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In order to enhance the classification accuracy and the generalization performance of the SVM classifier in cable partial discharge
(PD) pattern recognition, a firefly optimized sparrow search algorithm (FoSSA) is proposed to optimize its kernel function
parameters and penalty factors. First, the Circle-Gauss hybrid mapping model is employed in the population initialization stage of
the sparrow search algorithm (SSA) to eliminate the uneven population distribution of random mapping. Sparrows tend to fall
into local extremums during the search process, while the firefly algorithm has a fast optimization speed and strong local search
ability.&us, a firefly disturbance is added in the sparrow search process, and the fitness value is recalculated to update the sparrow
position to enhance the sparrow’s local optimization ability and accuracy. Finally, based on the SSA, a dynamic step-size strategy is
adopted to make the step size dynamically decrease with the number of iterations and improve the accuracy of convergence. Six
benchmark functions are employed to evaluate the optimization performance of the FoSSA quantitatively. Experiment results
show that the recognition accuracy of the PD patterns using the SVM optimized by the FoSSA could reach 97.5%.

1. Introduction

Power cable is the key infrastructure equipment for urban
distribution networks and large-scale clean energy access,
and its reliability is vital to the safe and stable operation of
the power system [1]. &e defects of insulation material,
manufacturing process, and structural defects, coupled with
the aging of insulation material caused by harsh electrical,
thermal, and mechanical stresses environment, will result in
a partial discharge (PD) and even dielectric breakdown,
which lead to insulation failure [2]. Accurate and instant
identification of the fault pattern by mining and analyzing
operation fault records and all types of test data of the power
cable can significantly improve the efficiency for the
maintenance and overhaul of a cable system.

Due to the low frequency of faults during operation,
imperfect records of fault, and abnormal information, the
size of fault samples is usually limited. Benefitting from the

structural risk minimization (SRM) criteria and the kernel
methods, support vector machines (SVMs) [3] have shown
significant superiority to deal with the classification prob-
lems of few samples and nonlinear high-dimensional data.
&us, it has been widely applied in the fault pattern rec-
ognition of large-scale electrical equipment, such as cables,
transformers, and power grids [4–7]. However, the classi-
fication performance of the SVM is highly dependent on the
selection of kernel function parameters and penalty factors,
so how to optimize the parameters is crucial for its further
applications.

For deterministic optimization algorithms, such as se-
quential minimal optimization (SMO) [8] and stochastic
gradient descent (SGD) [9], if the objective function is
discontinuous and nondifferentiable, their convergence
speed is usually slow and they will easily fall into the local
optimum. As a stochastic optimization method, the swarm
intelligence optimization methods introduce a brand new
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path to solve global optimization problems by taking ad-
vantage of randomness. &e particle swarm optimization
(PSO) algorithm [10] and the ant colony optimization
(ACO) algorithm [11] are the most representative of these.

&e PSO algorithm has few parameters and a fast
convergence speed, but it tends to fall into local extremes
due to premature convergence. &is can be improved
partly by introducing inertial weighting factors and taboo
detection mechanisms. However, for complex high-di-
mensional problems, usually, it is impossible to guarantee
convergence to the global optimum. &e ACO algorithm
uses the positive feedback mechanism of ant colony
pheromones to strengthen the learning ability. Its heu-
ristic probabilistic search mode makes it not easy to trap
in the local optimum. However, the parameter settings
are complicated and searching speed is slow; further-
more, the convergence property is pretty poor. In order to
further strike a balance between the search range and the
convergence accuracy in optimization algorithms, a se-
ries of bionic intelligent optimization algorithms, such as
gray wolf optimization algorithm [12] (GWO), artificial
bee colony algorithm [13] (ABC), and the bacterial for-
aging algorithm [14] (BFA), have been proposed in recent
years. Sparrow search algorithm (SSA) [15] is a novel
swarm intelligence optimization algorithm that is in-
spired by foraging and antipredation behaviors of spar-
rows. Testing results on unimodal and multimodal
functions demonstrate its superiority over PSO, ACO,
and GWO in terms of accuracy, convergence speed,
stability, and robustness.

&is paper proposes a FoSSA-optimized SVM for the
recognition of partial discharge patterns in HV cables. First,
the feature vector is constructed based on the partial dis-
charge φ − q − n pattern. Second, in the standard SSA, the
Circle-Gauss hybrid mapping model is introduced to ini-
tialize the population to improve the diversity. In the
sparrow search process, the dynamic step strategy and the
firefly interference strategy are introduced to make the
sparrow escape from the local optimum and find the global
optimal combination of support vector machine parameters.
Finally, an optimized SVM classification framework is
constructed for the partial discharge recognition in the HV
power cables.

2. Problem Description

&e basic principle of a nonlinear SVM is to map the input
space x to a feature space Φ(x) through a nonlinear
transformation which results in a hyperplane model in the
feature space corresponding to the hypersurface model in
the input space. &e hyperplane in the feature space is di-
vided as follows:

f(x) � ωΤΦ(x) + b, (1)

where ω is the weighting vector and b is the threshold.
For a given nonlinear separable data set, considering the

existence of errors ξ, the optimization problem with the
constraint conditions is as follows:

min
1
2
‖ω→‖
Τω + c 

l

i�1
ξi,

st.yi ω→ΤΦ xi(  − b ≥ 1 − ξi ξi > 0( .

(2)

&e optimization of equation (2) can be transformed
into a dual problem by introducing the Lagrange factor, and
the solution of equation (1) can be obtained as follows:

f(x) � 
l

i�1
αiκ x, xi(  + b, (3)

where αi is the Lagrange factor, l is the number of support
vectors, and κ(x, xi) is the kernel function. A radial basis
function (RBF) in equation (4) is generally adopted.

κ x, xi(  � exp −g x − xi

����
����
2

 . (4)

It can be seen from the derivation that the parameter
selection of c and g directly affects the classification per-
formance of SVM. In the traditional SVM model, they are
usually selected according to expert experience or k-fold
cross verification. In the process of cable fault classification,
the input data are diverse and complex. &e parameter
selection based on experience not only takes time but also
brings some randomness to the calculation process. &e K-
fold cross-verification method is dependent on the pa-
rameter range; if this range is inappropriate, it is impossible
to determine the optimal parameters.

3. Firefly Optimized Sparrow Search
Algorithm (FoSSA)

3.1. SSA Principle. SSA is a novel swarm intelligence algo-
rithm that has evolved from the foraging and antipredation
behaviors of sparrows. &e algorithm is simple and efficient,
and it can achieve global convergence. According to the
mathematical model of the algorithm, virtual sparrows are
used for foraging behavior and the position of sparrows can
be expressed as follows:
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⋮
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, (5)

where d is the dimension of the variable in the optimization
question, n is the number of sparrows, and xi,j is the position
of the i-th sparrow of the j-th dimension.

&e fitness value of all sparrows can be calculated as the
following vector:

Fx �

f x1,1, x1,2, ..., x1,d 

f x2,1, x2,2, . . . , x2,d 

⋮

f xn,1, xn,2, . . . , xn,d 
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, (6)
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where f represents the individual fitness value.
A sparrow population can be divided into producer and

scrounger according to the relative role of each sparrow.
Producers are in charge of looking for food for the whole
population; they provide foraging directions for the
scroungers. Producers can obtain a larger foraging area than
the scroungers. According to the foraging rules of sparrow
population, the moving position of the producer is calcu-
lated as follows:

Xt+1
i �

Xt
i · e

− i/α.tmax( ) if Va <Vs,

Xt
i + rd · U if Va ≥Vs,

⎧⎨

⎩ (7)

where Xt
i is the position of the i-th sparrow in j-dimension

space at iteration t, i ∈ [1, 2, . . . , n], t indicates the current
iteration, tmax is the maximum iteration number, α ∈ (0, 1]

is a random number, rd is a random number that obeys a
normal distribution, U represents a unit matrix of 1 × d, and
Va ∈ [0, 1] and Vs ∈ [0.5, 1] are the alarm and safety value
relative to the predators, respectively, and they determine
the sparrow’s moving range.

During the foraging process, the scroungers keep eyes on
the producers. Once the producers find something better,
they fight for it immediately. According to the rules, their
moving position can be updated as follows:

Xt
i �

rd · e
Xt

wst−Xt
i( )/i2 if i> n/2,

Xt+1
op + Xi − Xt+1

op

�����

����� · A+
· U others,

⎧⎪⎨

⎪⎩
(8)

where Xop is the optimal location of the producers, Xt
wst is

the current global worst location, A is the matrix of 1 × d

with elements are all 1 or −1 randomly, and
A+ � AΤ(AAΤ)−1.

In the search process, some sparrows called guards will
be aware of the danger from the predators, according to the
antipredation rule, and the mathematical expression of their
moving positions can be obtained as follows:

Xt+1
i �

Xt
bst + β. Xt

i − Xt
bst

����
���� if fi >fb,

Xt
i + c.

Xt
i − Xt

wst

����
����

fi − fw(  + ε( 
  if fi � fb,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where Xt
bst is the current global optimal value, β is a

random parameter obeying standard normal distribution
that constraints step size, c ∈ [−1, 1] is a random number,
fi is the fitness value of the current sparrow, fb and fw are
the best and worst fitness value, and ε is a regulatory
factor.

3.2. Initialization by Circle-Gauss Hybrid Mapping. &e
distribution of the initial population is important for SSA. A
uniform and fully mapped initial distribution will effectively
improve the convergence speed of the optimization process.
Due to the lack of initialization strategy for uniform pop-
ulation distribution in SSA, simple random distribution
cannot guarantee the breadth of the search range, and it is
easy to produce “super sparrows” in the iterative process that

cause other individuals to gather to them, resulting in a
“premature” phenomenon and reducing the diversity of the
population.

In this study, a Circle-Gauss hybrid mapping model is
introduced to initialize the SSA. By combining the ad-
vantage of the regularity and uniformity of Circle mapping
and the randomness and ergodicity of Gauss mapping, the
chaotic sequence can be transformed into the solution
space of the SSA algorithm to replace the original pop-
ulation by Circle-Gauss hybrid mapping model.&e Circle-
Gauss hybrid mapping model not only avoids the over-
density of the population but also retains the diversity of
the population to a large extent, which is the key factor for
the global optimization of the SSA algorithm. &e math-
ematical expression of the Circle-Gauss hybrid mapping
model is as follows:

Mi+1 �

Mi + a − mod
b

2π
sin 2πMi( , 1  if i � 2k;

1
Mi

−
1
Mi

  if i � 2k + 1;

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

,

(10)

where Mi ∈ R1×d is the mapping position of i-th sparrow,
M � [M1,M2, . . . ,Mn]T ∈ Rn×d is the mapping position of
the whole population, n and d have the same meaning as in
equation (5). a is 0.5, b is 2.2, and k � 0, 1, 2.... mod() and []
represent modulation and rounding operation.

Figure 1 shows the 2D scatter diagram generated by the
Circle-Gauss hybrid mapping model and the other two
mappings in (0, 1). As shown in Figure 1, the Circle-Gauss
hybrid mapping model combines the characteristics of both
uniformity and randomness, improves the ergodicity and
effectiveness of the initialization, and ensures the diversity of
the population.

3.3. Firefly Perturbation. Firefly perturbation is introduced
in SSA here to improve its global convergence ability while
the sparrow falls into the local extremum. In the two-di-
mensional solution space of SVM parameter combination
(c, g), analogous to the idea of the firefly algorithm, each
sparrow is initialized by the attractiveness of ρ0. During the
disturbance process, the degree of attraction decreases with
the increase of the spatial distance. When the sparrow traps
in a local optimum, the perturbation will be introduced as
follows:

(1) &e spatial distance r between the sparrow position
Xt

i and the optimal position Xt
bst is calculated as

follows:

r �

���
dm



bl − bu

Xt
i − Xt

bst

����
����. (11)

In the expression, bl and bu represent the lower and
upper boundary, respectively, and dm is the space
dimension.
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(2) &e attractiveness value ρ of each individual sparrow
is calculated:

ρ � ρ0e
−θr2

. (12)

In the expression, ρ0 is the maximum attractiveness
and θ is the attractiveness coefficient.

(3) &e sparrow position with perturbations Xt′
i can be

obtained as follows:

Xt′
i � Xt

i + ρ Xt
i − Xt

bst  + τ Rd − 0.5( . (13)

Here, τ is the step-size factor and Rd ∈ R1×d is a matrix with
all elements obeying uniform distribution within [0, 1].

3.4. Dynamic Step-Size Updating. In the SSA, the step-size
control parameters are constant, which cannotmake the SSA
achieve a balance between the local optimization and the
global optimization in the iterative process. It will affect the
effect and speed of the optimization.

In the initialization process, a longer step-size factor is
adopted to enhance the algorithm’s global search capability.
In the later process, a smaller step is adopted to enhance the
local optimization capability. &erefore, in this study, a
dynamic updating strategy of step size is adopted to make

the step size decrease nonlinearly with the increase of it-
eration number for the guards in equation (9). &e dynamic
step size can be optimized as follows:

λ(t + 1) � imλ(t)e
t/im λ0

ln t
+ rd 1 − λ0(  , (14)

where λ0 is the initial step-size factor and im is the maximum
iteration number.

4. Cable PD Pattern Recognition
Based on FoSSA-SVM

4.1. Feature Vector Extraction. Phase resolved partial dis-
charge (PRPD) spectrum reveals the relationship between the
number of PD signals with different peak values and the phase
angle. Since the PRPD spectra of different defects achieve
different distribution characteristics, statistical characteristic
parameters based on PRPD can be used to recognized dif-
ferent insulation faults. In this study, 14 statistical charac-
teristic parameters are employed for the feature extraction of
the PD data. &e expressions and the meanings of the
characteristic parameters are shown in Table 1.

According to the calculation of statistical characteristic
parameters, 9 key features are extracted as PD patterns, as
shown in Table 2.

Circle map
1.0

0.8

0.6

Ra
ng

e

0.4

0.2

0.0
0 100 200 300

Iteration
400 500

(a)

Gauss map
1.0

0.8

0.6

Ra
ng

e

0.4

0.2

0.0
0 100 200 300

Iteration
400 500

(b)

Circle-Gauss map
1.0

0.8

0.6

Ra
ng

e

0.4

0.2

0.0
0 100 200 300

Iteration
400 500

(c)

Figure 1: Population initialization scatter plot of three methods. (a) Circle map. (b) Gauss map. (c) Circle-Gauss map.

Table 1: Expressions of characteristic parameters.

Symbol of parameters Meaning
sk+

m φ−qmax pos(+) half-cycle skewness
sk−

m φ−qmax neg(−) half-cycle skewness
skm φ−qmax full-cycle skewnesss
sk+

n φ−qmean pos(+) half-cycle skewness
sk−

n φ−qmean neg(−) half-cycle skewness
skn φ−qmean full-cycle skewness
kt+

m φ−qmax pos(+) half-cycle kurtosis
kt−

m φ−qmax neg(−) half-cycle kurtosis
ktm φ−qmax full-cycle kurtosis
kt+

n φ−qmean pos(+) half-cycle kurtosis
kt−

n φ−qmean neg(−) half-cycle kurtosis
ktn φ−qmean full-cycle kurtosis
rm φ−qmax ratio of the sum of pos(+) and neg(−) half-cycle discharge amplitudes
rn φ−qmean ratio of the sum of pos(+) and neg(−) half-cycle discharge amplitudes
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&e skewness Sk reflects the skewness of the spectrum
shape compared with the normal distribution. &e steepness
Ku is used to describe the protrusion degree of the distribution
of a shape compared with the normal distribution shape. &e
factor Q reflects the difference of the average discharge in the
pos(+) and neg(-) half-cycle of the φ − q spectrum. &e phase
asymmetry degree ∅ reflects the difference of the initial phase
of the discharge within different half-cycles of the φ − q

spectrum. &e cross-correlation coefficient Cc reflects the
degree of shape similarity of the spectra in different half-cycles.

4.2. PD Pattern Recognition Based on the FoSSA-SVMModel.
&e FoSSA-optimized SVM model for cable PD pattern
recognition proposed in this paper is shown in Figure 2. &e
whole scheme can be divided into feature extraction, pa-
rameter optimization, and pattern recognition:

(1) Four kinds of PD defects are manually prepared for
data acquisition on a test platform. &en, the 3D
PRPD spectrum is drawn for key feature extraction
using statistical characteristics.

Table 2: Symbol definition of characteristic quantity.

Characteristic Symbol description
Mean μ
Variance σ2
Skewness Sk

Steepness Ku

Local peak number Pe

Discharge factor Q
Degree of phase asymmetry ∅
Cross-correlation coefficient Cc

Corrected cross-correlation coefficient mc

Start

Set up experiment and collect PD
signal

�ree-dimensional map description and feature extraction

Training sample
set

Test sample set

FoSSA-SVM

Identify the test sample set

Output recognition results

Finish

Parameter optimization of support vector machine
model

Initialization
parameters

Circle-Gauss map
population initialization

Calculate fitness values and
sort

Calculate fitness values and
update sparrow position

Calculate fitness values and
update sparrow position

Use firefly disturbance to update
position

Update discoverer and
entrant locations

Update the
watchman step size

Update alert position

Optimal parameters c, g

Whether to
reach the maximum number

of iterations

N

Y

Figure 2: Flow chart of PD pattern recognition based on FoSSA-SVM.
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(2) &e parameters of FoSSA and SVM are initial-
ized, and the penalty factor and kernel function
parameters of SVM are taken as the optimiza-
tion objective of FoSSA. During the initialization
stage, the Circle-Gauss hybrid mapping model
is employed to initialize the population of
sparrows.

(3) FoSSA algorithm is used for parameter optimi-
zation. &e recognition error rate is set as the
objective function for iterative calculation. &e
optimal parameter combination obtained is im-
ported into the SVMmodel and verified by the test
set. &e detailed steps of the FoSSA to optimize the
combination parameters are as follows:

Step 1: the size of sparrow population, number of it-
erations, producer and scrounger ratios, step-size pa-
rameters, and SVM parameters are initialized.
Step 2: the Circle-Gauss hybrid mapping model is used
to generate the initial population of sparrows.
Step 3: the fitness value is computed and sorted.
Step 4: the positions of producers and scroungers are
updated according to equation (7) and equation (8),
respectively.
Step 5: the step size of the guards is updated according
to equation (14).
Step 6: the position of the guards is updated according
to equation (9).

Table 3: Discharge voltage of different defects.

Defect type Discharge voltage
Outer semiconductive layer creepage 5.6 kV, 6.6 kV
Internal air gap 5.3 kV, 11.3 kV, 18.3 kV
Scratch of insulation surface 5.6 kV, 9.6 kV, 13.6 kV
Metallic filth on insulation surface 6 kV, 20 kV, 34 kV
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Figure 3: PRPD spectra of four type defects. (a) Outer semiconductive layer creepage (5.6 kV). (b) Internal air gap (5.3 kV). (c) Scratch of the
insulation surface (5.6 kV). (d) Metallic filth (6 kV).
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Step 7: update the sparrow positions taking consid-
eration of firefly disturbance according to equation
(13).

Step 8: the fitness value is recalculated and the spar-
row’s position is updated.

Table 4: Test function expressions and their range.

Test function Range
f1(x) � 

n−1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] [−30, 30]
f2(x) � 

n
i�1 ix4

i + random[0, 1) [−1.28, 1.28]

f3(x) � −20 exp(−0.2
���������
1/n 

n
i�1 x2

i


) − exp(1/n 

n
i�1 cos(2πxi)) + 20 + e [−32, 32]
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Figure 4: Convergence results of test functions. (a) Convergence results of f1(x). (b) Convergence results of f2(x). (c) Convergence results
of f3(x).

Table 5: Function expressions and their range.

Test function Range
f4(x) � 

n
i�1 −xi sin(

���
|xi|


) [−500, 500]

f5(x) � 
n
i�1 −xi cos(

���
|xi|


) [−500, 500]

f6(x) � − 
4
i�1 ci exp (− 

6
j�1 aij(xj − pij))

2 [0, 1]
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Figure 5: Continued.
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Step 9: if the stop conditions are met, the algorithm is
exited and the results are output. Otherwise, repeat
Steps 3–8.

5. Experimental Results and Analysis

5.1. PD Sample Set Construction. According to the designed
experiment, the cable PD data are acquired. &e sampling
rate of the oscilloscope used in the experiment is set at 10
MS/s, and the sampling length is 1s each time; that is, the
signal containing 50 power frequency cycles is taken as one
sample. &e number of samples from each type of defect is
50; that is, each PD defect contains 50 samples. &e voltage
levels corresponding to the measurement of the four PD
defects are shown in Table 3. After the collection of sampling
points, the PRPD spectra with four defects are drawn, as
shown in Figure 3. &e training set is 80% of these defect
samples and the test set is 20%.

5.2. Comparison and Analysis of Convergence Performance

5.2.1. Transverse Comparison and Analysis. Compared with
other traditional algorithms such as PSO and GA, the FoSSA
has obvious improvements in the convergence speed and
optimization accuracy. In this study, three thirty-dimen-
sional test functions are used to compare the convergence
speed and optimization ability of FoSSA, GA, PSO, and
GWO algorithms. &e expressions of the test functions are
shown in Table 4.

To make the results more convincing, each test function
is tested 30 times independently.&e population is set to 100
and the maximum number of iterations is 1000. For FoSSA,

the accounts of producers and sparrows aware of danger are
set as 20% and 10% of the whole population and vs is 0.8.
Crossover probability c is 0.9, mutation probability μ is 0.03
in GA, ω � 0.728 and c1 � c2 � 1.49442 in PSO,
r1, r2 � random(0, 1), and a ∈ (0, 2) with a linear decrease

Table 6: Comparison of optimization results.

Function Optimizer Optimal value Worst value Mean

f4(x)

SSA −10139.98 −6154.46 −8145.43
FoSSA −36168.05 −28325.41 −34049.27
LevySSA −30725.72 −26342.56 −28072.35
tSSA −29325.62 −23210.74 −28705.26

RandSSA −23257.82 −19072.23 −21072.43

f5(x)

SSA −15642.13 −13425.62 −14568.18
FoSSA −35653.03 −31971.04 −34895.24
LevySSA −16725.12 −14236.42 −15742.84
tSSA −16732.45 −14584.72 −15643.72

RandSSA −17325.42 −14346.28 −16435.65

f6(x)

SSA −3.2432 −3.0898 −3.1042
FoSSA −3.8947 −3.8628 −3.8725
LevySSA −3.7243 −3.2649 −3.4634
tSSA −3.7254 −3.6234 −3.6927

RandSSA −3.3274 −3.1324 −3.2736

Table 7: Optimal parameter combination of different classification
models.

Classifier c g

SSA-SVM 0.12 14.50
FoSSA-SVM 4.45 0.76
LevySSA-SVM 6.31 14.56
tSSA-SVM 1.77 8.11
RandSSA-SVM 0.14 8.34
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Figure 5: Convergence rate and optimal contour of test functions. (a) Convergence rate and optimal contour off4(x). (b) Convergence rate
and optimal contour of f5(x). (c) Convergence rate and optimal contour of f6(x).
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Figure 6: Classification results of different classification models. (a) FoSSA-SVM. (b) LevySSA-SVM. (c) RandSSA-SVM. (d) tSSA-SVM.
(e) SSA-SVM.
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in GWO. &e optimization results of the four algorithms on
the test function are shown in Figure 4.

&e minimum values of the test functions are all zero.
&e results show that the PSOmethod has a fast convergence
speed, but the convergence accuracy is very low.&e GA and
GWO are prone to local optimality. &e FoSSA achieves the
best convergence speed and convergence accuracy at the
same time.

5.2.2. Longitudinal Comparison and Analysis. SSA, LevySSA
[16], RandSSA [17], and tSSA [18] are studied separately to
compare with our FoSSA to demonstrate the optimization
effect and convergence ability. For SSA, the accounts of
producers and sparrows aware of danger are set as 20% and
10% of the whole population and the safety threshold value
Vs is 0.8. For FoSSA, additional parameters of the step-size
factor τ is 0.2 and the maximum attractiveness ρ0 is 2. &e
parameter β in LevySSA is 1.5. &e parameter r(t) in
RandSSA is set as 0 or 1 randomly.&e parameter p in t-SSA
is 0.5.

In this study, a six-dimensional single-peak function
is employed to test the optimization ability of the
function, and two thirty-dimensional multimodal func-
tions are employed to test the ability to escape from the
local optimum. &e three test functions are shown in
Table 5.

Figure 5 shows the comparative analysis effect of five
optimization algorithms on the minimum optimization
of the test function. It is obvious that the FoSSA achieves
the fastest convergence speed for the single-peak function
of f6(x) and the strongest ability to transfer from local
optimum for the multipeak functions of f4(x) and f5(x).

Each method optimizes 100 times for test functions, and
the mean value, optimal value, and worst value are recorded,
as shown in Table 6.

After comparing the FoSSA with the other four opti-
mizers, it is found that the FoSSA obtains the strongest
performance to get over the local optimum for the multipeak
function and the fastest convergence speed of the single-
peak function. &e optimal value, worst value, and mean
value of the FoSSA are the smallest, which means the best
performance.

5.3. PD Pattern Recognition Results and Analysis. Based on
the FoSSA algorithm, in order to find the optimal kernel
function parameters g and the penalty factor c, the corre-
sponding combination which achieves the minimum clas-
sification error rate after 30 iterations is chosen as the
optimal parameter combination of g and c. &e optimal
parameter combination of different optimization algorithms
is shown in Table 7.

&e SSA-SVM, LevySSA-SVM, tSSA-SVM, RandSSA-
SVM, and FoSSA-SVM classification models described in
this paper are employed to recognize cable defects patterns
with their optimal parameter combination. &e results are
shown in Figure 6 and Table 8.

Compared with the SSA-SVM, FoSSA-SVM improves
the classification accuracy by 7.5%, and with the other

classification models, it improves the accuracy by 2%–5%. In
terms of time, the FoSSA-SVM requires the shortest itera-
tion time, which is 32–150ms shorter than that of other
algorithms. In short, the FoSSA-SVM achieves a faster
optimization speed and the highest recognition accuracy at
the same time.

In order to further verify the prediction accuracy, the
FoSSA-SVM model is compared with PSO-SVM and GA-
SVM models. 80 samples are used for testing, and each
model is employed to predict 30 times; the optimal
prediction result is taken into account. &e final results
are shown in Table 9, in which it is obvious that the
FoSSA-SVM model achieves a predictive accuracy of
97.5%, which is better than that of the other two
algorithms.

&e results of the experiment demonstrate that the
proposed FoSSA-SVM model improves the prediction ac-
curacy significantly in cable PD pattern recognition and it
achieves obvious advantages in potential applications.

6. Conclusion

FoSSA is proposed in this paper to optimize the kernel
function parameters and penalty factors of SVM for PD
pattern recognition of cables. A novel Circle-Gauss hybrid
mapping model used in the initialization stage of SSA im-
proved the diversity of the sparrow population. Dynamic
step-size and firefly disturbance strategy help SSA out of
local optimum and then improve the convergence accuracy.
Compared with SVM optimized by SSA, the classification
accuracy is increased by 7.5% and the time consumption is
shortened by 150ms. &e introduction of firefly perturba-
tion and dynamic step strategy enhances the global con-
vergence ability of SSA.
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&e data used to support the findings of this study are
available from the corresponding author upon request.
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Table 8: Comparison of accuracy and times consumption of
different models.

Classifier Accuracy t (ms)
SSA-SVM 90% 512
FoSSA-SVM 97.5% 362
LevySSA-SVM 95% 494
tSSA-SVM 93.75% 394
RandSSA-SVM 92.5% 402

Table 9: Prediction accuracy of different models.

Classifier FoSSA-SVM PSO-SVM GA-SVM
Error number 2 7 9
Accuracy 97.5% 91.25% 88.75%
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