results
in Figure 3(b), people with new symptoms of AD and MCI
is detected in almost 85 years old. In other words, this
group saw the first effects of AD on their brains (age
between [80 and 86]). However, the progression from
MCI to AD is revealed for a wide range of ages [60–90]
years with a mean of 75.

Regarding Figure 3, in the normal group, there was no
discrepancy among converters and nonconverters in age,
APOE carriers. It also exists in APOE-ϵ − 4 for decreasing
the onset age of AD.)at is why the age range of people with
APOE-ϵ − 4 is lower than people without this carrier (see
Figure 3(f )). It has occurred for people’s AD progression.
)e progression of MCI to AD for people without APOE-
ϵ − 4 has occurred for people for age between [70 and 90]
(see Figure 4).

0 5 10 15 20 25 30 35
Samples

55

60

65

70

75

80

85

90

95
A

ge
The onset age of each sample, and the age

of first/last diagnosis in each sample

Normal to MCI/AD onset age
MCI to AD onset age

(a)

Normal to MCI/AD MCI to AD
Transition types

60

65

70

75

80

85

90
Age distribution for diagnosis transition

A
ge

 o
f o

ns
et

 (N
or

m
al

 to
 M

CI
/A

D
, o

r M
CI

 to
 A

D
)

(b)

55
0 1

�e number of APOE -4
2

60

65

70

O
ns

et
 ag

e 75

80

85

90

Normal to MCI/AD
MCI to AD

(c)

Normal to MCI/AD

0
74

76

78

80

82

84

86

88

90

92

O
ns

et
 ag

e

1
�e number of APOE -4

2

(d)

0 1
�e number of APOE Epsilon-4 for Normal to MCI/AD

80

81

82

83

84

85

86

87

88
O

ns
et

 ag
e

(e)

non-existing existing
�e existence of APOE Epsilon-4 for Normal to MCI/AD

80

81

82

83

84

85

86

87

88

O
ns

et
 ag

e
(f )

74

72

70

68

66

64

MCI to AD

76

78

80

82

84

O
ns

et
 ag

e

0 1
�e number of APOE -4

2

(g)

0 1 2
�e number of APOE Epsilon-4 for MCI to AD

60

65

70

75

80

85

90

O
ns

et
 ag

e

(h)

non-existing existing
�e existence of APOE Epsilon-4 for MCI to AD

60

65

70

75

80

85

90
O

ns
et

 ag
e

(i)

Figure 3: Results of descriptive statistics.
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4.3. Results of Diagnosis Using Statistical Analysis. In this
paper, three SNPs are used for the diagnosis of AD in the
sample patients. )e essential SNP is shown in Table 3.

)e rs1876152 SNP has three variations in the sample
domain: GG, GA, and AA. )ree participants were selected
to display their standard uptake values ratios in cortexes
such as the pos-cingulate and pos-precuneus, frontal, pa-
rietal, and occipital. )e presented findings support the
hypothesis seen in Figure 5 that the detected SNP can
substantially affect the decreasing pace of FDG uptake. )e
ApoE genotypes of the participants are all the same, which is
ε4 and ε3. As a result, the various declining speeds are
unrelated to the ApoE difference in this situation. According
to the findings, the suggested SNPs have a more significant
association with QTs than the SNP from the ApoE gene. )e
genotypes rs1876152 on chromosome 5, rs1501228 on
chromosome 1, and rs1946867 on chromosome 4 all have a
strong linear association with FDG, [18F]AV45, and [11C]
PIB measurements, respectively. FDG, [18F]AV45, and
[11C]PIB PET measurements all show a strong association
with the genotypes rs1876152, rs1501228, and rs1946867,
respectively. )e ApoE genotype is a coarser genetic risk

factor for AD. To better track the progression of AD, our
research identified genes that have strong associations with
quantitative characteristics of three PET tracers other than
the ApoE genotype. )e current ADNI research will observe
the assessment of the three genotypes in controlling AD
development.

)e Y-axis in Figure 5 indicates the average discrepancy
in FDGmeasurements before and after the diagnosis process
for seven years. )e error bar represents the 95% confidence
interval for the discrepancy in means. On the X-axis, the
SNP genotype rs1876152 has three variations: GG, GA, and
AA. )e SNP genotype rs1501228 has three variants: GG,
TG, and TT, while rs1946867 has three variants: GG, GA,
and AA.)e subjects with GG alleles have aminor difference
in FDG measurements between two transformations (see
Figure 5(a)). After the transition, the FDG SUVR decreases
the most when the gap in AA alleles is more significant.

4.4. Results of Diagnosis Using Machine Learning. In this
paper, 37 features are used for the diagnosis of AD in pa-
tients. )e input features are indicated in Table 2 that are
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Figure 4: Results of diagnosis using statistical analysis.

Table 3: )e SNP sequence involved.

SNP name Sequence
rs1876152 CCGAGGTGACCTCAGGGAGGAACCAGAGAAGAAATACCCTGACTTCACTC
rs1501228 ATTAGGTAGTCAGTTCTGCACAGAAGATATGCTTCTCGTCCAAATAAATG
rs1946867 CTTCATCTTTTTTGTGTGGCAACATATGAAGCTGTACCAAATTGTATGGT
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different parts of the brain PET frequency based on PET
images. For the implementation of machine learning
methods, the main features should be normalized. )e
normalizations have been done in each variable to range data
between −1 and 1.)e next step is to decrease the number of
variables. In this part, for reducing the feature principle
component analysis of use. )e normalized cumulative
summation of sorted eigenvalues (NCSE) is illustrated in
Figure 6. Based on the results of feature reduction, the first
ten features have a 99% power of all 37 inputs.

In this paper, four machine learning methods consist of
KNN, SVM, LDA, and CNN to diagnose AD. Ten reduced

features are used as input layers, and two labels of MCI and
normal value are used as output layers. )e results of
classification are reported for 511 patients and 311 normal
people. )e performance metrics are illustrated as confusion
matrix and ROC curve. For CNN methods, the training
process is shown in Figure 7.
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Figure 5: Standard uptake values ratios for three essential SNP.
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Performance Analysis ()

Regarding Figure 7, the process is repeated until the
accuracy and loss value are stable. Additionally, a con-
volutional layer and activation layer are employed for

classification, as shown in Figure 8. )e ReLU activation
function is the best choice for CNN techniques for removing
negative values.)ree fully connected layers with 50, 50, and
2 are used for changing data size to two categories. Finally,
the SoftMax layer connects the architecture to the output
layer. Results are indicated in the form of Figures 9 and 10.

Based on the confusion matrix, the green cells are true or
correct in diagnosis versus orange cells as false diagnosis
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value. Regarding the results of the KNN method in Figure 9,
from 511 MCI samples, 497(97.3%) of them are detected
successfully. In other words, the sensitivity of the KNN
method is 97.3% for the diagnosis of MCI. On the other
hand, from 311 normal samples, KNN finds 240(77.2%) of
them correctly. )is parameter is also called specificity.
Based on the results of KNN, the precision of the method is
87.5%. It means that 497 + 71 persons are detected as MCI
patients and that 87.5% of them are correct. Finally, the
accuracy of the KNN is 89.7%. For a description of the SVM
method, the method could not detect any types of patients
and the accuracy are 62.2%. Nevertheless, the sensitivity of
the SVM is 100%, and the specificity is zero. It means that
none of the normal people is detected. About the LDA
method, the sensitivity is 87.5%, while the specificity is
25.7%. It means that only 80(25.7%) normal persons are
detected successfully. In this paper, we presented a CNN
architecture to find an accurate model for AD diagnosis.
Based on the results of the CNN method, the sensitivity is
93%. )e CNN method could diagnose 88.1% of normal
persons. Regarding the results of the classification, the
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Figure 9: )e confusion matrix of the presented classifiers.
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highest accuracy is belonging to CNN with 91.1%. )e ROC
curve is depicted in Figure 10 for a good description of the
classifiers. Regarding Figure 10, the x-axis is the false-pos-
itive rate (FPR), and the y-axis is the true-positive rate
(TPR). )e method with lower FPR and higher TPR is
desirable. Results show that the KNN and CNN method is a
desirable method for diagnosing AD. However, the LDA and
SVM are illustrated with lower accuracy.

5. Discussion

Clinically, image processing employing a CNN has gained
considerable attention as a form of artificial intelligence. Its
high performance in image recognition makes CNN a branch
of deep neural networks (so-called deep learning) that is
recognized to be highly useful for image analysis. A recent
study employed a CNN to automatically diagnose tubercu-
losis from chest radiographs. )rough the use of a CNN, we
were also able to segment brain tumors and predict genotype
from magnetic resonance images. One study found that
dynamic contrast agent-enhanced computed tomography was
very effective in distinguishing liver masses. PET/CT imaging
has also been successfully used with CNN algorithms. Inmore
recent years, generative adversarial networks (GANs) have
been used to increase super-resolution efficiency, yet these
approaches have been limited by the difficulty of training
GANs, which is notoriously difficult. While deep neural
networks have been effectively used for PET image denoising
and radiation dose reduction in a number of recent articles,
the application of deep learning for PET imaging is a less-
explored research domain. )e super-resolution issue, unlike
the denoising problem, tries to build a clearer image from a
hazy one while preferably maintaining edges. As a conse-
quence, super-resolution requires different network archi-
tectures and data preparation procedures than denoising. )e
future work on super-resolution PET will utilize a diverse
range of techniques, including both (classical) penalized
deconvolution using joint entropy and deep learning using
CNN. For future work, it is better to use some powerful
feature extraction methods to select the more reliable features
for diagnosis with PET images.

6. Conclusion

We examined genes that were significantly correlated with
statistical properties of three PET tracers that are not as-
sociated with ApoE genotype for the purpose of monitoring
AD progression. )is article discusses 37 characteristics
relevant to the diagnosis of Alzheimer’s disease. A PET
image provides inputs for different parts of the brain
depending on their frequency dependence. We discovered
several SNPs that have a link to PET imaging quantitative
traits (QTs). Moreover, the classification is done to diag-
nose AD based on the frequency of different brain parts in
PET images. )e results are illustrated with performance
analysis metrics. According to a study of patients, some
improved their Alzheimer’s development from mild to
MCI and MCI to AD. According to the findings, indi-
viduals as young as 85 years old have additional signs of

Alzheimer’s disease and MCI. In other words, this pop-
ulation saw the earliest signs of Alzheimer’s disease in their
brains (age between [80 and 86]). )e progression from
MCI to AD, on the other hand, is visible for a wide variety
of ages [60–90] years, with a mean of 75. )e genotypes
rs1876152, rs1501228, and rs1946867, respectively, have a
clear linear relationship with FDG, [18F] AV45, and [11C]
PIB scales, according to the findings. According to the
results, the proposed SNPs have a stronger connection to
QTs than the SNP from the ApoE gene. Our study ex-
amined genes that have significant correlations with sta-
tistical properties of three PET tracers other than the ApoE
genotype in order to help monitor the evolution of AD. In
this article, 37 characteristics are used to diagnose Alz-
heimer’s disease in patients. Different areas of the brain
frequency dependent on PET images are used as input
functions. According to the effects of feature reduction, the
first ten functions have a 99 percent impact on all 37 inputs.
KNN, SVM, LDA, and CNN are four machine learning
approaches used to diagnose Alzheimer’s disease.)e input
layer consists of ten reduced features, while the output layer
consists of twoMCI labels and the normal value. According
to the findings of the KNN process, 497 (or 97.3 percent) of
the 511 MCI samples were successfully detected. In other
words, the KNN system has a sensitivity of 97.3 percent for
diagnosing MCI. KNN, on the other hand, accurately
identifies 240 (or 77.2 percent) of 311 standard samples.
)e SVM system failed to detect any of the patients, with a
62.2 percent accuracy. Despite this, the SVM’s sensitivity is
100 percent, and its specificity is nil. CNN has the best
accuracy rate of 91.1 percent when it comes to classification
data. )e findings suggest that the KNN and CNNmethods
are suitable for diagnosing Alzheimer’s disease. )e LDA
and SVM, on the other hand, are depicted with less
precision.
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