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�e early diagnosis of stress symptoms is essential for preventing various mental disorder such as depression. Electroen-
cephalography (EEG) signals are frequently employed in stress detection research and are both inexpensive and noninvasive
modality. �is paper proposes a stress classi�cation system by utilizing an EEG signal. EEG signals from thirty-�ve volunteers
were analysed which were acquired using four EEG sensors using a commercially available 4-electrodeMuse EEG headband. Four
movie clips were chosen as stress elicitation material. Two clips were selected to induce stress as it contains emotionally inductive
scenes. �e other two clips were chosen that do not induce stress as it has many comedy scenes. �e recorded signals were then
used to build the stress classi�cation model. We compared the Multilayer Perceptron (MLP) and Long Short-Term Memory
(LSTM) for classifying stress and nonstress group. �e maximum classi�cation accuracy of 93.17% was achieved using two-layer
LSTM architecture.

1. Introduction

Stress can be triggered by the change in the body’s emotional
response to various situations such as depression, anxiety,
anger, grief, guilt, low self-esteem, etc. It can be classi�ed as
positive stress (eustress) or negative stress (distress) [1].
Stress is the root cause for a variety of mental health
problems like depression and dementia and has an adverse
e�ect on a person’s performance [2]. Issues related to stress
are rising exponentially worldwide; therefore, the detection
and quanti�cation of stress are of utmost importance [3].

�ere are di�erent ways to measure stress levels. Tra-
ditionally, the stress level of an individual has been calcu-
lated only through self-reports [4]. Some standard
questionnaires are available, and the answers �lled by
subjects to those questionnaires are mapped to some pre-
de�ned scales. Each question is assigned some score based
on the answer given, and the total score is calculated from all
the questions answered [5]. Di�erent standard scales are

used in clinical settings through which stress can be
quanti�ed [6–8] but they are subjective indicators. More-
over, in developing countries, people do not prefer to go to
psychologists and mental health clinics, due to the social
stigmas associated with it. �us, there is a need for a system
that can automatically classify the subjects into stress and
nonstress. It may also help to develop preventive measures,
for instance, to make the people aware about their mental
health [9]. Stress measurement based on questionnaires,
facial expressions (blink rate of the eye, voice etc.), social
media posts, etc. are either subjective or challenging to
validate [10–14].

It has also been observed that stress has a signi�cant
e�ect on speci�c physiological parameters like skin con-
ductance, blood pressure, and brain signals [15, 16]. Various
physiological signals acquired from di�erent sources such as
electroencephalography (EEG), Functional Magnetic Reso-
nance Imaging (FMRI), and Positron Emission Tomography
(PET) were used for the detection of stress [17–19]. Among
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these, EEG has gained acceptance in monitoring stress levels
as it is noninvasive and nonexpensive and gives very high
temporal resolution [20]. ,ere are certain attributes
(physical, physiological, etc.) that can help in classifying
stress from nonstress individuals. But there is no direct
metric for stress measurement.

Various attempts are made where the classification was
performed using different features. But different features sets
yield different results. Recently deep learning has been
widely used in the domain of stress recognition through EEG
[21, 22] as it can directly take input from raw data and
identify the most prominent features automatically without
any feature engineering and preprocessing [23, 24]. But
according to [25], although deep neural networks are ca-
pable of learning features, in order to yield high performance
it is better to do feature extraction beforehand. Moreover,
deep learning model is data hungry. ,us, to build a reliable
stress detection system with sophisticated feature extraction
tool is highly prized. At the same time it is not straight-
forward to know the optimal features which can classify the
stress level with high accuracy. Moreover, the type and
number of features to be extracted highly depend on the type
of headband. EEG has advantages of low cost, high temporal
resolution, and ease of use. It is one of the most used
techniques for stress and other mental states’ assessment
[26, 27].

To this end, we propose a stress classification system that
utilizes the direct FFT signals provided by Muse headband
for stress identification. We used inexpensive Muse head-
band for the acquisition of EEG signal as numerous studies
have reported its applicability in identifying the brain ac-
tivities of an individual [28, 29]. We build a simple stress
classification system which uses minimum number of
sensors. In literature, various systems are proposed which
uses different set of features for stress classification but in
our present work we used direct signal provided by the
device which reduces the computational cost for calculating
the features manually. In one of the previous works, authors
used LSTM recurrent neural network for emotion classifi-
cation with 4-channel EEG device [30]. To the best of our
knowledge, we are the first to explore Long Short-Term
Memory (LSTM) for stress classification using just 4 EEG
electrodes. ,us, the major contributions of this paper are
summarized as follows:

(i) Creating a data set of recorded EEG signals which
were acquired while participants watched the video
clip (as a stress elicitation material) to infer the
stressed state of the subject.

(ii) Building a model and comparing Multilayer Per-
ceptron (MLP) and LSTM based architecture for the
classification of stress data.

,e content in this paper is structured as follows: ,e
literature review corresponding to this topic is given in
Related Work section. ,e requisite background for un-
derstanding the paper is elaborated in Background section,
the proposed methodology and experimental setup are
described in Proposed Methodology section. Various

metrics used to gauge the performance of the proposed
model are mentioned in Performance Measures section.
Results and Discussion section details out the results of the
experiment conducted for the classification of stress. Con-
clusion and Future Work section contains some conclusive
remarks and a few pointers on future work.

2. Related Work

Notably, a psychologist can provide a huge amount of
knowledge in identifying if a person is stressed. But in the
absence of a psychologist, identifying features that are
representative of stress from the collected EEG data becomes
a challenge. Most of the work on stress detection has relied
on various hand-crafted features [31, 32], so there is a
definite need to explore the area more.,us, keeping in view
the health problems that are associated with increasing stress
levels, it becomes extremely important to identify that a
person is stressed at an earlier stage.

Recently deep learning has been widely used in the
domain of stress recognition through EEG [21, 22]. A de-
tailed review of deep learning techniques for classification
tasks using EEG signals is reported in [33]. ,e advantage of
using deep learning is that it can directly take input from raw
data and identify the most prominent features automatically
without any feature engineering and preprocessing [23, 24].
As a result, the difficulty of selecting the best appropriate
preprocessing algorithm and feature selection methods has
been overcome, making this more applicable. But according
to [25], although deep neural networks are capable of
learning features, it is better to do feature extraction be-
forehand. ,is is because EEG signals contain noise and
interference. Furthermore we need a lot of data for training
purpose in building a deep learning model.

Stress can be detected in natural setting or controlled lab
setting. ,e authors of [21] attempted to record the pattern
of workers’ brain waves at a construction site (natural
setting) when they were under stress.,eir aim was the early
detection and mitigation of stress for the construction
workers. To obtain the ground truth, the saliva of the
workers was collected which contains a hormone called
cortisol responsible to regulate stress.,e authors conducted
this study on 9 construction workers using 14 electrodes’
mobile EEG device. ,e intrinsic signal artifacts were re-
moved by using Independent Component Analysis (ICA)
and the extrinsic signals artifacts were removed by using low
pass filter, high pass filter, and notch filter with appropriate
frequencies. ,e authors have proposed a system which
utilizes 14 electrodes and built a model using convolutional
deep learning network and a fully connected deep neural
network architecture for binary stress classification of stress.
,e accuracy reported by using fully connected DNN was
86.62%.,eir DNN architecture consisted of 2 hidden layers
with 83 neurons in the first layer and 23 neurons in the
second hidden layer, while their approach reported an av-
erage increase in the stress classification accuracy as com-
pared to their previous approach of using SVM by [34]. A
major limitation of this study was smaller number of
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participants so it becomes hard to generalize the results. Also
collecting saliva might not be favourable to the subjects
under study. ,ey have also not specified if a medical
practitioner was in their team to label the stress level based
on collected saliva sample. Also, testing the internal validity
in their experiments is a challenge because there is no
mention of recording multiple sessions with same subject.

Under controlled lab setting, various stress elicitation
material was used such as evoked emotional stress through
multitasking [35], Paced Auditory Serial Addition Test
(PASAT) [36], and Stroop Color Word Test (SCWT) [37].

A stressed emotion dataset called Multimodal Dataset of
Stressed Emotion (MuSE) has been presented in [22] to
study the correlation between occurrence of stress and the
presence of affect. ,ey have considered stress as one of the
confounding factors in influencing the psychological state of
a person. ,ey have collected data from 28 students during
the final exams and after the exams period to create datasets
for stress and nonstress, respectively. ,e experiment is
comprised of a series of the following events: emotional
stimuli presentation, video watching, and emotionally
evocative monologues. Perceived Stress Scale (PSS) was used
to get self-reported scores of stress and Self-Assessment
Manikin (Sam) was used for emotional assessment. ,ey
used a paired t-test to infer that the average PSS scores
obtained from the two groups were significantly different. A
considerably large recording of 45minutes was used. ,e
novelty in their experiment design was the use of different
emotional elicitation materials across all sessions, even
though the emotional dimension being captured was the
same. ,ey have used various unimodal deep neural net-
works and also a multimodal ensemble for the modelling
valence and activation. ,ey have segmented the video
dataset with a window size of 1 second and an overlap of 0.5
seconds. Out of the diverse set of features that have been
used in this work, the visual and physiological modalities
perform the best for stress elicitation while being influenced
emotionally. ,e reported accuracy from their work is 70%.
Other datasets available for stress detection include the one
in [38]; it is a real world biometric dataset collected from
nurses working in a hospital at the time of COVID-19. ,e
physiological variables measured in this dataset include
EDA, heart rate, GSR, and accelerometer reading.WESAD is
another publicly available dataset collected in a controlled
lab setup. It contains physiological and motion related data
of 15 participants [39]. Various machine learning algorithms
have been used to differentiate stressed, neutral, and amused
emotion. Authors in [40] have introduced another large
scale dataset of stress using physiological signals. Reference
[41] is a multidomain social media dataset for identifying
stressed state of an individual.

,e use of stress elicitation material in the proposed
work is inspired by work by authors in [31], who use EEG,
arousal, and valence dimensions to measure stress during
video watching. Videos contain audio as well as visual
stimuli that have more effect on the brain as compared to
using a single stimulus.

,e application of LSTM network for classification of
brain signals has been reported by [42–44].LSTM with

attention mechanism has been used by [45] to develop cross-
subject generalized solution for classifying limb (hand)
movements using EEG. ,ey have used frequency as well as
time based features as input to LSTM network and obtained
an accuracy of 83.2%. In [46] the authors reported the
highest accuracy of 92.8% in context of driver stress clas-
sification tasks (at different weather conditions and other
ambient factors) using single physiological signal, i.e.,
electrocardiogram (ECG) signal. ,ey used LSTM and CNN
to detect driver’s stress.

3. Background

,is section presents the relevant background details re-
quired for understanding of the proposed stress classifica-
tion model.

3.1. MLP. Multilayer Perceptrons are the type of feedfor-
ward neural networks that are widely used because they
operate fast, can efficiently work on small training data sets,
and are easy to implement. A typical MLP architecture
consists of an input layer, series of hidden layers, and an
output layer. ,e input layer consists of neurons equivalent
to the number of features in the input data. ,e hidden
layer processes the information selectively from input layer.
It accomplishes this by associating weights and biases with
the input features. ,ere is no fixed rule to obtain the
number of neurons in the hidden layer. It is a hyper-
parameter and has to be tuned with multiple trials. ,e
output layer consists of the number of neurons depending
on the classification task. For instance, if the problem
consists of a binary classification task, then the output layer
will contain only one neuron.

3.2. LSTM. LSTMs were introduced by Hochreiter and
Schmidhuber in 1997. ,e special feature about this kind of
neural networks that differentiates them from Recurrent
Neural Networks (RNNs) is that they can learn long term
dependencies. It is one of the best algorithms to work with
sequence data along with an additional feature of having a
memory element [47]. ,is memory element enables LSTM
to remember the previous sequence of steps. It overcomes
the difficulty of vanishing gradient, faced with RNN by a
slight modification in the structure. Figure 1 shows the
elementary architecture of a cell in LSTM [48]. ,e enabler
of this cell is the parallel line shown in the upper part of
Figure 1 (Ct).

LSTM can let selected information to flow through it
with the help of this cell state. ,is feature comes with the
help of three logic gates. Each of these gates gets input from
the sigmoid activation function. ,e forget gate (ft) is the
first gate that selects the information that needs to be dis-
carded from the cell. ,e equation for the forget gate is

ft � s Wtf ht−1, xt  + bsf . (1)

,e input gate is the second gate; its functionality can be
explained in two parts (it) and (ct): ,e first part is
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explained through (2) which involves a sigmoid function that
computes any update in the previous values.,e second part
involves the tanh function as shown in (3) which creates a
vector of new updated values.

it � s Wti ht−1, xt  + bsi( , (2)

ct � th Wtc ht−1, xt  + bsc( . (3)

,en the state of the old cell Ct−1 is replaced by the new
cell state by removing the information generated by the
forget gate in (1). Ct in (4) denotes the updated cell state.

Ct � ft ∗Ct−1 + it ∗ Ct. (4)

Finally, the output is surpassed from a sigmoid layer and
then a tanh layer to classify.

ot � s Wto ht−1, xt  + bso( ,

ht � ot ∗ th Ct( .
(5)

After the above steps, the cell state is updated. Lastly,
output of current state is computed by taking the values of
updated state of the cell state and also values from the
sigmoid layer that determines the components of the cell
state that need to be included in the output. ,e termi-
nologies used in the above equations are described as below:

(1) ,e activation function s is sigmoid that suppresses
the values in the interval (0, 1).

(2) ,e activation function th is hyperbolic tangent that
suppresses the values in the interval (−1, 1).

(3) ,e weight matrices are represented by Wtf, Wti,
Wtc, Wto.

(4) ,e input values are contained in a vector called xt.
(5) ,e bias vectors are denoted by bsf, bsi, bsc, bso.

It may be noted that the last sigmoid layer will classify
the data into stressed or nonstressed group.

4. Proposed Methodology

4.1. Device Description. We used Interaxon Muse brain
sensing headband with 4-channel EEG devices to acquire
brain signals. It is a low cost device as compared to the
medical EEG devices used by doctors. ,is headband is easy
to adjust, does not consist of any wires, and does not need
medical supervision. ,e Muse headband consists of four
dry electrode channels (TP9, AF7, AF8, and TP10) working
at global standard of 10–20 coordinates. AF7 and AF8 are
the two forehead electrodes while TP9 and TP10 are two ear
electrodes (see Figure 2). ,e device outputs the brain waves
into various frequency ranges, namely, (i) delta, (ii) theta,
(iii) alpha, (iv) beta, and (v) gamma.

Delta (0–4Hz) is the default brain wave signal. ,ese
signals are observed when we sleep, in clam state, and when a
person is in comma. ,ese are affected in case of serious
brain injury. ,eta (4–8Hz) is a transitory brain wave be-
tween the slower delta and the comparatively faster inter-
mediate brain waves, i.e., beta and alpha. It is said to be
associated with creativity. Beta/,eta ratio is useful to de-
termine the activeness of a person. ,eta reflects activity
from the limbic and hippocampal regions. Alpha (8–12Hz)
is associated with meditation. Alpha has been associated
with wakeful mindfulness. ,ey are strongest over occipital
(back of the head cortex) and frontal cortex. Beta waves
(>12Hz, 13–21Hz), on ther hand, are associated with high
analytical thinking. A lot of beta activity happens in the
frontal lobe region (AF7 and AF8). Frontal lobe is the area
connected with executive function which is in turn re-
sponsible for figuring things out. Beta is highly associated
with high performance and anxiety. Gamma waves are very
fast oscillations (>30Hz, 31–80Hz) and are associated with
higher level information processing like integrating
thoughts.

4.2. Data Collection. For this experiment, signals from 40
subjects were acquired and out of these the data from 5
subjects were corrupted because the connection between
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Figure 1: ,e basic architecture of an LSTM cell containing a forget gate, an input gate, and an output gate.
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electrodes and scalp was loose.,is was identified during the
manual inspection as the signal has NAN value for these
subjects. Finally, 35 subjects were selected (18 males and 17
females) from the age group between 23 and 55 years. All the
subjects were healthy and did not have any kind of neu-
rological disorder. For each subject EEG signals were
recorded.,e subjects of our experiment were instructed not
to consume any caffeine product at least 12 hours prior to
the start of the experimental process because caffeine is
found to interfere with brain activity [49].

,e data used in the analysis has been collected from
participants wearing the Muse headband as shown in Fig-
ure 2. ,e headband was adjusted to the comfort of the
participant. Subsequently, they were shown four movie clips
from the list shown in Table 1. ,e use of stress elicitation
material in proposed work is inspired by work by authors in
[31], who use EEG, arousal, and valence dimensions to
measure stress during video watching. ,ese authors have
used the circumplex model of affect. ,is model maps stress
to high arousal and low valence. Stress causes high arousal
because the mind is activated, but the activation is not
pleasant, so the valence is low. Table 1 contains the infor-
mation about the clips shown. ,ese clips were specifically
chosen from Indian film clips because the subjects were able
to relate better to these clips. A buffer of 2 minutes was
incorporated after each clip. ,is was done to relax the
participant from the effect of the stressed and nonstressed
videos. ,e venue for the experiment was an isolated room.
,e participants were asked to switch off all electronic
devices present with them so that there is minimum in-
terference from these devices on the EEG signals [50].

While watching the video clip, the participant’s EEG
signals were recorded. After watching each movie clip, the
participant filled an assessment form to infer the level of
stress induced by each of these clips. ,e subjects were asked

to complete the State Anxiety questionnaire [8]. State
Anxiety is a multiscale questionnaire which we have used to
test if the subject has experienced stress after watching the
video clip. It has total 20 items. Each of these items is used to
infer the feeling of the subject at the current moment. ,e
responses of these questions were taken on a 4-point Likert
Scale (1- Not at all stressed, 2-Some what stressed, 3-
Moderately stressed, 4- Very much stressed). ,e answers
from all the respondents were evaluated according to the
standard scoring key of State Anxiety scale.,e scores of this
questionnaire were generally higher after watching the stress
inducing videos and lower after watching the nonstressed
videos. ,is data was used as a ground truth to label each
instance of EEG recording from the respective person. ,e
procedure followed was in accordance with Helsinki dec-
laration. Also, the participants were informed about the
procedure in advance and a consent form was signed by
them before starting the experiment.

It may not be necessary that every participant will get
stressed after watching the stress video enlisted by the au-
thors; it depends on an individual’s stress coping ability [51].

,e score of State Anxiety form varies from 20 to 80. We
calculated the average scores of participants from the
questionnaire, similar to work performed in [32]. ,e
participants whose score was greater than the average score
were categorized in the stress group and the others in
nonstressed group. ,us, the authors explicitly used average
score in the questionnaire as the threshold. Higher scores
correlate with greater anxiety.

,e records in the data set were labelled as stressed if the
score obtained in the State Anxiety scale is greater than or
equal to 50 and nonstressed if the score is less than 50.
Authors in [52] showed that stress lies in the top left
quadrant of the circumplex model of affect. ,is quadrant is
characterized by high arousal and low valence. ,e meaning
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Figure 2: (a) Muse headband for measuring the activity of the brain via four electrodes: AF7, AF9, TP9, and TP10. (b) 10–20 system of
electrode placement (source: [32]).
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of arousal and valence was explained to the subjects and they
were asked to rate the video in terms of arousal and valence.
,e range of values of arousal and valence for identifying the
stressed and nonstressed states were similar to those used by
[31]. ,e data of the participants which did not represent
stressed and nonstressed behaviours (in terms of arousal,
valence, and State Anxiety) corresponding to the stressed
and nonstressed stimuli was discarded. ,is was done to
ensure that the ground truth of the stress classification
model is correct.,ere were 2 such subjects so their data was
discarded.

4.3. Experimental Setup. ,e LSTM architectures were
built-in Keras 2.0.9 using TensorFlow backend in Python
3.6. Using LSTM with Keras requires the input in three
dimensions (samples, time steps, and features). Our long
univariate time series data sequence was reshaped into
smaller segments and then fed into Keras. ,ese seg-
ments/subsequences can be overlapping or nonoverlap-
ping. In our work, we split our long time series data into
overlapping subsequences to increase the number of
training samples. ,is also helps to capture the depen-
dence between individual subsamples of data. A smaller
window size leads to the model getting trained faster and
makes the model more robust and able to capture more
information from individual slices of a single sequence of
data. As EEG is a fast and dynamic signal which changes
within a short duration of time, it is important to process
the data in small chunks [53]. ,us we took a small
window size.

We used the LSTM network for the binary classification of
stress due to its associated advantages. LSTM is used for se-
quence classification problems and has ability to extract sig-
nificant temporal information from physiological signals
[30, 54]. Moreover, the LSTM network makes predictions
based on the individual time steps of the input sequence data.

,e dataset was divided into similar length sequences,
which is an important step while the training process as
input sequences should be of the same length. ,us, the
length of the EEG recording for each of the trials was
80 seconds. Each second of the recording has 50 data points.
So a total of 4000 data points exist for each of the trials. A
window size of 20 was selected with an overlap of 50% to
break down this sequence into smaller segments.

A minibatch gradient descent algorithm was trained on
these smaller segments with a batch size of 32. Minibatch
gradient descent is the most common implementation of
gradient descent. ,e frequency of update process after each
iteration is faster as compared to batch gradient descent.,is
helps to avoid local minima by giving a robust convergence.

Minibatch sizes, commonly called “batch sizes” for brevity,
are often tuned to an aspect of the computational archi-
tecture on which the implementation is being executed, such
as a power of two that fits the memory requirements of the
GPU or CPU hardware like 32, 64, 128, 256, and so on. ,e
smaller values of this minibatch size give a learning process
that converges quickly at the cost of noise in the training
process. Large values give a learning process that converges
slowly with accurate estimates of the error gradient. A good
default value for batch size is 32 [55]. Reference [56] has also
concluded that information on emotions contained in the
EEG signal may be better described in shorter time
segments.

We started with one LSTM layer (LSTM 1) containing 8
neurons and gradually included a second LSTM layer (LSTM
2) containing 16 neurons and subsequently another LSTM
layer (LSTM 3) containing 24 neurons. ,ere was not much
difference in the accuracy obtained between the LSTM 2 and
LSTM 3 model. ,us we concluded LSTM 2 model was
sufficient to classify EEG signals as the accuracy does not
improve further, which is in accordance with the observation
made in [25].

Our model also contained a fully connected dense
layer for classification [57]. Because deep learning net-
works tend to overfit, we also use a dropout layer to avoid
the model learning noise [58, 59]. We used sigmoid ac-
tivation function and one neuron in the output layer since
we were doing binary classification (stressed and non-
stressed). Since our training data contains 20 features/
signals (4 signals (corresponding to signal from 4 regions:
TP9, AF7, AF8, and TP10) for each of the 5 brain fre-
quency bands) as shown in Figure 3, 20 neurons were used
in the input layer.

Also, the state-of-the-art Adam optimizer was used to
regulate the change in step size during the learning process.
To evaluate how well the trained model has performed,
binary cross entropy loss function was used because we had
only one neuron in the output layer. ,e values of pa-
rameters obtained after hyperparameter tuning have been
listed in Table 2. ,e values of these hyperparameters have
been chosen based on cross validation. ,e parameters
which performed best have been chosen.

5. Performance Measures

,e following performance measures have been identified to
evaluate the performance of the stress classification
framework. ,e count of true positive cases is indicated by
TP. ,e count of true negative cases is represented by TN.
False positive cases are shown with FP and false negatives
with FN.

Table 1: Summary of the excerpts from films shown for stress classification.

Category Name of the film Duration (sec) Clip content

Nonstressed 3 Idiots 80 ,e kick of a stillborn child creates amusement among the surrounding people
Taare Zameen Par 124 A music teacher delights his students with a motivational song

Stressed Rang de Basanti 117 ,e nation mourns during the cremation of a warrior
Kal Ho Na Ho 96 Friends converse with another friend who is about to die
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5.1. Confusion Matrix. ,is metric gives information about
actual labels for the data and the labels that are obtained
through the classificationmodel used.,e diagonal elements
of this matrix give the correctly classified records and the off-
diagonal elements give the misclassified records.

5.2. Accuracy. ,e accuracy of the classifier is calculated
based on

Accuracy �
TP + TN

TP + TN + FP + FN
× 100. (6)

Regularize the data to form [batchsize, timestep,
inputsize] 

timestep1
X1
X2
..

Xn
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X1
X2
..

Xn

.....

Initialize the proposed model Parameters

X1 X2 Xt.....
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Figure 3: Proposed model for stress classification using EEG signals.
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,is metric gives an estimate of the fitness of the clas-
sifier used.

5.3. Specificity. ,is metric maps the actual nonstressed
instances to those identified by the classifier. ,is in turn is
calculated using

Specificity �
TN

TN + FP
. (7)

5.4. Precision. ,e motive of calculating precision is to find
the total number of correct positive predictions from the
total number of positive predictions using

Precision �
TP

TP + FP
. (8)

5.5. Recall. ,is metric corresponds to the number of
samples correctly classified as being stressed. Mathemati-
cally, it is calculated using

Recall �
TP

TP + FN
. (9)

5.6. F1-Score. ,is particular metric uses the harmonic
mean of precision and sensitivity and is preferable when the
dataset is unbalanced as the minority class also carries
significant amount of information. It is calculated using

F1 − score � 2∗
Precision∗Recall
Precision + Recall

. (10)

5.7. Mann-Whitney Test. Reference [60] is a statistical test
used to check the significance of two analytical results by
comparing their median values. If p-value is less than 0.001,
it can be deduced that the classifiers used are highly sig-
nificant. Otherwise the result is insignificant.

,e proposed model is depicted in Figure 3. After col-
lecting data, it is preprocessed into a form compatible with

LSTM architecture. ,e detailed working of LSTM has al-
ready been described in Section 3.

6. Results and Discussion

,e classification of the mental stress of the participants into
stressed and nonstressed categories was achieved with the
help of MLP and LSTM. State-of-the-art parameter values
(Table 2) were used for the implementation of MLP and
LSTM. ,ese algorithms were run on the same system to
reduce experimental error.

,e performance of the stress classification model is
measured with the help of the following training-testing
data partitions: 50–50, 60–40, 70–30, and 10-fold cross
validation. ,e data was split into various proportions for
testing and training in all these techniques. 10-fold cross
validation was used to introduce randomisation into the
training and test set choice. For each of the validation
techniques used, Table 3 shows a confusion matrix con-
sisting of two rows and two columns corresponding to each
of the classifiers used.

,e diagonal elements of this matrix indicate the in-
stances in the dataset that were correctly classified. ,e
nondiagonal elements constitute the wrongly classified in-
stances. ,e high values of the diagonal elements indicate
that our model is correctly able to differentiate stressed and
nonstressed classes. As depicted in Table 4, LSTM 2 gives the
average accuracy of 91.96% and maximum accuracy of
93.17% using 10-fold cross validation, which is much higher
than the accuracy obtained through MLP. ,is result
demonstrates the capabilities of LSTM to remember long
term information from the sequential data.

Figure 4 denote the train and test accuracy and loss
obtained by deploying LSTM 2 model on our data. Also,
Table 5 illustrates the other performance metrics used
which show the robustness of the proposed approach.
Higher recall and precision of our model showed that it
gives less false negatives and false positive, respectively.
High specificity denotes the true negative rate; i.e., a
person classified as nonstressed was actually nonstressed.
Table 6 shows the values of Mann-Whitney test computed
on the results given by LSTM 2. ,ese denote that the
improved accuracy results obtained with LSTM are highly
significant.

Table 7 shows the comparison of our proposed system
with other state-of-the-art approaches available in the
literature. It is evident from the comparison that our
approach, which utilizes LSTM based model, is better in
terms of classification accuracy. ,e work proposed by
authors in [63] got a better stress classification accuracy
using deep learning methods, but the number of subjects
in their study was less than one-third of the number of
subjects used in our proposed study. Also they have used
saliva to elicit ground truth which is not easy because the
saliva sample has to be sent to laboratory to extract the
level of cortisol (stress hormone) present. It is the level of
cortisol which further gives information about the
stressed state of the person. ,e highest accuracy achieved

Table 2: Parameters for LSTM models chosen after hyper-
parameter tuning.

Parameter Values
Number of input features 20
Number of output features 1
Number of LSTM layers 2
Number of hidden units in LSTM
layers

8 and 16 (only for two-layer
LSTM)

Activation function Sigmoid
Optimizer Adam
Loss function Binary cross entropy
Batch size 32
Window size 20
Epochs 100
Dropout value 0.2
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by the proposed method is 87.22%, 89.28%, 90.33%, and
93.17% for 50–50, 60–40, 70–30, and 10-fold cross vali-
dation, respectively. Also, the average accuracy achieved is
85.79%, 82.75%, 83.14%, and 86.55% for the

abovementioned training-testing data partitions, respec-
tively, as shown in Table 4. ,ese results indicate that
LSTM is a good candidate for classifying stress-related
brain signals data.

Table 3: Confusion matrix for stress classification: Diagonal elements contain the TP and TN values, respectively, and the nondiagonal
elements contain the FP and FN, respectively.

Validation techniques Classifier
MLP LSTM 1 LSTM 2

50–50 4300 990 4700 600 5200 360
1700 2010 2108 1300 790 2650

60–40 3319 500 3794 402 4252 334
1481 1900 1006 1998 438 2176

70–30 2993 692 3150 490 3198 300
607 1108 450 1310 222 1680

10-fold cross validation 964 191 1045 140 1155 68
236 409 155 460 55 522

Table 4: Classification accuracy comparison for stress classification. ,e table shows maximum (Max), average (avg), and minimum (Min)
stress classification accuracy obtained with different methods.

Method Validation method Accuracy
Max Avg Min

MLP 50–50 70.11 69.33 68.56
LSTM 1 50–50 83.33 81.73 80.14
LSTM 2 50–50 87.22 85.79 84.36
MLP 60–40 73.48 71.80 70.12
LSTM 1 60–40 84.69 82.75 80.76
LSTM 2 60–40 89.28 88.22 87.16
MLP 70–30 75.71 73.77 71.84
LSTM 1 70–30 85.82 83.14 81.87
LSTM 2 70–30 90.33 91.11 91.89
MLP 10-fold cross validation 76.27 72.01 70.59
LSTM 1 10-fold cross validation 87.61 86.55 85.97
LSTM 2 10-fold cross validation 93.17 91.96 90.76
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Figure 4: Model loss and accuracy with LSTM 2 architecture using 10-fold cross validation. (a) Train data. (b) Test data.
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7. Conclusion and Future Work

,is study proposes a system for stress classification using
EEG signal acquired from Interaxon Muse 4-channel
commercially available headband device. ,e EEG signal
was recorded from stress and nonstress subjects. ,e stress
elicitation had been done using Hindi movie clips.
Headband device provides the FFT signal which was di-
rectly used for classification task. We compared the MLP
and LSTM model for classifying stress from nonstress. 35

participants took part in this experiment and watched film
clips targeted to elicit the emotion of stress. ,e classifi-
cation of stress was achieved with a maximum accuracy of
93.17% using LSTM 2 (with 2 LSTM layers). ,ese results
demonstrated an improved performance over state-of-the-
art methods utilizing EEG signals. Moreover, it is impor-
tant to mention here that direct comparison is not possible
with the state-of-the-art methods due to difference in ex-
perimental setup, number of subjects, difference in the
subjects, etc.

Table 5: Performance metrics for stress classification using various classification techniques and training-testing set partitions.

Method Validation method Specificity Recall F1-score Precision
MLP 50–50 50.17 ± 4.97 79.06 ± 2.35 73.17 ± 3.35 67.66 ± 4.66
LSTM 1 50–50 61.86 ± 3.23 84.67 ± 4.16 79.17 ± 4.73 74.33 ± 4.79
LSTM 2 50–50 88.04 ± 4.21 86.81 ± 4.84 90.04 ± 2.11 93.53 ± 3.23
MLP 60–40 51.19 ± 5.63 82.90 ± 3.43 73.83 ± 4.43 65.14 ± 4.34
LSTM 1 60–40 63.51 ± 3.24 85.41 ± 5.23 80.34 ± 4.39 75.04 ± 5.66
LSTM 2 60–40 86.69 ± 4.44 90.66 ± 4.86 91.68 ± 3.91 82.72 ± 4.27
MLP 70–30 60.60 ± 4.65 79.01 ± 2.28 64.51 ± 3.25 77.26 ± 6.32
LSTM 1 70–30 70.43 ± 4.44 82.16 ± 4.53 83.01 ± 3.93 81.90 ± 6.36
LSTM 2 70–30 84.85 ± 3.72 93.51 ± 3.18 92.45 ± 2.68 91.42 ± 5.23
MLP 10-fold cross validation 61.41 ± 2.23 79.12 ± 3.01 76.81 ± 3.11 76.33 ± 4.69
LSTM 1 10-fold cross validation 71.79 ± 3.65 84.96 ± 4.67 84.62 ± 4.37 82.08 ± 5.53
LSTM 2 10-fold cross validation 88.47 ± 3.42 95.45 ± 2.32 94.94 ± 3.76 94.44 ± 4.43

Table 6: Mann-Whitney test based comparison of p-values for LSTM 2.

Training-testing partition
MLP LSTM 1

p-value Significance p-value Significance

LSTM 2

50–50 2.72×10−11 Highly significant 1.19×10−9 Highly significant
60–40 2.54×10−11 Highly significant 1.76×10−9 Highly significant
70–30 2.37×10−11 Highly significant 2.25×10−9 Highly significant

10-fold cross validation 3.02×10−11 Highly significant 1.13×10−9 Highly significant

Table 7: Comparison of stress classification accuracies.

Reference Number of
subjects

Number of
electrodes

Levels of
stress Stimulus Classification method Accuracy (%)

[31] 18 32 2 Emotional video clips Mean asymmetry
scores —

[37] 9 14 2 and 4 SCWT SVM

85.17 (2
classes)
67.06 (4
classes)

[61] 12 3 3 SCWT SVM 72.3

[35] 7 14 3
Multitasking, SCWT

SVM 77.53Arithmetic calculations and
memory

[62] 28 4 2 and 3 Public speaking MLP

92.85 (2
classes)
64.28 (3
classes)

[63] 10 1 2 SCWT SVM 97.6

[21] 9 14 2 High and low altitude FC-DNN 86.62Construction site
Proposed 35 4 2 Emotional video clips LSTM 21 87.22
Proposed 35 4 2 Emotional video clips LSTM 22 89.28
Proposed 35 4 2 Emotional video clips LSTM 23 90.33
Proposed 35 4 2 Emotional video clips LSTM 24 93.17
1Result for 50–50 training-testing data, 2result for 60–40 training-testing data, 3result for 70–30 training-testing data, and 4result for 10-fold cross validation.

10 Computational Intelligence and Neuroscience



,e proposed stress classification method, from the best
of our knowledge, is the first to observe the effect of video
watching on mental stress using a commercially available
EEG headband with 4 electrodes. ,is research work is a
proof of concept to illustrate the applicability of an EEG
headband to reliably identify the stressed state of a person. In
future the authors will extend the work by conducting the
experiment with more number of subjects.

Data Availability

,e data will be made available on request by the corre-
sponding author.
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