
Research Article
Exploration of Laser Marking Path and Algorithm Based on
Intelligent Computing and Internet of Things

Gang Lu ,1 Yide Liu,1 Xue Yao,1 Jiachen Yang,2 and Cheng Jia2

1Department of Electrical Engineering & Information Technology, Shandong University of Science and Technology, Jinan,
Shandong, China
2Swinburne College, Shandong University of Science and Technology, Jinan, Shandong, China

Correspondence should be addressed to Gang Lu; 201903204415@sdust.edu.cn

Received 28 April 2022; Accepted 31 May 2022; Published 24 June 2022

Academic Editor: Arpit Bhardwaj

Copyright © 2022Gang Lu et al.is is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nowadays, laser processing technology is being used more and more in various �elds, and the requirements for laser control
procedures are getting higher and higher. is paper aims to study the path generation problem of laser marking technology
in order to improve the e�ciency of laser marking as well as the protection of the marking material. erefore, we creatively
propose two-path generation methods, namely, sawtooth parallel and contour parallel, and design the boundary curve
o�set algorithm and domain partition intersection algorithm for the computer simulation of the two marking paths,
respectively. rough the simulation, we discussed the e�ciency and marking quality of the two path generation methods
and gave the conclusion that the e�ciency of the sawtooth parallel path generation method is greater than that of the
contour parallel path generation method under speci�c parameters.

1. Introduction

e laser [1] is an important invention of the 20th century
and has been called “the sharpest knife,” “the most ac-
curate ruler,” and “the most unusual light.” Lasers have
been increasingly used in industrial processes for a variety
of machining operations such as marking, welding,
drilling, cutting, heat treating, and painting. Laser
marking [2] is the marking of logos, characters, symbols,
and images with a laser on the product surface. It is a
widely used processing method with the advantages of
high processing e�ciency, noncontact operation, no
consumables, and low impact on product surface defor-
mation [3] and solid marking content. e hatch tool of a
laser marking machine can be used for hatch-speci�ed 2D
composite pro�le [4], but the setting of di�erent hatch
parameters has a great impact on the processing e�ect of
di�erent materials. Zigzag parallel [5] hatching and pro�le
parallel [6] hatching are the two basic ways of marking
road dynamics generation. And the design of di�erent
process processing and hatching algorithms has sub-
stantial signi�cance on whether the operation e�ciency

and accuracy of laser marking machine [7] can be
improved.

Nowadays, in the �eld of laser marking, more research
lies in the combination selection and optimization of
process parameters [8]. Shivakoti [9] et al. investigated the
selection of optimal laser beam micromarking process
parameters using the fuzzy TOPSIS [10] method in the
GaN laser beam [11] marking process and concluded that
small pulse frequency [12], high current, and scanning
speed lead to increased mark intensity. Some people have
explored this area through Bessel curves [13]. And a
connected Fermat spiral area �lling algorithm (CFS) [14]
has also been proposed, but its study has not been deeply
applied to laser marking technology and cannot be applied
for complex graphics [15]. Our research aims to �ll this
gap in the laser marking path generation algorithm.

To �ll this gap, in order to �ll this gap, we explore the
laser marking path generation algorithm from the per-
spective of improving the e�ciency of laser marking path
generation, combining computer graphics [16] principles
with the length of the laser marking path and the time of
the generation algorithm as the main factors. Firstly, we

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 7443410, 10 pages
https://doi.org/10.1155/2022/7443410

mailto:201903204415@sdust.edu.cn
https://orcid.org/0000-0003-1291-4099
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7443410

propose two-path generation methods, namely direction-
parallel hatching and contour-parallel hatching. Parallel
directional shaded lines, also called “zigzag” shaded lines,
have paths that move along line segments parallel to the
initially selected reference direction. +e two marking
path forms are shown in Figure 1. Based on this strategy,
connected paths are obtained by connecting these parallel
line segments so that they either all cross from right to left
(or left to right) or alternate between left to right and right
to left. In contrast, contour-parallel shading uses offset
line [17, 18] segments based on boundary curves as
smooth shading paths similar to boundary curves. +us,
contour-parallel shadows can be generated in a spiral
fashion along a curve at a constant distance from the curve
boundary. Later, the domain partition intersection al-
gorithm and boundary curve offset algorithm are pro-
posed for both methods and verified the feasibility and
generation efficiency of both algorithms by computer
simulation [19].

2. Method

In exploring the problem of laser marking path genera-
tion, we proposed the zigzag parallel and contour parallel
[20] filling path approaches and used interpolation
methods [21] to fit the original pattern at a high level to
enhance the marking pattern.

Usually, the first function in anM-file is the main function,
which can be followed by any number of subfunctions. +e
main function can be called by other functions outside that file,
and the main function is called by the filename of the M file
where the function is stored.

M files can include multiple functions, and functions other
than the main function are called subfunctions. Subfunctions
can only be called by the main function or by other sub-
functions within that file. Each subfunction begins with a
function definition statement and continues until the definition
of the next function or the end of the file. +e subfunctions
appear in any order, but the main function must appear first.

2.1. Original Graph Curve Fitting

2.1.1. Definition of Curve Fitting. +e spline curve [22] S(x) is
a segmentally defined equation. Given (n+1) data points and a
total of n intervals, the cubic spline equation satisfies the
following conditions:

(A) In each segment interval [xi, xi+1] (i� 0, 1, . . ., n− 1,
x increasing), S(x)� Si(x) is a cubic polynomial

(B) +e following relationship is satisfied:

Si(x) � yi (i � 0, 1, . . . , n). (1)

(C) S(x), the derivative S′(x), and the second-order de-
rivative S″(x) are all continuous in the interval [a, b],
that is, the S(x) curve is smooth. So n cubic polynomial
segments can be written as

Si(x) � ai + bi x − xi(+ ci x − xi(
2

+ di x − xi(
3
, (2)

where i� 0, 1, . . ., n−1, and ai, bi, ci, di represent the 4n
unknown coefficients.

2.1.2. Request a Solution. Interpolation and continuity:

Si xi(� yi,

Si xi+1(� yi+1,
(3)

where i� 0, 1, . . ., n− 1.
Differential continuity:

Si
′ xi+1(� Si+1″ xi+1(,

S
′ xi+1()
i � Si+1″ xi+1(,

(4)

where i� 0, 1, . . ., n− 2.
Differential equation of a spline curve:

Si(x) � ai + bi x − xi(+ ci x − xi(
2

+ di x − xi(
3
,

S
′(x)
i � bi + 2ci x − xi(+ 3di x − xi(

2
,

Si
″(x) � 2ci + 6di x − xi(.

(5)

Bring the following step size h into the conditions of the
spline curve:

hi � xi+1 − xi. (6)

+us, we can deduce

ai � yi,

ai + hibi + h
2
i ci + h

3
i di � yi+1,

bi + 2hici + 3h
2
i di − bi+1 � 0,

2ci + 6hidi − 2ci+1 � 0.

(7)

We assume that

mi � Si
″ xi(� 2ci. (8)

+us, we can deduce the following result:

2ci + 6hidi − 2ci+1 � 0. (9)

It is equivalent to the following equation.

mi + 6hidi − mi+1 � 0. (10)

+us, the following formula is derived as

Figure 1: Graphical representation of zigzag parallel and contour
parallel hatch.

2 Computational Intelligence and Neuroscience

di �
mi+1 −mi

6hi
. (11)

We substitute ci, di into

yi + hibi + h
2
i ci + h

3
i di � yi+1, (12)

we can derive the formula:

bi �
yi+1 − yi

hi
−
hi
2
mi −

hi
6
mi+1 −mi(). (13)

From the range of values of i, there are (n− 1) equations but
(n+1) unknowns m. To solve the system of equations, two
additional equations are required. So some restrictions need to
be placed on the di�erentiation of the two endpoints x0 and xn.
Here, we use not-a-knot [23] to solve the problem.

Specify the cubic di�erential matching of the spline curve.

S′
″
0 x1() � S′″1 x1(),

S′
″
n−2 xn−1() � S′″n−1 xn−1().

(14)

After that we can derive the following conclusions:

h1 m1 −m0() � h0 m2 −m1(),
hn−1 mn−1 −mn−2() � hn−2 mn −mn−1().

(15)

e new coe�cient matrix of the system of equations
can be written as

−h1 h0 + h1 −h0 · · · · · · 0

h0 2 h0 + h1() h1 0 ⋮

0 h1 2 h1 + h2() h2 0 ⋮

⋮ 0 ⋱ ⋱ ⋱ 0

0 · · · 0 hn−2 2 hn−2 + hn−1() hn−1

0 · · · · · · −hn−1 hn−2 + hn−1 −hn−2

.

(16)

–20
–30

–20

–10

0

10

20

30

–15 –10 –5 0 5 10 15 20

Figure 2: Simulation graphics.

–20
–30

–20

–10

0

10

Area 1

Area 5

Area 2

Area 3 Area 4
20

30

–15 –10 –5 0 5 10 15 20

Figure 3: Domain zoning.

–20
–30

–20

–10

0

10

20 JI J2 J3 J4 J5 J6 J7 J8

30

–15 –10 –5 0 5 10 15 20

Figure 4: Scan for delivery.

–25
–40

–30

–20

–10

0

10

20

30

–15–20 –10 –5 0 5 10 15 2520

Figure 5: Results of simulation experiment I.

Computational Intelligence and Neuroscience 3

2.2. Introduction to Matlab Functions. +e polyshape
function [24] creates a polygon defined by two-dimen-
sional vertices and returns an object with attributes de-
scribing its vertices, solid regions, and holes.

+e polybuffer function implements the creation of a
buffer around a point, line, or polyshape object. Its
boundary will be input to the polyshape object buffer
polyin a distance d. For positive values of d, the solid area
boundary polyin expands by unit d and the hole boundary
shrinks by unit d. +e negative values of d shrink the solid
boundary and expand the hole boundary.

+e Intersect function is the intersection of a poly-
shape object. It can return the intersection of a closed
curve and a line, and determine which parts of the line are
inside and outside the closed curve.

2.3. Boundary Curve Offset Based on Contour Parallel Path.
Decompose the original figure into n simple figures, de-
note the centroid [25] of each simple figure, GI represents
the center point of each simple graph and the Si represents

the area of each simple figure, yielding the central point
coordinates of the original graph as

x �

i�1
n GixSi

n
i Si

,

y �

i�1
n GixSi

n
i Si

.

(17)

+us, the maximum distance from any point (X, Y) on
the road strength to the center of the path is obtained as:

d � max
����������������

(X − x)
2

+(Y − y)
2

 . (18)

For the contour parallel line hatching problem, we use
the buffer function polybuffer for computer simulation.

polyout � polybuffer(polyin, d). (19)

Returns a polyshape object with a boundary that
creates a buffer at distance d based on the input polyshape
object polyin. For positive values of d, the solid area
boundary of polyin is expanded by d units and the hole
boundary is shrunk by d units. Negative values of d shrink
the solid boundary and expand the hole boundary.

2.4. Domain-Distinct Intersection Algorithm for Self-Inter-
secting Graphs Based on Zigzag Parallel Paths. For the
serrated parallel path, we propose a regionalized closed
curve [26] and a straight-line intersection algorithm.
Firstly the original graph is regionalized according to the
concave and convex points. +e original graphics and the
zoning graphics are shown in Figures 2 and 3 respectively.
Afterwards, using a straight line y � a from the top of the
closed graph to the bottom in 1mm steps in order to scan
[27], using the intersect function to find the coordinates of
the entry, and then according to the previous cycle can
always find the coordinates of the intersection point of the
line with the original graph each time y � a.

According to the above division, the region will be
divided into many small blocks of all data points, each
small block with an array to store the first (from left to
right) of the intersection of the line, and then an array to
store the second, because it is a sawtooth arrangement, so
it must be the first from a small block to point to the
second, and so on, the intersection of each small block will
be the first from the small block of coordinates to point to
the second coordinates.

+e X and Y values of the coordinates of the inter-
section point, the next in each array position relationship
will be the X and Y values of the coordinates of the in-
tersection point of the next line and the intersection point
of the line at the coordinates of the intersection point of

Table 1: Experiment I algorithm analysis.

Function name Number of
calls

Total
time (s)

Self-use
(s)

createCanvas 1 0.007 0.002
Getlnstance 1 0 0
hasBeenOpened 1 0.001 0.001
maybeShow 1 0.003 0.001
Polygon 30 0.039 0.017
doSetup 30 0.022 0.022
ToolbarController 1 0.005 0.004
Attributes 30 0.012 0.003
checkAttrs 30 0.001 0.001
checkClass 30 0.001 0.001
checkInputs 30 0.007 0.002
Axescheck 60 0.009 0.007
strcmpi (“parent”, x) 60 0.002 0.001
Lunkuo 1 2.221 0.089
Cla 1 0.007 0.003
converStringToCharArgs 30 0.001 0.001
generateArgumentDescriptor 30 0.004 0.004
isCharOrString 90 0 0
Gobjects 92 0.013 0.009
claNotify 1 0.001 0.001
Clo 1 0.003 0.003
hasDisplay 1 0 0
Hold 30 0.023 0.014
isFigureShowEnabled 1 0 0
isPublishingTest 1 0 0
isStringScalar 60 0.001 0.001
markFigure 30 0.005 0.005
Newplot 31 0.066 0.041
Newplotwrapper 1 0.061 0.001
Nextstyle 30 0.01 0.01

4 Computational Intelligence and Neuroscience

Table 3: Comparison of results of contour parallel experiments.

Experimental group

1 2 3 4 5 Average time Number of laps Average time ratio CircumferenceTime(s)
Number of
experiment
1 1.937 1.952 1.995 1.959 2.103 1.989 11 10.436 896.820
2 20.583 20.534 20.51 21.169 21.002 20.759 110 10017

–6

–8 –6 –4 –2 0 2 4

–4

–2

0

2

4

6

8

10

12

Figure 6: Simulation experiment II partial enlargement.

–20
–30

–20

–10

0

10

20

30

–15 –10 –5 0 5 10 15 20

Figure 7: Region 1.

Table 2: Experiment II algorithm analysis.

Function name Number of calls Total time (s) Self-use time (s)
createCanvas 1 0.007 0.002
Getlnstance 1 0 0
hasBeenOpened 1 0.001 0.001
maybeShow 1 0.003 0.001
Polygon 314 0.309 0.139
doSetup 314 0.177 0.17
ToolbarController 1 0.005 0.004
Attributes 314 0.042 0.009
checkAttrs 314 0.002 0.002
checkClass 314 0.008 0.008
checkInputs 314 0.023 0.01
Axescheck 628 0.057 0.048
strcmpi (“parent”, x) 628 0.009 0.006
Lunkuo 1 20.474 0.047
Cla 1 0.007 0.002
converStringToCharArgs 314 0.004 0.004
generateArgumentDescriptor 314 0.013 0.012
isCharOrString 942 0.002 0.002
Gobjects 942 0.077 0.059
claNotify 1 0.001 0.001
Clo 1 0.003 0.003
hasDisplay 1 0 0
Hold 314 0.181 0.112
isFigureShowEnabled 1 0 0
isPublishingTest 1 0 0
isStringScalar 628 0.003 0.003
markFigure 314 0.039 0.039
Newplot 315 0.147 0.067
newplot>ObserveAxesNextPlot 315 0.027 0.021

Computational Intelligence and Neuroscience 5

–20
–30

–20

–10

0

10

20

30

–15 –10 –5 0 5 10 15 20

Figure 8: Region 2.

–20
–30

–20

–10

0

10

20

30

–15 –10 –5 0 5 10 15 20

Figure 9: Region 3.

–20
–30

–20

–10

0

10

20

30

–15 –10 –5 0 5 10 15 20

Figure 10: Region 4.

–20
–30

–20

–10

0

10

20

30

–15 –10 –5 0 5 10 15 20

Figure 11: Region 5.

–20
–30

–20

–10

0

10

20

30

–15 –10 –5 0 5 10 15 20

Figure 12: Zigzag parallel experiment.

–20
–30

–20

–10

0

10

20

30

–15 –10 –5 0 5 10 15 20

Figure 13: Zigzag parallel experiment II.

6 Computational Intelligence and Neuroscience

that previous line and the graph. +e scan intersection is
shown in Figure 4.

3. Results

We conducted two simulation experiments on the
designed contour parallel path boundary offset algorithm
using Matlab software. +e first simulation experiment
was set to the inner shrinkage boundary distance of 1 mm
and the hatch line spacing of 1mm, and the second
simulation experiment was set to the inner shrinkage
boundary [28] distance of 0.1 mm and the hatch line
spacing of 0.1 mm. Under these two sets of parameters, the
total length of the hatching lines of the serrated parallel
and contour parallel hatching curves were calculated, and

the number of horizontal lines of the serrated parallel
hatching and the number of circles of the contour parallel
hatching were also calculated. +e average running time
(in ms) was calculated based on multiple runs of the
hatching program, and the running time ratio of the
program runs under different conditions was also cal-
culated. +e simulation results for the two parameters are
shown in Figures 4 and 5, respectively.

3.1. Simulation of Boundary Curve Offset Algorithm Based on
Contour Parallel Path

3.1.1. Algorithm Analysis Results. We have performed an
accurate analysis of the running time [29] of this algorithm and
have derived the number of function calls and the time during

Table 4: Algorithm analysis based on zigzag parallel path simulation experiment I.

Function name Number of calls Total time (s) Self-use time (s)
createCanvas 1 0.007 0.002
getlnstance 1 0 0
hasBeenOpened 1 0.001 0.001
maybeShow 1 0.003 0.001
ToolbarController 1 0.005 0.004
axescheck 6 0.002 0.002
strcmpi (“parent”, x) 6 0.001 0.001
c2_iuci 1 0.363 0.035
cla 1 0.006 0.002
gobjects 14 0.002 0.002
claNotify 1 0.001 0.001
clo 1 0.003 0.003
hasDisplay 1 0 0
hold 6 0.009 0.005
isFigureShowEnabled 1 0 0
isPublishingTest 1 0 0
isStringScalar 6 0 0
markFigure 6 0.002 0.002
newplot 7 0.059 0.041
newplot>ObserveAxesNextPlot 7 0.008 0.002
newplot>ObserveFigureNextPlot 7 0.001 0.001
newplotwrapper 7 0.063 0.002
area 153 0.012 0.007
intersect 51 0.034 0.028
numboundaries 408 0.011 0.01
numsides 102 0.004 0.003
perimeter 153 0.01 0.006
checkAndSimplify 51 0.204 0.166
checkArray 867 0.003 0.003
checkConsistency 408 0.001 0.001
checkinput 51 0.007 0.003
checkPointArray 51 0.003 0.003
NumHoles 102 0.002 0.002
NumRegions 102 0.003 0.003
getXY 51 0.004 0.004
isEmptyShape 408 0.014 0.002
isEqualShape 51 0.035 0.004
parselntersectUnionArgs 51 0.001 0.001
polyshape 102 0.221 0.01
settings 1 0.001 0
settings 1 0.001 0.001
usejava 1 0.001 0

Computational Intelligence and Neuroscience 7

Table 5: Algorithm analysis based on zigzag parallel path simulation experiment II.

Function name Number of calls Total time (s) Self-use time (s)
createCanvas 1 0.007 0.002
getlnstance 1 0 0
hasBeenOpened 1 0.001 0.001
maybeShow 1 0.003 0.001
ToolbarController 1 0.005 0.004
axescheck 6 0.002 0.002
strcmpi (“parent”, x) 6 0.001 0.001
c2_iuci 1 2.476 0.08
cla 1 0.006 0.002
gobjects 14 0.002 0.002
claNotify 1 0.001 0.001
clo 1 0.003 0.003
hasDisplay 1 0 0
hold 6 0.009 0.005
isFigureShowEnabled 1 0 0
isPublishingTest 1 0.001 0.001
isStringScalar 6 0 0
markFigure 6 0.002 0.002
newplot 7 0.057 0.038
newplot>ObserveAxesNextPlot 7 0.008 0.002
newplot>ObserveFigureNextPlot 7 0.001 0.001
newplotwrapper 7 0.061 0.002
area 1593 0.103 0.048
intersect 531 0.283 0.251
numboundaries 4248 0.099 0.085
numsides 1062 0.026 0.021
perimeter 1593 0.092 0.044
checkAndSimplify 531 1.945 1.653
checkArray 9027 0.029 0.029
checkConsistency 4248 0.01 0.01
checkinput 531 0.023 0.011
checkPointArray 531 0.01 0.01
NumHoles 1062 0.012 0.012
NumRegions 1062 0.023 0.023
getXY 531 0.012 0.012
isEmptyShape 4248 0.119 0.021
isEqualShape 531 0.272 0.016
parselntersectUnionArgs 531 0.004 0.004
polyshape 1062 2.043 0.075
settings 1 0.001 0
settings 1 0.001 0.001
usejava 1 0.001 0

Table 6: Analysis of each factor of the zigzag path simulation experiment.

Experimental group

1 2 3 4 5 Average time Average time ratio Circumference Number of articlesTime
Number of
experiment
1 0.073 0.076 0.076 0.074 0.078 0.0754 1.0026 9176 957
2 0.075 0.075 0.075 0.076 0.077 0.0756 868 85

8 Computational Intelligence and Neuroscience

the operation of the algorithm by running it several times. +e
results are shown in Tables 1 and 2.

3.1.2. Analysis Results. According to the simulation experi-
ment results, we counted the running time, the number of laps
of the path, and the total length of the path for each simulation
experiment, respectively. +e results are shown in Table 3.

3.2. Simulation Results of Domain Partitioning Algorithm
Based on Sawtooth Parallel Paths without
Self-Intersecting Graphs

3.2.1. Simulation Results. We generate the marking path
according to the area division as follows. Figures 6 to 11 show
each of the five areas of the division.+e final results are shown
in Figures 12 and 13, respectively.

3.2.2. Analysis of Domain Partitioning Intersection Algorithm
Based on Sawtooth Parallel Paths. For this algorithm, we
conducted two sets of simulation experiments with different
parameters and performed statistical analysis on the number of
calls and time of each function in the operation of the algo-
rithm, and the following results are obtained in Tables 4 and 5,
respectively.

3.2.3. Zigzag Parallel Path Analysis. We statistically analyze
the average running time, path length, and number of path
entries of the zigzag parallel path algorithm, and the following
results are obtained in Tables 6.

4. Discussion and Conclusion

+rough the simulation solution, we can know that the
average operation time of the zigzag parallel pattern filling
and contour parallel pattern filling algorithms is 1 mm and
0.1 mm. After the fitting algorithm in this paper, we can get a
nearly parallel straight line, while the contour pattern can be
filled in parallel. +e K value of the fitting function of the
algorithm is close to 10, that is, under the same magnifi-
cation, the zigzag algorithm can approach the previous value
in time.

+e algorithm in this paper can establish the length of
two paths, that is, the distance that the laser sweeps through
the whole closed figure, and the two paths are not very
different [30].

However, the results of the simulation marking
pattern can be seen, the simulation pattern based on the
marking algorithm of the contour parallel path is more
accurate, and the simulation pattern obtained by the
marking algorithm of the sawtooth parallel path algo-
rithm is relatively rough. Of course, this is also related to
the design of our algorithm, and we believe that the
accuracy of the serrated parallel path marking will be
improved after the algorithm is continuously iterated
and optimized.

Data Availability

+e datasets for this study can be found in the (official
website of APMCM) (https://www.apmcm.org/detail/2403).

Conflicts of Interest

+e authors declare that there are no conflicts of interest.

Authors’ Contributions

G. L. and Y. L. contributed to the conceptualization of the
study; G. L., Y. L., and X. Y. contributed to the methodology;
G. L. created the software; Y. L. and X. Y. validated the
software; X. Y., C. J., and J. Y. contributed to formal analysis;
G. L. contributed to the investigation; Y. L. helped to collect
the resources; X. Y. contributed to data curation; G. L.
prepared the draft for writing—original the study; G. L. and
J. Y. contributed to writing—review and editing the study;
Y. L. contributed to visualization; J. Y. contributed to su-
pervision; Y. L. and C. J. contributed to project adminis-
tration; Y. L contributed to funding acquisition. All authors
have read and agreed to the published version of the
manuscript.

Acknowledgments

+e authors sincerely thank the editors and reviewers for
their efforts. +e authors sincerely thank Geng Xiaoyang for
laying the foundation for our achievement. +e authors are
grateful to Yifan Liu for his help in making it possible for me
to submit this paper.

References

[1] R. D. Haun, “Laser applications,” IEEE Spectrum, vol. 5, no. 5,
pp. 82–92, 1968.

[2] E. A. Zakharenko, E. I. Pryakhin, V. V. Romanov, and
N. N. Shchedrina, “Development of the technology of 0NBC
code formation on a metal surface by laser marking,” Journal
of Physics: Conference Series, vol. 1753, no. 1, Article ID
012003, 2021.

[3] V. J. Logeeswaran, M.-L. Chan, Y. Bayam et al., “Ultra-smooth
metal surfaces generated by pressure-induced surface de-
formation of thin metal films,” Applied Physics A, vol. 87,
no. 2, pp. 187–192, 2007.

[4] H.-C. Kim, S.-g. Lee, and M.-Y. Yang, “An optimized contour
parallel tool path for 2D milling with flat endmill,” Inter-
national Journal of Advanced Manufacturing Technology,
vol. 31, no. 5-6, pp. 567–573, 2006.

[5] K. F. A. Hussein, S. A. Mehdi, and S. A. Hussein, “Image
Encryption based on parallel algorithm via zigzag Manner
with a new Chaotic system,” Journal of Southwest Jiaotong
University, vol. 54, no. 4, 2019.

[6] H. Abdullah, R. Ramli, and D. A. Wahab, “Tool path length
optimisation of contour parallel milling based onmodified ant
colony optimisation,” International Journal of Advanced
Manufacturing Technology, vol. 92, no. 1-4, pp. 1263–1276,
2017.

[7] M. Sheng, M. Zhou, and Y. Yang, “Design and imple-
mentation of laser marking machine control system,” Journal

Computational Intelligence and Neuroscience 9

https://www.apmcm.org/detail/2403

of Physics: Conference Series, vol. 1738, no. 1, Article ID
012128, 2021.

[8] S. Vasanth and T. Muthuramalingam, “Multi Criteria Deci-
sionmaking of Power Diode based process parameters in laser
beam machining using Taguchi dear methodology,” in Pro-
ceedings of the ATINER’S Conference Paper Series, Athens,
Greece, May 2018.

[9] M. Priyadarshini, P. P. Tripathy, D. Mishra, and S. Panda,
“Multi characteristics optimization of laser drilling process
parameter using fuzzy-topsis method,” Materials Today:
Proceedings, vol. 4, no. 8, pp. 8538–8547, 2017.

[10] A. Çalık, “A novel Pythagorean fuzzy AHP and fuzzy TOPSIS
methodology for green supplier selection in the Industry 4.0
era,” Soft Computing, vol. 25, no. 3, pp. 2253–2265, 2021.

[11] A. K. Mauraya, D. Mahana, P. Tyagi et al., “Structural and
ultraviolet photo-detection properties of laser molecular beam
epitaxy grown GaN layers using solid GaN and liquid Ga
targets,” Physica Scripta, vol. 96, no. 8, Article ID 085801,
2021.

[12] A. Bandari, “Beam engineering strategies reduce heat accu-
mulation effects in high power, ultrashort pulse laser ma-
chining,” Scilight, vol. 2020, no. 36, Article ID 361107, 2020.

[13] A.W. Lohmann, J. Ojeda-Castañeda, and A. Serrano-Heredia,
“Bessel functions: parallel display and processing,” Optics
letters, vol. 19, no. 1, p. 55, 1994.

[14] Y. Zhang, H. Li, T. Wang, B. Liu, and G. Wang, “A hybrid
tool-path with no pause generation algorithm for 3D print-
ing,” Journal of Physics: Conference Series, vol. 1754, no. 1,
Article ID 012222, 2021.

[15] J. Wang, L. Qin, and W. Xu, “Flexible and high precision
thermal metasurface,” Communications Materials, vol. 2,
no. 1, p. 89, 2021.

[16] S. Mukherjee, S. Mukherjee, D. P. Mukherjee et al., “Com-
puter vision, graphics, and image processing,” in Proceedings
of the ICVGIP 2016 Satellite Workshops, WCVA, DAR, and
MedImage, Springer Cham, Guwahati, India, Lecture Notes in
Computer Science, Guwahati, India, December 2016.

[17] H. Luo, J. Luo, R. Li, and M. Yu, “Optimization algorithm
design of laser marking contour Extraction and graphics
hatching based on image processing technology,” Journal of
Physics: Conference Series, vol. 2173, no. 1, Article ID 012078,
2022.

[18] H. C. Kim, S. G. Lee, and M.-Y. Yang, “A new offset algorithm
for closed 2D lines with Islands,” Transactions of the Korean
Society of Mechanical Engineers A, vol. 30, no. 2, pp. 141–148,
2006.

[19] L. Xia, Y. Hu, W. Chen, and X. Li, “Spot pattern separation in
multi-beam laser pointing using a neural network,”Optics and
Lasers in Engineering, vol. 140, 2021.

[20] X. Yang, “Filling algorithm of polygons and Embedded
polygons,” Journal of Physics: Conference Series, vol. 1827,
no. 1, p. 012144, 2021.

[21] T. Briand and P. Monasse, “+eory and Practice of image
B-spline interpolation,” Image Processing On Line, vol. 8,
pp. 99–141, 2018.

[22] G. Pham, S.-H. Lee, and K.-R. Kwon, “Interpolating spline
curve-based Perceptual Encryption for 3D printing models,”
Applied Sciences, vol. 8, no. 2, p. 242, 2018.

[23] I. A. Blatov, A. I. Zadorin, and E. V. Kitaeva, “Cubic spline
interpolation of functions with high gradients in boundary
layers,” Computational Mathematics and Mathematical
Physics, vol. 57, no. 1, pp. 7–25, 2017.

[24] I. Hanhan and M. D. Sangid, “ModLayer: a matlab GUI
Drawing Segmentation tool for visualizing and Classifying 3D

data,” Integrating Materials and Manufacturing Innovation,
vol. 8, no. 4, pp. 468–475, 2019.

[25] A. Hadir, K. Zine-dine, M. Bakhouya, and A. I. Technologies,
“Applications. Improvements of centroid Localization algo-
rithm for Wireless Sensor Networks,” in Proceedings of the
2020 5th International Conference on Cloud Computing and
Artificial Intelligence: Technologies and Applications (Cloud-
Tech), pp. 1–6, IEEE, Marrakesh, Morocco, November 2020.

[26] Y. Yang, H. T. Loh, J. Y. H. Fuh, and Y. G.Wang, “Equidistant
path generation for improving scanning efficiency in layered
manufacturing,” Rapid Prototyping Journal, vol. 8, no. 1,
pp. 30–37, 2002.

[27] I. A. A. Al-Rawi, “Implementation of an efficient scan-line
polygon fill algorithm,” Computer Engineering and Intelligent
Systems, vol. 5, pp. 22–28, 2014.

[28] K. W. F. Wan, F. C. Xia, and H. Tu, “An interfere coincidence
processing algorithm for two-dimensional curve offset,” in
Proceedings of the Ce 2nd International Conference on In-
formation Science and Engineering, pp. 4362–4365, IEEE,
Hangzhou, China, December 2010.

[29] P. Tirado and O. Valero, “+e average running time of an
algorithm as a midpoint between fuzzy sets,” Mathematical
and Computer Modelling, vol. 49, no. 9-10, pp. 1852–1868,
2009.

[30] A. +arwat, M. Elhoseny, A. E. Hassanien, T. Gabel, and
A. Kumar, “Intelligent Bézier curve-based path planning
model using Chaotic Particle Swarm Optimization algo-
rithm,” Cluster Computing, vol. 22, no. S2, pp. 4745–4766,
2018.

10 Computational Intelligence and Neuroscience

