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Mis�re detection in an internal combustion engine is an important activity. Any undetectedmis�re can lead to loss of fuel and power
in the automobile. As the fuel cost is more, one cannot a�ord to waste money because of the mis�re. Even if one is ready to spend
more money on fuel, the power of the engine comes down; thereby, the vehicle performance falls drastically because of the mis�re in
IC engines. Hence, researchers paid a lot of attention to detect the mis�re in IC engines and rectify it. Drawbacks of conventional
diagnostic techniques include the requirement of high level of human intelligence and professional expertise in the �eld, which made
the researchers look for intelligent and automatic diagnostic tools.  ere are many techniques suggested by researchers to detect the
mis�re in IC engines.  is paper proposes the use of transfer learning technology to detect the mis�re in the IC engine. First, the
vibration signals were collected from the engine head and plots are made which will work as input to the deep learning algorithms.
 e deep learning algorithms have the capability to learn from the plots of vibration signals and classify the state of the mis�re in the
IC engines. In the present work, the pretrained networks such as AlexNet, VGG-16, GoogLeNet, and ResNet-50 are employed to
identify the mis�re state of the engine. In the pretrained networks, the e�ect of hyperparameters such as back size, solver, learning
rate, and train-test split ratio was studied and the best performing network was suggested for mis�re detection.

1. Introduction

In the modern era, transportation has become an integral
part in the day-to-day life of every individual. People have to
commute to places for either personal or o�cial work. In
one’s income, transportation cost takes a reasonable amount
of share. Also, from the industrial point of view, a huge
amount of money is spent on transportation. While this is
inevitable, there are few things that are in our hands by
which one can save some amount of money.  at can be
done by keeping the vehicle in the proper working condition
and thus saving the waste of money due to the faulty

components and their working. Mis�re is one such fault that
takes away a lot of money and engine power.  e causes for
mis�re may be due to any one of the reasons such as cylinder
gasket leak, electrical fault, sensormalfunction, and defective
spark plug. Mis�re can result in loss of power and produce
unwanted vibration that can impart wear and tear in allied
components. Finding the mis�re at an early stage and
correcting it will save a lot of money for the owners of the
vehicle. Mis�re in an engine is not only a matter of money
but also has the other technical impacts on the engine. In a
multicylinder, if one cylinder is mis�ring, then the
remaining cylinders have to work extra in order to take the
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load of the engine. Apart from money and technical impact,
misfire has an adverse effect on the environment also.
Occurrence of misfire in a cylinder of the IC engine infers
that the fuel has gone to the cylinder and the process of
combustion did not initiate. Misfire can sometimes cause
knocking, and the unburnt gases can be emitted as a pol-
lutant into the atmosphere.

*ere are various misfire detection methods that are
proposed by researchers and that can be categorized as
follows [1]:

(1) Temperature monitoring:
One can monitor the catalyst temperature [2] or
exhaust temperature [3] and utilize these data for
misfire detection; however, this method will work
well only when the ignition-induced misfire rate is
above certain percentage.

(2) Wheel speed sensor:
Many researchers have worked on wheel speed
sensor because the wheel speed sensor is already
available in the automobile. Based on the patients in
the crank speed, researchers find misfire in the en-
gine [4].

(3) Oxygen sensor:
It is mounted in the exhaust manifold, and from the
fluctuation of the differentiated oxygen sensor signal,
the misfire information can be found [5].

(4) Pressure monitoring:
*e misfire can be easily monitored effectively using
the pressure inside the engine cylinder. However, the
reliability and cost of the pressure sensor are the
challenges [6–8].

(5) Vibration monitoring:
Vibration signal acquired from the engine head is
used for extracting features that can be used with
machine learning algorithms. Babu Deva Senapati
et al. have used how machine learning techniques
along with features extracted from vibration signals
and classified the misfire state of the IC engine [9].
*ere are researchers who have used the time do-
main in signals directly, and other researchers have
transformed the time domain signals into frequency
domain signals using fast Fourier transform, and
then, they have applied machine learning for clas-
sification of the misfire states. However, vibration
signals are highly dynamic in nature and complex.
*is throws a lot of challenges in the signal pro-
cessing of vibrations.

Researchers have extensively used statistical features,
histogram features, autoregressive moving average features,
and wavelet features for misfire detection. While using these
features, they have used a number of feature selection
techniques including principal component analysis and
decision tree. *e classifiers they have used include decision
tree support vector machine K Star algorithm and many
more. While there are so many research works reported in

the literature using machine learning in misfire detection,
the effectiveness of machine learning depends upon the
effectiveness of the features. *e features engineering is very
challenging especially when the signal is very complex like
vibration signals. In this scenario, researchers look for some
automated technology that can learn to classify without
extracting explicit features from the signals. Deep learning is
one such technology that has the capability to learn from the
images without explicitly extracting features from them.
However, one cannot take the pictures of the misfire inside
the cylinder. It is unsafe and very costly affair.

Taking vibration signals from the engine cylinder head is
a family and established activity.*e vibration signals can be
plotted and that can be used as a signature which can be used
to detect the misfire in IC engines. Deep learning con-
volutional neural networks have a capability to understand
the images and classify them as per the predefined classes.
*is study is our humble attempt to check whether the
signatures of vibration signals plot are good enough to train
deep learning algorithm for misfire detection. In the present
study, pretrained networks such as AlexNet, VGG-16,
GoogLeNet, and ResNet-50 were used. As these networks
have been trained already for some other data set, they are
called pretrained networks. It is easy to train pretrained
network than a brand-new network from scratch. *ese
pretrained networks have some knowledge, and we have to
adapt that knowledge to the problem at hand (transfer the
knowledge to other domain). *is is called transfer learning,
a subset of deep learning.

Later, significant developments in artificial intelligence
(AI) and “Internet of*ings (IoT)” have gained the attention
of the scientific community. AI is considered as a powerful
tool in the field of big data processing and data exploration.
Modern intelligent fault diagnosis techniques are built on
theories and concepts based on AI. Deep learning, an AI
strategy first proposed by Hinton et al., in the field of science
initiated the wave of research into different fields of study.
Deep learning strategy (also termed as deep neural net-
works) consists of a number of neural layers stacked in a
hierarchical structure that extracts information from the
input. *e architecture is called “deep” since the raw data
information is learnt through multiple levels of layer-by-
layer procedure. Starting from the raw data input, Deep
Neural Network (DNN) discovers the structure of com-
plicated data sets and automatically learns the most sig-
nificant features through several layers. Automatic feature
learning capability and improved nonlinear regression
ability have made deep learning models to be widely used in
language processing, object detection, visual inspections,
surveillance, and robotics. Hence, there is a critical need and
great potential to utilize the automatic learning capability of
DNN in the field of mechanical systems fault diagnosis.

In the past few years, DNN was adopted by many re-
searchers to either perform classification or feature selection
in the field of fault diagnosis imitating traditional fault
diagnosis methods. Initially, the features from acquired
signals were extracted using various feature extraction
techniques that are utilized to classify DNN models. Several
authors reported on the above-mentioned strategy that is
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discussed as follows. A deep belief network was proposed
by Li et al. to diagnose the condition of bearings and
gearboxes using statistical features obtained from fre-
quency, time, and time-frequency domains [10]. Chen
et al. adopted a convolutional neural network (CNN) to
detect the condition of the gearbox using frequency and
time features [11]. An air compressor fault diagnosis was
carried out by Verma et al. using a sparse autoencoder
[12]. Shao et al. used an optimized deep belief network to
diagnose bearing faults using 18 time features [13]. In this
stage of fault diagnosis, DNN was used only as a re-
placement for the classifier, and the prime advantage of
DNN feature learning was not equipped completely
(Figure 1(a)).

After 2015, the researcher started using DNN for
feature learning and feature selection along with classi-
fication. *is provided a complete suite for all the ac-
tivities in one go. Here, DNNs have taken images as input
and corresponding classes as output. *e DNNs are learnt
without explicit need for feature extraction, feature se-
lection, etc. *e literatures based on the above-mentioned
stage are discussed as follows. Condition monitoring of
roller bearings was carried out by Guo et al. using deep
convolutional neural networks consisting of two en-
sembles. Feature extraction and fault pattern recognition
were carried out in one CNN while the fault classification
was performed in the other CNN [14]. Zhao et al. per-
formed tool condition monitoring using a convolutional
long short-term memory (C-LSTM) [15]. Owing to the
feature learning capability of DNN, the process of in-
telligent fault diagnosis grows into an effective and more
automated approach (Figure 1(b)).

CNN forms the basic blocks of deep learning that have
been adopted to learn complex features from image data.
CNN is considered as one of the most dominant approaches
in fault diagnosis, object detection, and speech recognition.
However, very limited studies have been carried out in
misfire detection of IC engines. Additionally, the application
of CNN in the misfire detection was not attempted. Some
related works representing the application of CNN in me-
chanical systems are presented in Table 1. In the present
study, the performance of various state-of-the-art pretrained
networks like AlexNet [23], VGG-16 [24], GoogLeNet [25],
and ResNet-50 [26] was evaluated for detecting the misfire
state from images acquired from vibration signals. Experi-
ments were carried out on the pretrained networks by
varying the train-test split ratio and various hyper-
parameters such as batch size, learning rate, and solver. *e
derived results are compared and tabulated to identify the
suitable network for misfire detection in IC engine. *e
technical contributions in the present study are provided as
follows.

(i) *e present study considers four misfire conditions
(c1 mis, c2 mis, c3 mis, and c4 mis) and one normal
condition in a four-cylinder petrol engine.

(ii) Vibration signals were obtained from the head of
the engine, and the plots of vibration signals were
utilized as input for pretrained networks.

(iii) Four pretrained networks namely, AlexNet, VGG-
16, GoogLeNet, and ResNet-50, were considered in
the study to perform classification of misfire state.

(iv) Various hyperparameters such as batch size, solver,
learning rate, and train-test split ratio were altered,
and the performance of the pretrained networks was
assessed.

(v) *e best performing network for misfire detection is
identified based on the results obtained.

*e rest of the paper is organized as follows. In Section 2,
the experimental description includes experimental setup,
data acquisition, and procedure. Section 3 presents the
overview of the convolution neural network (CNN). Section
4 describes the process of transfer learning for misfire de-
tection using vibration signal. Result and discussion are
provided in Section 5, and the conclusion is presented at the
end of the manuscript.

2. Experimental Studies

*e present section discusses about the experimental setup
fabricated for the study, data acquisition method, and
experimental procedure followed in the study. *e ex-
perimental setup comprises of a spark-assisted gasoline-
powered IC engine. Initially, the accelerometer was placed
(using adhesive technique) on the engine to acquire the
vibration signals for good condition. *e same procedure is
repeated further to acquire the vibration signals of misfire
in the IC engine by cutting off the spark in the cylinder
one by one. *e complete methodology involved in the
process of misfire detection in IC Engine is depicted in
Figure 2.

2.1. Experimental Setup. *e present study utilizes a spark-
ignited IC engine that has been equipped with provisions to
create the misfire manually in a specific cylinder. *e
complete setup is connected to a data acquisition system and
an accelerometer to acquire the vibration signals for every
engine condition. An analog to digital converter helps in
converting the acquired analog vibration signals into digital
values that are stored in a storage device. Figure 3 shows the
experimental setup used in the present study. A 10hp-rated
four-cylinder four-stroke spark-ignited (SI) engine is
adopted in the present study. *e misfire in the cylinders is
performed by cutting off the power supply to the spark plugs
present in each cylinder. A nut and screwmechanism is used
to fix the accelerator in the engine at the specific position.
*e engine accelerator is firmly attached at the desired
position via a screw and nut mechanism. *e speed of the
engine is kept constant in no-load condition. *e specifi-
cations of the engine are provided in Table 2.

2.2. Data Acquisition. Data acquisition (DAQ) is the process
of creating digital values from the world around such that it
can be visualized, analyzed, and stored in a computer. In the
present study, misfire detection in an IC engine is carried out
by acquiring vibration signals with the help of an
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accelerometer (piezo-electric sensor with sensitivity of
10.26mV/G). Accelerometers are capable of detecting both
large and small vibrations.  e working principle of the
accelerometer states that output voltage magnitude is directly
proportional to vibration signal intensity.  e accelerometer
is �xed on the centre of the engine block using adhesive
techniques such that the vibration data are recorded for all
conditions. A dactron FFT analyzer is used to convert the
analog vibration signal into digital form.  e acquired vi-
bration data are further processed, and vibration plots are
stored in a computer where a transfer learning approach is
applied to identify the best performing pretrained network for
mis�re detection.

2.3. Experimental Procedure. Initially, electrical cranking
was applied to start the engine at no-load condition. A bu�er
time of 15 minutes is provided to the engine for achieving
the optimal operating condition.  e FFT analyzer con-
nected to the engine is turned on after engine stabilization.
 e engine speed was maintained at 1500 rpm, and the
vibration data for normal operating condition are measured
at 24 kHZ sampling frequency and 8192 sampling length.
Five test conditions, namely, mis�re in either of the cylinder
1, 2, 3, or 4 and normal condition, are considered in the
study. Data acquisition for all the test conditions was per-
formed at 1500 rpm.

 e sample vibration signals for mis�re and normal
operating conditions are presented in Figure 4.  e two
waveforms acquired display signi�cant di�erences aligning
with the fact that unique patterns are displayed by vibration
signals for each condition.  e parameters considered
during signal collection are described as follows:

(i) Sampling length: 8192 steps
(ii) Sampling frequency: 24 kHz
(iii) Number of instances for each condition: 100
(iv) Speed: 1500 rpm

3. Description of Convolutional Neural
Networks (CNN)

CNN formulates a connection between the image and image
features by creating a set of biases and weights.  e ar-
chitecture is designed in a hierarchical manner that works on
an automatic feature learning algorithm.  e classi�cation
ability of CNN is based on the features that were learnt
during the process of convolutions.  e CNN architecture is

composed of sequential stacking of several layers, namely,
convolution layer, pooling layer, and fully connected layer.
 e general architecture of CNN architecture is provided in
Figure 5.

 e basic function of CNN is involved around the above-
mentioned layer groups as given below:

(a)  e input for a convolution layer is provided with
the help of input layer which stores the image pixel
values.

(b)  e convolution layer is stacked next to the input
layer that is �lled with neurons of di�erent weights
and biases.  e output of every neuron is calculated
based on the product of volume and weights
provided by the input. Recti�ed linear units (ReLU)
is adopted widely as the activation function such
that the nonlinearity among the problem is
sustained.

(c)  e immediate layer present next to convolution
layer is the pooling layer which acts as the down-
sampling layer. Features of high dimension are
sampled down to achieve the spatial dimensionality
such that the number of parameters can be reduced.

(d)  e fully connected layers complete the CNN ar-
chitecture by providing the classi�cation results for a
particular problem.  e classi�cation is carried out
by assigning a particular range of values to every
class such that improved performance is achieved.
Matrix form of image features is converted into
vector form through the fully connected layers.

CNN is able to transform the original input layer by layer
to generate class scores for classi�cation and regression
purposes using convolutional and down sampling tech-
niques. It is therefore important to remember that it will not
be enough to simply determine the overall design of CNN
architecture.  ese models can take some time to build and
re�ne. Now, let us analyze the individual layers in detail,
describing their hyperparameters and connectivity.

3.1. Convolution Layer.  e learning process of CNN is
instrumented by means of the convolution layer.  e col-
lection of several learnable kernels or �lters is dependent on
the parameters assigned to the layers. e kernels function in
such a way that they spread across the wide range of input by
consuming lower spatial dimensionality. In the process of
convolution, two-dimensional activation maps are created

Data Acquisition
Feature extraction

and
Feature selection

Classification
of

Faults

Deep Learning
based methods

(a)

Data Acquisition
Feature extraction

and
Feature selection

Classification
of

Faults

Deep Learning
based methods

(b)

Figure 1: Stages of deep learning application in mechanical systems.
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for every image fed into the �lter throughout the spatial
dimensionality.  e scalar product of weights and volume
are calculated for every image data point that passes through
the kernel present in the convolution layer.  e values
created through each �lter (generally termed as activations)
triggers the network to learn signi�cant features that are
available in the spatial domain. e midpoint of the kernel is
placed over the input vector through which the weighted
sum of itself and any neighboring pixels are calculated and
replaced. Also, the model complexity can be reduced by
convolution layers by means of hyperparameter optimiza-
tion. Depth (no. of �lters), stride (movement of �lter in one

direction), and zero-padding (adding zeros around the
border of input image) are the three hyperparameters that
can optimize the performance of convolution layers.

3.2. Pooling Layer. Pooling layers are equipped in deep
learning architectures for the purpose of dimensionality
reduction of particular data. Adoption of pooling layers can
reduce the computational complexity of the model by
shrinking the number of parameters involved. Pooling layer
acts upon every value of input activationmap and utilizes the
“MAX” function for dimensionality scaling. Pooling layers

Good
Vibration Signals from Accelerometer

Pre-Processing
(Removal of Noise & Amplification)

Analog to Digital Converter

Vibration Plot

Training data
(Alrxnet, VGG16, Googlenet, Resnet)

Training

Trained model

Fault Diagnosis

Testing Data

Fault 2

Fault 1

Figure 2: Overall methodology of fault diagnosis of mis�re detection in IC engine.

Table 1: Related works on deep learning-based methods for mechanical systems.

Reference Deep learning technique Mechanical system
[16] CNN with wavelet transform Motor bearing
[17] Hierarchical CNN Roller bearing
[18] CNN
[12] Sparse autoencoder and deep belief network
[19] Recurrent neural network
[20] Stacked autoencoder Gear box
[21] Generative adversarial network
[22] CNN Centrifugal pump

Computational Intelligence and Neuroscience 5



have a destructive nature and are classi�ed into two forms
depending upon their function, namely, average and max
pooling. Also, max pooling is the most widely used pooling
layers due to the e�cient performance on all data types.  e
size of the �lter and stride length are commonly �xed at 2× 2
to allow the pooling layer to expand throughout the input
spatial dimensionality.

3.3. Fully Connected Layer.  e ultimate layer of any CNN
network is composed of fully connected layers.  e output
from the �nal convolution or pooling layer acts as the input
to the fully connected layer.  e output of convolution or
pooling layers will be of matrix form whichmust be ¬attened
before being fed into the fully connected layer. Sigmoid or
softmax are adopted as the activation functions fully con-
nected to perform the classi�cation task for the given input
data.

4. Misfire Detection in IC Engines Using
Pretrained Models

 e present section discusses about the various pretrained
networks considered in the study to detect mis�re in IC
engines. Initially, the vibration signals are acquired for
various conditions of IC engines and stored in the form of
vibration plots (images).  e acquired images are further
resized and preprocessed to a size of 227× 227 or 224× 224
according to the input requirement of the adopted

pretrained model. Further, various renowned pretrained
network models like VGG-16, AlexNet, ResNet-50, and
GoogLeNet were utilized to perform image classi�cation and
identify the condition of the IC engine. Transfer learning is
adopted in this study in which the initial weights of the
networks trained on ImageNet are restored. Also, to apply
the networks for custom data set, the �nal output layers are
replaced with new layers corresponding to the number of
classes de�ned by the user. Figure 6 represents the overall
work¬ow of mis�re detection in IC engines using pretrained
networks. A brief description of the pretrained models
considered in the study is provided as follows.

4.1. Data Set Formation and Preprocessing. In the present
study, a data set of images containing the conditions of the
IC engine was created from the vibration signals acquired.
Five test conditions, namely, c1 mis, c2 mis, c3 mis, c4 mis,
and normal condition, were considered. A total of 500
images (100 images for every class) were created using the
acquired vibration signals.  e acquired images were resized
to a 224× 224 or 227× 227 such that the input size of the
image is acceptable for the pretrained network adopted.
Figure 7 represents the vibration plots of various conditions
of IC engine conditions collected for the study.

4.2. AlexNet Pretrained Network. Alex Krizhevesky intro-
duced one of the best performing networks in the annual
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) that has been trained over 1.2 million images
consisting of 1000 image classes.  e network paved way for
various advancements in the �eld of computer vision using
deep learning. AlexNet is a simple network composed of 8
layers and 61 million learnable parameters.  e input of the
network accepts images of size 227× 227.  e input image is
fed into the �rst convolution layer, where 96 di�erent �lters
with a size of 11× 11 try to convolve, normalize, and max
pool the image to a size of 55× 55.  e output of the �rst

Table 2: IC engine speci�cation.

Parameter Speci�cation
Manufacturer Hindustan Motors
Fuel Petrol (gasoline)
No. of cylinders 4
Alternator speed 1500 rpm
Power 7.35 kW
Bore diameter and stroke length 88.90mm× 73.02mm
Cooling system Water cooled

Accelerometer

Spark plug cut-off

ADC unit

Figure 3: IC engine experimental setup.
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Figure 4: Sample vibration plots for (a) normal operation condition of IC engine and (b) mis�re in cylinder 1.
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convolution layer is fed into the second convolution layers
consisting of 256 receptive �lters followed by a max pooling
layer of 3× 3 size. e output image size is further reduced to
a size of 27× 27.  e image is further reduced to a size of
13×13 while passing through the consecutive convolution
layers (third, fourth, and �fth). Recti�ed linear units (ReLU)
are adopted as the activation function in each layer to resolve
nonlinear problems. Post the �nal convolution layer, two
fully connected layers with 4096 learnable parameters is
stacked to convert the image matrices into vector form.  e
architecture is completed with an output layer comprising of
softmax activation function to perform classi�cation for the
adopted problem. To avoid the problem of model over�tting,
a dropout layer of ratio 0.5 is added before the �nal fully
connected layer.

4.3. VGG-16 Pretrained Network.  e VGG-16 architecture
was introduced by Karen Simonyan and Andrew Zisserman
in the annual ILSVRC 2014 that was eventually claimed as the

best performing network.  e VGG-16 also termed as Visual
Geometry Group-16 (also known as Oxford Net) was de-
veloped by a group of researchers from Oxford University.
 e network was constructed with 13 convolution layers, 5
max pooling layers, 3 fully connected layers, and a classi�-
cation layer.  e convolution layers are stacked in a unique
pattern that is focused towards image classi�cation problems.
 e working of the VGG-16 architecture can be understood
by considering two learnable parameters “B” and “d” along
with a �lter of size 3× 3. A mathematical operation is carried
out when the image passes through the convolution layer
which makes the �lter to move about the image of “z” pixels
such that the convolution operation is performed to produce
an output image “y”. e following equation, y � f(By + d),
represents the working of the convolution operation. Simple
image features like edges are learnt by initial layers of VGG-
16 architecture while complex image features are learnt by
deep layers.  e convolution process followed by max
pooling helps in breaking down and resizing images such that
highly contributing features are extracted along with limited
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Figure 6: Overall work¬ow of mis�re detection in IC engines using pretrained networks.
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memory consumption. *e stride value and size of the filter
can influence the image output from a convolution layer.
Every convolution layer is provided with ReLU activation
function, and a dropout of 0.5 is attached before the fully
connected layer.

4.4. GoogLeNet Pretrained Network. In the annual ILSVRC
2014, Szegedy et al. proposed a network architecture named
GoogLeNet that was aimed at solving image classification
and object detection. *e architecture was composed of 22
layers that had its application extended into the fields of
facial recognition, robotics, adversarial training, etc. *e
network is arranged with nine inception modules connected
to four convolution, four max pooling, three average
pooling, five fully connected, and three softmax layers. ReLU
is the activation function adopted in fully connected layers
that are supported by a dropout layer of 0.5 ratio. Inception
modules present in GoogLeNet architecture enable the
network to solve more complex computer vision problems.
Identification of complex features through variations in
convolution layer filter size is the prime advantage of
adopting inception modules. Such process can help in re-
ducing the computational time and dimensional complexity.
Even though the architecture of GoogLeNet looks robust
with 22 layers, the volume of trainable parameters is less in
comparison with AlexNet.

4.5. ResNet Pretrained Network. Residual network (ResNet)
was the most successful and efficient network in the annual
ILSVRC 2015 developed by He et al.*emajor advantages of
using ResNet architecture is high convergence rate with
accurate classification. *e common objects in context
(COCO) data set were used to train the ResNet architecture.
Residual units were stacked together to form the ResNet
architecture. ResNet architectures come in many forms
depending on the number of residual units present and the
variations in number of layers. ResNet architecture’s success
was influenced by the application of identity shortcuts in
which the value of output identity mimics the input values
identity. Like other networks, ResNet is also composed of
convolution pooling and fully connected layers. *e ResNet
architecture resembles VGGnetwork architecture. However,
the former is eight times deeper than the latter resulting in a
greater number of learnable features. Overall, the ResNet-50
architecture considered in the study consists of 49 convo-
lution layers and 1 fully connected layer. Table 3 represents
the various characteristic features of the adopted pretrained
networks.

5. Results and Discussion

In this section, the performance of the pretrained models
(AlexNet, VGG-16, GoogLeNet, and ResNet-50) for misfire
detection in IC Engine is evaluated. A total of four exper-
iments were carried out based on variations in train-test split
ratio, optimizer (or) solver, initial learning rate, and batch
size. *e overall experimentation was carried out in the
desktop version of Matlab 2019b using the deep learning

toolbox and transfer learning package. *e detailed exper-
imental study is explained as follows.

5.1. Effect of Train-Test Split Ratio. Train-test split ratio is the
process of dividing the collected data set into two subsets,
namely, training data and testing data. Training data are
utilized to train our pretrained network while the testing
data are used to evaluate the trained model for the custom
data set. In the present study, five train-test split ratios were
experimented for all the pre-trained networks by fixing
default values for certain hyperparameters such that uniform
evaluation is carried out. *e hyperparameters like solver
(SGDM), batch size (10), and learning rate (0.0001) were
kept to default values to identify the best train-test split ratio.
Table 4 describes the performance of various pretrained
networks for varying train-test split ratio.

From Table 4, one can infer that the performance of each
pretrained network varies with a change in the train-test split
ratio.*e observations made from Table 4 state that AlexNet
achieved a maximum accuracy of 90.70% for the train-test
split ratios of 0.7. However, GoogLeNet and ResNet-50
achieve higher classification accuracy of 96.00% and 93.60%
for train-test ratio of 0.75 and 0.8, respectively. Additionally,
one can observe that VGG-16 pretrained network achieved
97.30% classification accuracy for 0.85 train-test split ratio.
Computing the overall accuracy of the pretrained networks,
it can be observed that VGG-16 produces the best classifi-
cation accuracy of 95.76%.

5.2. Effect of Optimizers. Optimizers or solvers are the al-
gorithms that are adopted during the training process such
that the loss value is minimized to achieve an improved
performance of the model. In the present study, an ex-
perimentation was carried out by varying the solvers,
namely, stochastic gradient descent (SGDM), adaptive
moment estimation (Adam), and root mean square prop-
agation (RMSprop) to evaluate the performance of the
model. *e best performing train-test split ratio for each
model was fixed based on the experimental results depicted
in Section 5.1, i.e., 0.7 for AlexNet, 0.75 for GoogLeNet, 0.8
for ResNet-50, and 0.85 for VGG-16. Table 5 depicts the
performance of pretrained models for different solvers and
load conditions.

Changing the optimizers can have an impact on the
performance of the pretrained networks which is evident
from Table 5. *e observations state that the adoption of
SGDM solver produced better classification accuracy for
three pretrained networks, namely, AlexNet with 90.70%,
VGG-16 with 97.30%, and GoogLeNet with 96.00%. How-
ever, ResNet-50 achieved amaximum accuracy of 97.20% for
Adam optimizer. GoogLeNet displayed poor performance
for RMSprop optimizer.

5.3. Effect of Learning Rate. Learning rate is one critical
parameter that monitors the change in the training model
with respect to the estimated error during every instance of
model weight upgradation. Selecting the best learning rate
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can be challenging since small learning rate will elevate
computational time while higher learning rates will result in
improper training. In the present study, three values of
learning weight like 0.001, 0.0001, and 0.0003 were used to
evaluate the performance of the model. *e other hyper-
parameters like train test ratio and optimizer are fixed for the
pretrained networks that are depicted as follows: AlexNet
(0.7 train-test split, SGDM solver), VGG-16 (0.85 train-test
split, SGDM solver), GoogLeNet (0.8 train-test split, SGDM
solver), and ResNet 50 (0.75 train-test split, Adam solver).
Table 6 depicts the performance of pretrained models for
different learning rates.

From Table 6, one can infer that each pretrained net-
work’s performance varies with a change in learning rate.
*e observations state that AlexNet and VGG-16 achieved a
maximum accuracy of 94.00% and 98.70% for 0.0003
learning rate, respectively. However, GoogLeNet and
ResNet-50 achieved higher classification accuracy of 98.00%
and 97.60% for learning rates 0.001 and 0.0001, respectively.
Higher classification accuracy states that the model has
learnt the features well and that the error value is minimal.

5.4. Effect of Batch Size. Batch size represents the number of
samples that are propagated into a training network prior to
model weight upgradation. *e performance of the pre-
trained models in the present study is evaluated for different
batch sizes (8, 10, 16, 24, and 32) with the selected best
performing hyperparameters based on the experimental
results mentioned in previous sections. *e other hyper-
parameters like train test ratio, optimizer, and learning rate
are fixed for the pretrained networks that are depicted as
follows: AlexNet (0.7 train-test split, SGDM solver, and
0.0003 learning rate), VGG-16 (0.85 train-test split, SGDM
solver, and 0.0003 learning rate), GoogLeNet (0.8 train-test
split, SGDM solver, and 0.001 learning rate), and ResNet 50
(0.75 train-test split, Adam solver, and 0.0001 learning rate).
Table 7 depicts the performance of pretrained models for
different batch sizes and load conditions.

From Table 7, one can observe that there are minimal
changes incurred by changing the batch size. However, all the

pretrained networks resulted better classification accuracy
when the batch size selected was 10. Among all the networks,
VGG-16 produced an overall accuracy of 98.08%. Increase in
batch size will reduce the training time, thereby leading to
accelerated training progress. However, the generalization
capability of the network reduces with higher batch sizes.
*us, in the present study, batch size 10 is suggested as the
optimal value for training the pretrained networks.

5.5. Comparative Study of Pretrained Models. In the present
section, the performance evaluation of pretrained networks
is discussed. Based on the experimental results obtained

Table 6: Performance of pretrained models for various learning
rates.

Pre-trained model

Classification
accuracy for different
learning rate (%) Overall accuracy (%)

0.0001 0.0003 0.001
AlexNet 90.70 94.00 74.70 86.67
VGG-16 97.30 98.70 81.30 92.81
GoogLeNet 96.00 96.00 98.00 94.42
ResNet-50 97.60 96.00 94.40 95.44
Every pretrained network performs differently for the learning rates
considered. *e values highlighted in bold signify the best classification
accuracies displayed by the pretrained networks for the variations in
learning rate. *e best performing network with highest overall classifi-
cation accuracy is presented in the last column.

Table 5: Performance of pretrained models for various solvers.

Pretrained
model

Classification accuracy for
different solvers (%) Overall accuracy

(%)SGDM Adam RMSprop
AlexNet 90.70 88.70 80.00 87.29
VGG-16 97.30 90.70 92.00 93.94
GoogLeNet 96.00 95.00 69.00 87.71
ResNet-50 93.60 97.20 96.80 93.76
*e values highlighted in bold signify the best classification accuracy de-
livered by the pretrained model for the experimented train-test split ratio.
While considering the last column, the best pretrained network with highest
classification accuracy value is highlighted in bold.

Table 4: Performance of pretrained models for various train-test split ratios

Pretrained model Classification accuracy for train-test split ratio (%) Overall accuracy (%)0.60 0.70 0.75 0.80 0.85
AlexNet 89.00 90.70 88.80 90.00 90.30 89.76
VGG-16 95.00 92.70 96.80 97.00 97.30 95.76
GoogLeNet 92.00 88.70 85.60 96.00 92.00 90.86
ResNet-50 84.00 86.70 93.60 89.00 84.00 87.46
*e values highlighted in bold signify the best classification accuracy delivered by the pretrained model for the experimented train-test split ratio. While
considering the last column, the best pretrained network with highest classification accuracy value is highlighted in bold.

Table 3: Characteristic features of adopted pretrained networks.

Model/network Number of layers Learnable parameters (in millions) Input size of the image
AlexNet 8 60.0 227× 227
VGG16 16 137.0 224× 224
GoogLeNet 22 7.1 224× 224
ResNet 50 50 25.7 224× 224
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from previous sections, the optimal hyperparameters that
enhance the performance of the pretrained models were
identi�ed.  e list of best hyperparameters that produced an
improved performance of pretrained models is provided in
Table 8.  e comparative study on the performance of
pretrained networks with best hyperparameters is depicted
in Table 9.

From Table 9, one can infer that VGG-16 established the
utmost performance for the optimal hyperparameters se-
lected. Based on the overall classi�cation accuracy, superior
classi�cation, and lower computational time consumed, one
can suggest VGG-16 for mis�re detection in IC engines.  e

training progress and confusion matrix of best performing
networks are presented in Figures 8 and 9, respectively.

From the training progresses represented in Figure 8,
one can observe that the training process reaches saturation
post 18 epochs.  e sign of saturation represents that the
VGG-16 network is trained e�ectively for the given IC
engine mis�re data set.  e overall loss during the training
progress for all the networks has drastically reduced rep-
resenting the selection of optimal hyperparameters. Addi-
tionally, Figure 9 depicts the confusion matrix of VGG-16
architecture for mis�re detection in IC engine. Confusion
matrix in general depicts the performance level of a
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Figure 8: Training progress of VGG-16 network for mis�re detection in IC engine.

Table 9: Performance comparison of pretrained models with optimal hyperparameters.

Pretrained networks AlexNet VGG-16 GoogLeNet ResNet-50
Classi�cation accuracy (%) 94.00 98.70 98.10 97.60
 e values in bold signify the highest classi�cation accuracy obtained by the pretrained network among all other networks considered post optimal
hyperparameter tuning.

Table 8: Optimal hyperparameters for pretrained model.

Pretrained model Hyperparameters
Split ratio Optimizer Learning rate Batch size

AlexNet 0.70 SGDM 0.0003 10
VGG-16 0.85 SGDM 0.0003 10
GoogLeNet 0.80 SGDM 0.001 10
ResNet-50 0.75 Adam 0.0001 10

Table 7: Performance of pretrained models for various batch sizes.

Pre-trained model Classi�cation accuracy for di�erent batch sizes (%) Overall accuracy (%)8 10 16 24 32
AlexNet 89.30 94.00 79.30 89.30 90.70 88.52
VGG-16 98.40 98.70 97.70 97.30 98.30 98.08
GoogLeNet 98.00 98.10 91.00 95.00 94.00 95.20
ResNet-50 96.00 97.60 83.20 93.60 97.40 93.56
Bolded values represent the best classi�cation accuracy obtained by the individual pretrained networks for experimentation with di�erent batch sizes.  e
pretrained network with best overall classi�cation accuracy is represented in the �nal column.
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particular model or algorithm.  e evaluation of the con-
fusion matrix is carried out in regards to the instances
classi�ed in the major diagonal.  e elements present in the
major diagonal represent the correctly classi�ed instances
while the other nondiagonal elements depict the mis-
classi�ed instances.  e observations made from the con-
fusion matrices state that VGG-16 architecture produced
accurate classi�cation accuracy for all conditions without
any misclassi�cations except c4 mis (one instance is mis-
classi�ed as c3 mis). Misclassi�cation can occur due to
various reasons like noise interruption, poor signal quality,
and similarity between acquired signals. Lack of misclassi-
�cation instances infers that the network has learnt all the
features e�ectively and that the loss during training is
negligible.  us, from the observation made, VGG-16 is
suggested as the best performing network for mis�re de-
tection in the IC engine. Additionally, VGG16 architecture
consumed a computational training time of 2400 seconds in
a low hardware system comprising of 8GB RAM with no
graphical card. However, the usage of sophisticated hard-
ware systems (128GB RAM with graphical card) can

drastically reduce the computational time while elevating the
capital cost of the system (up to 4 times).

5.6. Comparative Study with Other State-of-the-Art Works.
A comparative study is carried out in this section to display
the superiority of the proposed technique with other state-
of-the-art works presented in the literature. Table 10 displays
the performance comparison of various techniques with the
proposed technique. From Table 10, one can infer that the
proposed method outclassed every other state-of-the-art
works by displaying a classi�cation accuracy of 98.7%.
Classi�er k nearest neighbor (KNN) exhibited the second-
best classi�cation accuracy with 95.8% next to that support
vector machines (SVM), logistic model tree (LMT), and
K-star algorithm with the value of 91.20, 89.40, and 82.60%,
respectively.

6. Conclusion

In the present paper, four pretrained deep learning models,
namely, AlexNet, VGG-16, GoogLeNet, and ResNet-50,
were applied to diagnose the mis�re in IC engine form
vibration plots acquired. Four fault conditions (c1 mis, c2
mis, c3 mis, and c4 mis) and one normal condition were
considered in the study.  e pretrained networks are
composed of CNN layers that perform an integrated ap-
proach of feature extraction, selection, and classi�cation,
thereby formulating an end-to-end machine learning ap-
proach.  e pretrained networks are capable of processing
the vibration plots and provide accurate classi�cation re-
sults.  e experimental results enumerate that the adopted
networks are capable of learning complex features and
produce convincing classi�cation results for mis�re detec-
tion in the IC engine. Various hyperparameters like train-
test split ratio, optimizer, learning rate, and batch size were
altered, and the optimal hyperparameters were identi�ed for
all the networks. VGG-16 was the best performing networks
with 98.70% accuracy over AlexNet (94.00%), GoogLeNet
(98.10%), and ResNet-50 (97.60%). Based on the compar-
ative studies, VGG-16 is selected as the best performing
network among the other networks considered in the study
and is suggested for real-time application of mis�re detec-
tion in IC engines. As a future scope, the position of the
accelerometer and its e�ectiveness in classifying the cylinder
correctly can be studied. Also, the proposed fault diagnosis
system can be installed in real-time operation to perform on-
board diagnosis.
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Table 10: Performance comparison with other state-of-the-art
methods.

State-of-the-art
methods Classi�cation accuracy (%) References

KNN 95.80 [27]
Decision tree 80.60 [28]
LMT 89.40 [28]
SVM 91.20 [29]
K-star 82.60 [30]
Proposed method 98.70
 e proposed technique achieved higher classi�cation accuracy (high-
lighted in bold) than other state of the art techniques presented in literature.
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[7] J. M. Luján, V. Bermúdez, C. Guardiola, and A. Abbad, “A
methodology for combustion detection in diesel engines
through in-cylinder pressure derivative signal,” Mechanical
Systems and Signal Processing, vol. 24, no. 7, pp. 2261–2275,
2010.

[8] B. Bahri, A. A. Aziz, M. Shahbakhti, andM. F. Muhamad Said,
“Understanding and detecting misfire in an HCCI engine
fuelled with ethanol,” Applied Energy, vol. 108, pp. 24–33,
2013.

[9] A. Sharma, V. Sugumaran, and S. Babu Devasenapati, “Misfire
detection in an IC engine using vibration signal and decision
tree algorithms,” Measurement, vol. 50, no. 1, pp. 370–380,
2014.

[10] C. Li, R. V. Sánchez, G. Zurita, M. Cerrada, and D. Cabrera,
“Fault diagnosis for rotating machinery using vibration
measurement deep statistical feature learning,” Sensors,
vol. 16, no. 6, pp. 895–6, 2016.

[11] Z. Chen, C. Li, and R. V. Sánchez, “Multi-layer neural network
with deep belief network for gearbox fault diagnosis,”
J. Vibroengineering, vol. 17, no. 5, pp. 2379–2392, 2015.

[12] N. K. Verma, V. K. Gupta, M. Sharma, and R. K. Sevakula,
“Intelligent condition based monitoring of rotating machines
using sparse auto-encoders,” 2013 IEEE Conference on
Prognostics and Health Management (PHM), vol. 1, 2013.

[13] H. Shao, H. Jiang, X. Zhang, and M. Niu, “Rolling bearing
fault diagnosis using an optimization deep belief network,”
Measurement Science and Technology, vol. 26, no. 11, Article
ID 115002, 2015.

[14] X. Guo, L. Chen, and C. Shen, “Hierarchical adaptive deep
convolution neural network and its application to bearing
fault diagnosis,” Measurement, vol. 93, pp. 490–502, 2016.

[15] R. Zhao, R. Yan, J. Wang, and K. Mao, “Learning to monitor
machine health with convolutional Bi-directional LSTM
networks,” Sensors, vol. 17, no. 2, pp. 273–291, 2017.

[16] X. He and Q. He, “Energy-fluctuated multiscale feature
learning with deep ConvNet for intelligent spindle bearing
fault diagnosis,” IEEE Transactions on Instrumentation and
Measurement, vol. 66, no. 8, pp. 1926–1935, 2017.

[17] D. Lee, V. Siu, R. Cruz, and C. Yetman, “Convolutional
Neural Net and Bearing Fault Analysis,” Int’l Conf. Data Min,
vol. 12, pp. 194–200, 2016.

[18] D. T. Kang and H. J. Kang, “Rolling element bearing fault
diagnosis using convolutional neural network and vibration
image,” Cognitive Systems Research, vol. 53, pp. 42–50, 2019.

[19] H. Liu, J. Zhou, Y. Zheng, W. Jiang, and Y. Zhang, “Fault
diagnosis of rolling bearings with recurrent neural network-
based autoencoders,” ISA Transactions, vol. 77, pp. 167–178,
2018.

[20] G. Liu, H. Bao, and B. Han, “A stacked autoencoder-based
deep neural network for achieving gearbox fault diagnosis,”
Mathematical Problems in Engineering, vol. 2018, Article ID
5105709, 1–10 pages, 2018.

[21] Z. Wang, J. Wang, and Y. Wang, “An intelligent diagnosis
scheme based on generative adversarial learning deep neural
networks and its application to planetary gearbox fault pattern
recognition,” Neurocomputing, vol. 310, pp. 213–222, 2018.

[22] L. Wen, X. Li, L. Gao, and Y. Zhang, “A new convolutional
neural network-based data-driven fault diagnosis method,”
IEEE Transactions on Industrial Electronics, vol. 65, no. 7,
pp. 5990–5998, 2018.

[23] B. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Cnn,”
Commun,” ACM, vol. 60, no. 6, pp. 84–90, 2012.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 3rd Int. Conf.
Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14,
2015.

[25] P. Asha, L. Natrayan, B. T. Geetha et al., “IoT enabled en-
vironmental toxicology for air pollution monitoring using AI
techniques,” Environmental Research, vol. 205, Article ID
112574, 2022.

[26] K. He and J. Sun, “Deep Residual Learning for Image Rec-
ognition,” 2016, https://arxiv.org/abs/1512.03385.

[27] M. Sumedh and S. B. Devasenapati, “Misfire detection in I.C
engines using machine learning approach” Pak,” Journal of
Biotechnology, vol. 15, pp. 102–106, 2018.

[28] A. Sugumaran and D. S. Babu, “Misfire detection in an IC
engine using vibration signal and decision tree algorithms,”
Measurement, vol. 50, pp. 370–380, 2014.

[29] D. S. Babu, G. A. Noble, and C. R. Morganti, “Misfire de-
tection in a spark ignition engine using support vector,”
Machines”International Journal of Computer Applications,
vol. 5, August 2010.

[30] A. Bahri, V. Sugumaran, and S. B. Devasenapati, “Misfire
detection in IC engines using K star algorithm,” International
Journal of Research in Mechanical Engineering, 2013.

Computational Intelligence and Neuroscience 13

https://arxiv.org/abs/1512.03385

