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Due to the development and application of information technology, a series of modern information technologies represented by
5G, big data, and arti�cial intelligence are changing rapidly, and people’s requirements for video coding standards have become
higher. In the High-E�ciency Video Coding (HEVC) standard, the coding block division is not �exible enough, and the
predictionmode is not detailed enough. A new generation of Versatile Video Coding (VVC) standards was born. VVC inherits the
hybrid coding framework adopted by HEVC, improves the original technology of each module, introduces a series of new coding
technologies, and builds on this greatly improving the coding e�ciency. Compared with HEVC, the block division structure of
VVC has undergone great changes, retaining the quad-tree (QT) division method and increasing the multi-type tree (MTT)
division method, which brings high coding complexity. To reduce the computational complexity of VVC coding block division, a
fast decision algorithm for VVC intra-frame coding based on texture characteristics and machine learning is proposed. First, we
analyze the characteristics of the CU partition structure decision and then use the texture complexity of the CU partition structure
decision to terminate the CU partition process early; for CUs that do not meet the early termination of the partition, use the global
sample information, local sample information, and context information. e three-category feature-trained tandem classi�er
framework predicts the division type of CU.e experimental results show that in the full intra mode, compared with the existing
VTM10.0, the encoding output bit rate is increased by 1.36%, and the encoding time is saved by 52.63%.

1. Introduction

With the advent of the 5G era, new video formats such as
short videos, live videos, 4K/8K ultra-high-resolution
videos, and virtual reality videos will emerge one after an-
other. Video is changing people’s lives in learning, enter-
tainment, and socializing. In the �eld of mobile
communications where bandwidth resources are extremely
valuable, Ericsson’s latest research report [1] shows that by
2026, video tra�c will account for 77% of all mobile data
tra�c, which will make it impossible to meet the concurrent
video transmission needs of a large number of users. e
coding performance of video encoders is very important for
network transmission and user experience. Currently, videos
on the Internet are mainly coded using AVC/H.264 and
HEVC/H.265 [2], and there is a large gap between coding
performance and practical needs. erefore, the latest

Versatile Video Coding (VVC) standard came into being,
which was researched and released by the Joint Video Ex-
perts Group (JEVT) formed by VCEG and MPEG. VVC
introduces a large number of new encoding tools to improve
encoding performance, and the video encoding e�ciency is
increased by nearly 40% while maintaining the same re-
construction quality. It should be pointed out that the
improvement of VVC comes at the cost of increasing coding
complexity. Compared with HEVC, the coding time of VVC
is increased by about 25 times under the All Intra (AI)
con�guration, and the encoding time of VVC is increased by
about 7 times under the random access (Random Access,
RA) con�guration [3]. Although the VVC coding structure
is very similar to its predecessor HEVC, many new tech-
nologies have been added on this basis: QTMT block par-
tition structure, 67 intra-frame prediction modes, intra-
frame cross-component linear (CCLM) prediction, adaptive
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multi-core transform (AMT) technology, matrix weighted
intra prediction technology (MIP), motion vector derivation
FRUC technology based on pattern matching, optical
flow–based bidirectional motion (BIO) compensation, affine
(Affine) motion prediction technology, and SubPU-level
motion vector prediction technology, relying on scalar
quantization technique (DSQP), low-frequency non-
separable transform technique (LFNST), intra-frame sub-
division (ISP), etc. [4, 5].

Compared with the macroblock division in HEVC/
H.265, the newly added quadtree nested multi-type tree
division in VVC makes the coding block size more flexible
and more suitable for video coding content. In recent years,
many algorithms have emerged to speed up the CU parti-
tioning process or terminate the CU early. It is found that the
recursive process of encoding block quadtree nested multi-
type tree division occupies most of the encoding time. To
reduce the complexity of VVC intra-frame coding, re-
searchers have made a lot of effort. Given the above situ-
ation, we propose a fast CU partitioning algorithm. +e
main contributions of this work are: first, based on the
texture characteristics of CU, the characteristics of the CU
partition structure decision are analyzed by encoding and
decoding the image, and then the CU partition process is
terminated early by using the characteristics of the CU
partition structure decision. Second, we perform statistical
analysis on some key information in the CU partitioning
process. +en, a reasonable acceleration strategy is designed
according to the analysis results, and representative features
are selected. For CUs that do not meet the early termination
of the split, train the tandem classifier framework to predict
the split type of the CU.

+e rest of the specific structure of this paper is arranged
as follows. +e second section introduces the partition
structure of VVC and some related fast algorithms. Section 3
firstly analyzes the complexity of CU texture, and introduces
a fast partition algorithm based on image texture charac-
teristics and a fast partition algorithm based on the tandem
classifier framework. Section 4 presents related experiments
and experimental results and compares them with state-of-
the-art solutions. Finally, Section 5 summarizes the full text.

2. Background and Related Work

2.1. Introduction to the QTMT Partition of VVC. +e new-
generation Versatile Video Coding (VVC) standard has
greatly changed its division method based on HEVC. One of
the key features of HEVC is the concept of multiple partition
units, including the coding unit, the basic unit of the
encoding process, the prediction unit (PU), which performs
prediction operations, and the transform unit (TU), which
performs transform and quantization operations. In HEVC,
to be suitable for a variety of different video image textures, a
CTU is divided into CUs through a quad-tree (QT) division,
and each sub-CU is divided into quad-trees or not divided
based on the division selection of the PU. In a child PU, a
prediction process similar to that of the parent PU will be
performed, and then the decoder will accept the information
related to the PU, and then subtract the prediction block

obtained by PU division from the original block to obtain the
residual block. +e parent CU is divided into TUs using
another quad-tree structure with the same division structure
as the CU, and then the TUs are taken for transform and
quantization operations.

Different from HEVC, the difference between CU, PU,
and TU are removed in VVC, that is, CU is used for pre-
diction, transformation, quantization, and entropy coding,
and it is no longer further divided into PU and TU based on
CU. VVC adopts a new coding block division method. Based
on quad-tree (QT) division, a multi-type tree (MTT) divi-
sion method is added. Among them are horizontal binary
tree division (HBT), vertical binary tree division (VBT),
horizontal Ternary tree division (HTT), and vertical ternary
tree division (VTT); the division structure is shown in
Figure 1. +e division method of quadtree nested multi-type
tree in VVC significantly improves the coding performance,
which makes the division method more flexible, and is no
longer limited to square, but a new rectangular block is
added.

In VVC, due to some parameter limitations in the en-
coder, usually, we set the size of a coding tree unit (CTU) to
128×128, which must be divided into QT first. +e mini-
mum quadtree size (MinQtSize) is set to 8, which means that
the minimum allowable size of the QT child node is 8× 8,
and the CU that has been divided into 8× 8 can only be
divided intoMT.+emaximum binary tree size (MaxBtSize)
and the maximum ternary tree size (MaxTtSize) are both 32,
which means that the largest MTroot node is 32× 32, that is,
the earliest 32× 32 CU can be divided into binary and
ternary trees. +e QTMT block division structure makes the
division modes of VVC/H.266 various, and different divi-
sion modes may obtain the same division structure, which
results in the appearance of redundant division. For ex-
ample, as shown in Figure 2, when a coding block is divided
by QT, four identical sub-CUs will be obtained, and the same
coding block will be divided by BT twice to obtain the same
division result. To avoid the occurrence of this redundant
situation, we usually impose certain restrictions on the di-
vision scheme of the coding block. For example, when a
coding block allows QTdivision, it is not allowed to perform
two consecutive BTdivisions; and when a coding block does
not allow QT division, it can perform two consecutive BT
divisions. Two consecutive BT divisions are allowed in the
following two cases: First, if the block size of the current
quad-leaf node is equal to the minimum length allowed by
quad-tree division, it is forbidden to continue to use quad-
tree division for the current leaf node, but multiple types of
tree partitioning are allowed. Second, if the multi-type tree
division depth of the current leaf node to be divided is
greater than 0 (the leaf node of the multi-type tree MT), it is
forbidden to use quadtree division for the current node [6].

As shown in Figure 3, different combinations of binary
tree division and ternary tree division are used for the same
coding block, and the same coding block structure may
appear. +e coding block structure obtained after the coding
block is divided into two BTdivisions in the same direction is
the same as the coding block structure obtained by first TT
division and then the BT division of the central block.
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+erefore, the general video coding standard prohibits the
use of BT partitioning in the corresponding direction in the
central partition of the ternary tree.

In VVC/H.266, the main content of video coding lies in
the coding block division, and the flexible block division
structure achieves good coding performance. VVC/H.266
adopts a more flexible division structure, using quad-tree
nested multi-type tree division to adapt to texture features in
video sequences. To find the best combination of the CTU
partition mode and the corresponding intra mode, firstly, it
is divided into four square sub-CUs of equal size by the
quadtree (QT) structure, and then, the sub-CUs can be
divided by the quadtree (QT) structure. +e CU is recur-
sively divided into square CUs, or the sub-CUs are divided
into rectangular CUs by multi-type tree (MT) structure
division, and finally, the VTM traverses all possible partition
combinations to perform a rate-distortion optimization
(RDO) process, finding each CTU the optimal partition
structure of the corresponding intra prediction mode, and
the one with the lowest rate-distortion optimization (RDO)
cost is selected as the best mode. +e CU division of H.266/
VVC is a recursive process, as shown in Figure 4.

In intra prediction, the coding block recursively tries all
possible partition combinations until the best CU partition
decision is made, and the partition structure with the least
rate-distortion cost is selected from it. Although this division
method can obtain the globally optimal partition structure, it
also consumes a lot of time. In HEVC/H.265, under the same
depth, a square coding block has 5 modes for partition
determination. However, in VVC/H.266, a square coding
block has 15 modes for partition determination, as shown in
Figure 5.

2.2. Related Work. +e key to video coding research is to
find redundancies in video signals and develop compression
tools using these redundancies. Compared with HEVC,
VVC has undergone great changes. Whether it is the change
of the coding block division mode, the increase of the intra-
frame mode, the improvement of motion estimation, etc.,
the video compression performance has been significantly

Figure 3: Redundant partition of binary tree partition and ternary
tree partition.
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improved, but it also brings complexity degree increase. To
minimize the time used for encoding while ensuring per-
formance, it is necessary to propose an effective improve-
ment method to change this status quo.

2.2.1. Research Status of HEVC Express Coding. +ere are
many methods for accelerating CU partition in HEVC/
H.265 video coding, which can be divided into three cate-
gories: traditional heuristic, deep learning, and neural net-
work based.

(1) Traditional Heuristic Methods. In recent years, some fast
CU partition algorithms based on heuristic methods have
been frequently adopted, and representative methods in-
clude Refs. [7–12]. Shang et al. [7] used the depth infor-
mation of adjacent CUs of coding blocks for early
termination decision of CU partition or CU pruning. Kim
et al. [8] made a statistical analysis of the rate-distortion cost
in the process of coding block division and proposed an
algorithm for early termination of CU division. Mallikar-
achchi et al. [9] counted and analyzed the local range (LR)
value and its variance of pixels in the neighborhood to
determine the texture uniformity of the coding block, and
proposed a fast CU partition decision algorithm based on
local range characteristics. Shen et al. [10] proposed a fast
CU partition decision algorithm based on texture attributes
and depth information of adjacent encoded CUs.+e texture
features of the CU are first used to select the early deter-
mination of the CU size decision, and the spatial correlation
of the coding units is used to terminate the CU partition
early. Min et al. [11] extracted the local and global edge
complexity in the horizontal, vertical, 45° diagonal, and 135°
diagonal directions of the coding block, and determined the
CU partition mode according to the set threshold. Zhang
et al. [12] compared the information at the micro and macro
levels of each coding unit block and proposed a fast CU size
decision algorithm based on image complexity by applying
adaptive processing to entropy and texture contrast.

(2) Machine Learning Methods. Machine learning due to its
excellent performance, researchers began to introduce
machine learning into the field of video compression, and
representative methods include Refs. [13–18]. Mu et al. [13]
designed a coding block acceleration algorithm based on a
support vector machine (SVM). +is SVM carefully studies
the relationship between rate-distortion (R-D) cost and CU
depth using mean square error (MSE) and several encoded
bits (NEB) metrics. Zhang et al. [14] designed two SVMs to
perform CU’s partition mode decision and early termination
decision, respectively. +e selected features include three
categories: the Hadamard cost of the current CU, the depth
difference between the current CU and neighboring CUs,
and the rate-distortion cost of the current CU and neigh-
boring CUs. Liu et al. [15] proposed an adaptive fast CU size
decision algorithm based on SVM. +e SVM uses texture
complexity as a feature for training, and the output is the
complexity level of the CU, including high, low, and un-
certain, corresponding to three division decisions: division,

no division, and uncertainty, respectively. Zhu et al. [16]
designed a binary multivariate classification support vector
machine (SVM), which designed the decision function of
SVM to achieve a balance between RD performance and
coding complexity. Wang [17] et al. obtained dynamic
partition parameters of coding tree units through local
features and designed a joint decision tree framework to
terminate the CU partition early. A fast-coding unit (CU)
partition decision method based on a decision tree classifier
by Gellert et al. [18] selects and applies a decision tree model
by analyzing new coding features related to CU partition
decisions.

(3) Deep Learning Methods. Compared with machine
learning methods, convolutional neural networks (CNN) do
not need to consider what features to use due to their
characteristics, and are more andmore popular among video
coding researchers. Some researchers use the trained neural
network to predict the CU partition mode to reduce the high
computational complexity, and representative methods in-
clude Refs. [19–23]. Liu et al. [19] constructed a shallow
Convolutional Neural Network (CNN) to predict the par-
tition pattern of CU. Feng et al. [20] proposed a CNN-based
CU depth range prediction algorithm to predict the depth
range of CU. Zhang et al. [21] combined heuristic methods
with deep learning methods. First, a threshold-based texture
classification is performed to terminate the partitioning
process of the flat-type CU. +en, three different CNNs are
designed to predict the partition patterns of nonflat types of
CUs. Chen et al. [22] designed a convolutional neural
network with an asymmetric kernel, which can more ac-
curately extract texture features from cross-purple, and
predict the division of CU. Xu et al. [23] designed a hier-
archical neural network framework with early termination,
which can output the division results of the entire encoding
block, thus significantly reducing the encoding complexity.

2.2.2. Research Status of VVC Express Coding. All the above
methods are researched for HEVC standards, which can
greatly reduce the complexity of HEVC encoding. Com-
pared with HEVC, the main change of VVC is the change in
the coding block structure. +e QTMTstructure introduced
by it can greatly reduce the coding bit rate, but its high
complexity limits its application. +erefore, the research on
the QTMTstructure and the corresponding intra-frame fast
decision-making algorithm have appeared, as follows.

Cui et al. [24] determined the probability of each division
mode by analyzing and calculating the gradient ratio and
threshold in the horizontal and vertical directions and skipped
the division mode with a lower probability. Fan et al. [25]
proposed a fast CU partition decision algorithm based on
variance and gradient. First, it is judged whether to further
divide the CU according to the texture complexity. +en, use
the gradient to determine whether to partition the CU by the
quadtree. Finally, an optimal partition model is selected
according to the complexity difference of the sub-CUs. Yang
et al. [26] designed a fast algorithm for CU partitioning based
on the joint framework of sub-consecutive decision trees. First,
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the depth distribution of CUs is statistically analyzed. +en, a
joint classification framework is designed to output the
probabilities of various divisions. Finally, a division mode with
a probability greater than 90% is selected as a candidate for the
final division mode. Zhang et al. [27] proposed a random
forest-based coding block partition decision algorithm. First,
the texture complexity of the encoded block is calculated,
which is divided into three types: complex, simple, and normal.
+en, a random forest classifier is used to output a partition
pattern that selects complex types of CUs. Finally, the parti-
tioning process of the simple type CU is terminated. Abdallah
et al. [28] designed an early terminated CNN network to
predict the 64× 64 coding block quadtree division structure,
and finally obtained a 128×128 coding tree division structure.
Tissier et al. [29] divided a 64× 64 CU into 256 4× 4 CUs and
used CNN to predict the probability that the boundaries of
each 4× 4 CU existed. Abdallah et al. [30] proposed a fast CU
partition algorithm based on CNN and designed a neural
network structure named CNN-BTH to predict the decision
depth of 32× 32 CU horizontal binary tree division. Chen et al.
[31] used the pixel variance value of the original image to
terminate the further division of the CU with a size of 32× 32
in advance. If the conditions for early termination were not
met, the Sobel operator was used to extract the gradient fea-
tures of the CU and calculate the sub-CU’s variance, selecting
the most probable division from five divisions.

+e above acceleration algorithms have a good effect on
reducing the complexity of video coding. Although they have
certain reference values for our research, they all have certain
shortcomings. For example, in the literature [24] based on
traditional methods, its prediction accuracy is not high.
Literature [25] based on variance and gradient methods,
although it achieves good results in encoding time savings, it
achieves high encoding loss. Based on the deep learning
method [28], it can only predict the QTpartition structure of
64× 64 coded blocks but cannot predict the maximum depth
of each layer.+ese methods are very effective and innovative,
but there is still room for improvement in coding efficiency.
+ese existing works can greatly reduce the complexity of
VVC intra-coding, but the different trade-offs between
complexity reduction and coding loss have not been inves-
tigated. According to the research status of the above ac-
celeration algorithms, we aim at the complex coding structure
used in H.266/VVC video coding, to save coding time, hardly
increase the coding bit rate, and ensure good decoded video
quality. +erefore, we study the fast decision algorithm of
H.266/VVC intra-frame coding.

3. Methodology

3.1. CU Texture Complexity Detection and CU Partitioning.
In the literature [32], we can find that if the block division
skips the binary tree division, it can reduce the coding time by
75% on average, and skipping the ternary tree division can
reduce the coding time by 48%. If the multi-type tree division
is skipped, the encoding time can be reduced by an average of
92%. During the CU partitioning process, some algorithms
can be used to quickly find the optimal partition structure of
the CU. In the process of intra-frame prediction, we usually

divide the area with complex textures multiple times. To
obtain the optimal partition architecture of CU, the area with
relatively simple texture and homogeneity is regarded as a
whole [24]. Areas with complex textures, to ensure the effi-
ciency of video coding, need to be further divided into smaller
coding blocks. If viewed as a whole, the partition structure of
the coding blocks cannot be accurately predicted. For areas
with simple texture, only one intra-prediction mode is used,
that is, the pixel value of the coded block can be accurately
predicted. If the depth division of the coding block can be
terminated in advance or the low-probability divisionmethod
can be skipped, the computational complexity of the CU
division will be effectively reduced on the premise of ensuring
coding efficiency and image quality. Simple textured, flat areas
in an image are usually encoded as a whole. +erefore, for
areas with simple and flat textures in the image, early ter-
mination of depth can be performed to reduce the compu-
tational complexity of the intra-prediction mode.

To verify the relationship between texture and CU di-
vision, this paper selects the test sequence “BQSquare” for
encoding and decoding processing. Figure 6 shows the
encoded and decoded image of the test sequence
“BQSquare.” It can be seen from the image that the area with
simple or homogeneous texture, such as the red border area
of the image, tends to be divided into a whole for coding, so
the size of the coding block is relatively large; for areas with
complex textures, such as the green border area of the image,
the size of the coding block is usually smaller, which can
better predict the internal structure of the image.

From the analysis of Figure 6, an important conclusion
can be drawn: the complexity of the division structure of CU
is almost the same as the complexity of texture; usually, the
area with simple or flat texture is divided into a whole, and the
probability of division is very small; the higher is the prob-
ability of CU division in areas with complex textures. Based
on this conclusion, to measure the texture complexity, we use
the mean absolute difference to represent the overall texture
complexity of the CU, as shown in the following equation:

MAD �
1

width × height


width

i�1


height

j�1
|P(i, j) − Mean|, (1)

where width and height represent the width and height of
the coding block, respectively, P(i, j) is the pixel value at (i, j),
and mean is the average value of the pixels in the coding
block. To better represent the discrete degree of data, we
calculate the mean value of the absolute difference of all pixel
values in CU and CU pixels and then compare the mean
value of the absolute difference between CU pixels with the
mean value of pixels. If the ratio of the absolute difference
means to the pixel mean is less than the threshold T, the
current coding block is defined as an area with simple
texture. If the ratio of the absolute difference means to the
pixel mean is less than the threshold T, then define the
current coded block as a texture-simple region.

To obtain the most suitable threshold T, we selected
some videos from the test sequence for testing. One test
sequence was selected from each of Class B, Class C, and
Class E video sequences. +ese test sequences are
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“BasketballDrive,” “BQMalll,” and “FourPeople.” +e video
sequences selected for this test are representative to a certain
extent. +e relationship curve between the threshold T and
its corresponding coding efficiency loss and coding time
saving is shown in Figure 7. +e abscissa in the figure
represents the threshold, and the ordinate represents the
coding efficiency loss and coding time saving, respectively.
+e corresponding coding efficiency loss after video coding
is represented by the coding bit rate (BDBR). BDBR rep-
resents the bit rate that the comparison algorithm can save
under the premise of ensuring the same objective quality of
the image. Coding time-saving△Trepresents the percentage
of coding time saved by comparing algorithms under the
same test conditions.

Considering the balance between coding efficiency and
coding time, we finally decided to use 0.05 as the threshold. If
the given threshold conditions are met, it means that the
texture of the current CU is relatively simple and does not
need to be further divided, and the CU depth division can be
terminated early.

3.2. 3e Proposed Tandem Classifier Framework.
According to our analysis of CU texture features, the
computational complexity of coding can be reduced to a
certain extent by early termination of depth division for CUs
with simple textures. However, for areas with complex
textures and texture edges, this CU fast partition algorithm
cannot be applied to reduce the computational complexity of
encoding. For CUs with complex textures, many factors
affect the division of CUs, and it is difficult to set the
judgment criteria manually to bring accurate prediction
results. +erefore, in this section, we introduce the classifiers
selected by the tandem framework and the features used.+e
proposed algorithm uses random forests as classifiers and
utilizes the trained tandem classifier framework to predict
the partition pattern of complex CUs, thereby speeding up
the coding process and reducing coding complexity.

A classic early termination framework was proposed by
Shen et al. [33], as shown in Figure 8(a), where intra pre-
diction (IP) is first performed, and then a classifier is used to
determine whether the recursive partition of the coding block
is early terminated, if not terminated early, then recursively
try all possible partition combinations and select the partition
structure with the least rate-distortion cost. In this decision
framework, the intra prediction is first checked at each

decision layer before the current encoding performs the next
division. +is checking strategy is not necessary, because
when the classifier output is “N,” it will recurse in turn. +e 5
division modes will reduce the complexity of the coding
process and have limited efficiency. Only when the output of
the classifier is “Y,” the division will be terminated in advance,
saving coding time. On this basis, Zhang et al. [34] improved
the decision tree selection framework, from the recursive
selection of CU partition mode to the multi-class selection of
CU partition mode, as shown in Figure 8(b). First, perform
intra-frame prediction (IP), and then use the classifier to
determine whether the CU division is terminated early. If the
classifier output is “Y,” the CU division is terminated early; if
the classifier output is “N,” in 5 division modes, choose the
most likely division method. Although the decision tree
framework saves most of the coding time, it will cause the loss
of RD performance due to the limited prediction accuracy of
the selected partition mode. To improve the prediction ac-
curacy of the selected partition mode and maintain good RD
performance, Wang et al. [17] used a parallel decision
framework of two classifiers, as shown in Figure 8(c). Clas-
sifier A and Classifier B exist independently and are, re-
spectively, used to determine whether the CU performs quad-
tree division or multi-type tree division. +ere are four sit-
uations in the parallel selection framework. +e first is that
when the output of classifier A is “Y” and the output of
classifier B is “N,” the quadtree division will be terminated in
advance, and then in the four division methods (HBT, VBT,
HTT, VTT) select the most likely division method. +e
second is that when the output of classifier A is “N,” the CU
will select the quadtree divisionmode, and when the output of
classifier B is “Y,” the multi-type tree division will be ter-
minated early.+e third is that when the choices of classifier A
and classifier B are both “Y,” the CU division is terminated
early, which saves coding time. +e fourth is that both
classifier A and classifier B output “Y” at the same time, and
the current coding block does not terminate the division in
advance. Due to its high flexibility, the parallel selection
framework reduces the risk of misprediction, improves RD
performance, and reduces coding complexity.

+e classifiers proposed above have more or fewer
limitations in reducing the coding complexity. To reduce the
coding time as much as possible and speed up the coding
process, we propose a tandem classifier framework, as shown
in Figure 9. In this structure, two classifiers are used in series
and parallel, and there are 3 cases. +e first is that when the
output of classifier A is “N,” the CUwill performQTdivision
and terminate the multi-type division. +e second is that
when the output of classifier A is “Y” and the output of
classifier B is “N,” the CU skips the QTdivision, conducts the
MTT division test, and selects the partition type with the
highest probability. +ird, when the selections of classifier A
and classifier B are both “Y,” the CU terminates the division
early and skips all partition types.

3.2.1. Feature Selection and Analysis. Since VVC/H.266
adopts a complex quadtree nested multi-type tree partition
model, the CU partition is particularly sensitive to texture

Figure 6: +e image after BQSquare encoding and decoding.
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information, so it is very important to select representative
features. +e new division method of VVC/H.266 can more
effectively fit the texture features in the video image and can
divide the image with a richer CU block shape and CU block
size. Simple texture blocks are always divided very large,
while complex texture blocks are divided very small.
+erefore, in H.266/VVC intra prediction, the texture of the
video content greatly affects the division of the CU. To adapt
to this new coding feature and find the features that can

determine the type of coding block division, we choose three
representative information categories: global sample infor-
mation, local sample information, and contextual
information.

(1) Global Sample Information. To terminate the
coding block division in advance, considering the
content complexity of the current CU, we adopt 5
kinds of global samples, including the size of the
current coding block (size), variance (var), the
ratio of horizontal texture to vertical texture (Gh/
Gv), the ratio of the maximum gradient to the
maximum number of pixels (Gm/N), and the
normalized gradient (Gh+Gv/S). +e direction of
the CU division is more inclined to the direction of
the texture. +e gradient in a certain direction
reflects the changing trend of pixels in this di-
rection, that is, the gradient can vividly reflect the
direction of the texture. +e horizontal direction
gradient (Gh) and vertical direction are based on
the Sobel operator Orientation gradient (Gv)
composition.

(2) Local Sample Information. Due to the new quadtree
nested multi-type tree division type, in the area of
multi-type tree division, considering the small
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suburban area of the current encoding, we need local
information to represent texture features. For ex-
ample, the absolute difference (UBD) between the
upper half and the lower half of the current coding
block, the absolute difference (LRD) between the left
half and the lower half of the current coding block,
and the complexity difference (SCCD) of the sub-
CU. When the texture complexity of the sub-CUs
obtained by division is very different, the probability
that the current coding block is further divided into
smaller coding blocks is very high, so it is represented
by the complexity difference of the sub-CUs (SCCD).

(3) Context Information. Based on the similarity of
texture complexity and depth between adjacent CUs,
we, therefore, adopt two kinds of context informa-
tion, including the complexity information (NCC)
and depth information (NCD) of adjacent CUs.
Considering the complexity information and depth
information, acquire the texture complexity and
depth values of 5 adjacent CUs in the order of ad-
jacent left, upper left, upper, upper right, and lower
left, and calculate the maximum and minimum
values, respectively.

To demonstrate the effectiveness of feature selection, it
is evaluated using Information Gain Attribute Evaluation
(IGAE), which uses information gain [35] as a metric for
data classification. +erefore, we use the entropy differ-
ence between before and after the classification of the
dataset to calculate the information gained. Figure 10
shows the features selected for Classifier A and Classi-
fier B. As can be seen from Figure 10, the features of the
two classifiers are consistent, but the information gain
values are different.

3.2.2. Model Establishment and Training. Random forest is
an ensemble model with a decision tree as the base learner,
which is characterized by low variance and low bias and is
divided into two parts, namely, random and forest. Compared
with the traditional single decision tree, the random forest has
the following advantages: First, due to the two randomness,
the model has a strong anti-overfitting ability and is relatively
stable. Second, the output result is jointly determined by each
decision tree, so it overcomes the instability of a single de-
cision tree. +ird, it can process high-dimensional data
without feature selection, and can also get feature importance
ranking. Fourth, provide the class_weight� balanced pa-
rameter, which can handle unbalanced data.

We regard the multiple division of CU as a multi-
classification problem and use CART as the basic decision
tree algorithm of the random forest classifier to build a
model to predict the division result. CART is constructed by
generating the feature and threshold corresponding to the
minimum Gini coefficient at each node. Binary tree. As-
suming that there are k classes, and the probability that the
sample point belongs to the kth class is pk, then the defi-
nition formula of the Gini index of the probability distri-
bution is

Gini(D) � 
k

k�1
pk 1 − pk(  � 1 − 

k

k�1
p
2
k . (2)

Among them, pk represents the probability that the
selected sample belongs to the k category, and the probability
that this sample is wrongly classified is 1 − pk.

In the candidate attribute set A, we select the attribute
that minimizes the Gini coefficient after division as the
optimal division attribute. If the sample set D is divided into
two parts D1 and D2 according to whether feature A takes a
certain possible value a, then under the condition of feature
A, the definition formula of the Gini coefficient of set D is

Gini(D, A) �
D1




|D|
Gini D1(  +

D2




|D|
Gini D2( . (3)

Figure 11 shows the offline training process of the
classifier. +e detailed steps are as follows:

Step 1. Select 40 frames from each video sequence and
encode them with full intra-frame configuration to
build the training set of the random forest classifier.
Step 2. Let the training data set of the node be D, and
calculate the Gini index of the existing features for this
data set. At this time, for each feature A, for each value a
that may be taken, divide d into two parts D1 and D2
according to whether the test of the sample point A� a
is “Yes” or “No,” and use the above formula Gini (A) to
calculate the Gini coefficient when A� a.
Step 3. Among all possible features A and all their
possible segmentation points a, select the feature with
the smallest Gini coefficient and its corresponding
possible segmentation point as the optimal feature and
optimal segmentation point. Relying on the optimal
feature and the optimal split point, two sub-nodes are
generated from the current node, and the training data
set is allocated to the two sub-nodes according to the
characteristics.
Step 4. Recursively call Step 1 and Step 2 on the two
child nodes, and repeat the above steps until the
training of N decision trees ends.
Step 5. After the training of N decision trees is com-
pleted, a random forest is formed, and then the clas-
sifier is used to classify the current sample. Each tree in
the forest independently determines the classification
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result, and the final classification result takes the same
judgment as the prediction of the current sample and
obtains CU the best partitioning mode.

Table 1 illustrates the training parameters of the random
forest classifier. +e training set is derived from some video
sequences of the JVET official standard test sequence set,
including “RaceHorses,” “BQMall,” “Johnny,” and
“ParkScene.”

3.3.OverallAlgorithmFramework. According to the analysis
results in the previous section, CUs are classified according
to texture complexity, and corresponding acceleration
strategies are adopted for different categories of CUs. +e
fast CU partition decision algorithm framework proposed in
this paper is shown in Figure 12.

+e specific process is

Step 1. Calculate all pixel values in the CU and the mean
value of the absolute difference of the CU pixels, and
then compare the mean value of the absolute difference
of the CU pixels with the mean value of the CU pixels. If
the given threshold conditions are met, we classify the
current CU into two categories: simple and complex.
Step 2. For simple types of CUs, we terminate the CU
partition early, perform intra prediction, and then enter
the next CU.
Step 3. For complex types of CUs, train a tandem
classifier decision framework. If both classifiers output
“Y,” the CU partitioning process is the same as the
simple-type CU.
Step 4. If the output of the classifier A is “N,” the current
CU performs quadtree division, and the divided sub-
CUs perform the process again.
Step 5. If the output of classifier A is “Y” and the output
of classifier B is “N,” the current CU performs multi-
type tree division, selects the division type with the

highest probability, and the divided sub-CU performs
the process again.

4. Experimental Results and Analysis

Our proposed algorithm is implemented on VVC official test
platformVTM-10.0, and the performance of the algorithm is
tested. +e hardware configuration of the test environment
is: processor Intel(R) Core(TM) i5-10500G CPU, 3.20GHz
frequency, 8.0GB RAM, Windows10 64-bit operating sys-
tem, and the software development tool is Microsoft Visual
Studio 2017.When testing the performance of the algorithm,
the standard test video sequences recommended by JVETare
encoded in the All Intra (AI) access mode, and the number
of encoded frames for each sequence is selected as 50. QP� is
set to {22, 27, 32, 37} when encoding. When evaluating the
performance of fast video coding algorithms, not only the
computational complexity of coding but also coding effi-
ciency and image quality after coding and decoding should
be considered. +erefore, the performance of the video
encoding algorithm can be measured by two indicators:
BDBR and encoding time-saving. Equation (4) is the cal-
culation method for encoding time savings.

ΔT �
Tvtm − Tpro

Tvtm

× 100%, (4)
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Figure 11: Schematic diagram of the model of the classifier.

Table 1: Training parameters setting.

Parameter name Parameter
settings

Number of feature attributes 10
Number of trees in random forest 10
Tree depth 15
Minimum sample required to split a node 20

Number of categories 5 for classifier A,
2 for classifier B
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where Tpro represents the actual encoding time of the
proposed algorithm and Tvtmrepresents the time-consuming
of the original encoder VTM10.0.

4.1. Performance Analysis. Table 2 shows the coding per-
formance of the proposed fast CU partition decision algo-
rithm compared to the VTM10.0 encoder, including RD
performance and complexity reduction performance. From
Table 1, the following conclusions can be drawn: when the
coding structure is full intra-frame coding, the proposed fast
CU partitioning algorithm significantly reduces the com-
plexity of CU partitioning, while the coding efficiency de-
creases slightly. On average, the encoding time was reduced
by 52.63%, while BDBR only increased by 1.36%. For dif-
ferent video sequences, the complexity reduction effect of
the fast CU partition decision algorithm is similar. +e
minimum value achieved on the video sequence “Race-
HorsesC” is 49.23%, and the maximum value achieved on
the video sequence “BasketballDrive” is 60.67%. +is shows
that the proposed algorithm is stable and can achieve a good
complexity reduction effect on different video sequences. In
terms of coding efficiency loss, the coding efficiency loss of
this paper is the lowest at 0.78 and the highest at 2.83%.
Among them, for the test sequence with complex texture, it
will cause greater coding efficiency, such as “Basketball-
Drive” in the B sequence, “BQMall” in the C sequence, etc.

For test sequences with simple textures, it will cause less loss
of coding efficiency, such as “RaceHores” in D sequences.

To further estimate the rate-distortion performance of
the proposed algorithm, the rate-distortion performance of
sequences with different resolutions is counted. Figure 13
shows the comparison of the RD curves of this algorithm
and the standard test model VTM-10.0 for the video se-
quences BasketballDrive (1920×1080) and BQSquare
(416× 240). It can be seen from the figure that the rate-
distortion curve of this algorithm coincides with the rate-
distortion curve of VTM-10.0, which shows that the BD-rate
loss of this algorithm is negligible.

4.2. Comparative Analysis. To further evaluate the effect of
the proposed algorithm, this article first compares the
proposed algorithm with other representative fast algo-
rithms for CU partitioning, including literature [17], liter-
ature [26], and literature [31], whose algorithm performance
is comparable to that of literature [31]. +e performance
comparison of the algorithms in this paper is shown in
Table 3. Among them, the literature [17] is a QTBT fast
decision algorithm based on the joint classifier decision tree
structure, which is implemented in the HEVC reference
software HM. While literature [26] and literature [31]
adopted machine learning–based methods and heuristic
methods, respectively, they were implemented in the VVC
reference software VTM.

Start encoding CTU
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ClassifierB
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CU depth increases
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Figure 12: +e proposed algorithm flow.

Table 2: Experimental results comparing the proposed algorithm
with VTM 10.0.

Sequence type Test sequence BD-BR (%) △T (%)

A1(3840× 2160)
Tango2 1.23 54.25

Food market4 0.78 55.63
Campfire 1.18 52.22

A2 (3840× 2160)
Cat robot1 1.34 53.8

Daylight road2 1.51 53.62
Park running3 1.23 51.32

B (1920×1080)

Basketball drive 2.83 60.67
BQ terrace 1.76 55.37
Cactus 1.57 50.63
Kimono 1.08 50.18

Park scene 0.97 49.23

C (832× 480)

Basketball drill 1.94 52.43
BQ mall 1.76 50.22

Party scene 0.91 50.07
Race horses C 1.08 49.23

D (416× 240)

Basketball pass 1.43 55.24
BQSquare 0.86 49.47

Blowing bubbles 1.03 49.91
Race horses 0.94 53.17

E (1280× 720)
Four people 1.62 53.35

Johnny 1.73 54.31
Kristen and Sara 1.16 53.48

Average 1.36 52.63
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Compared with the algorithm [17], our algorithm
reduces coding complexity by 6.95% and saves BDBR by
3.02%, which is a clear improvement. Compared with the
traditional algorithm [31], our algorithm decision crite-
rion is adaptively learned by the decision tree and has
higher prediction accuracy. +erefore, the algorithm
proposed in this article has a lower loss of compression
efficiency while keeping the encoding time-saving effi-
ciency the same, and the encoding output bit rate is re-
duced by 0.14%. Compared with the decision tree–based
algorithm [26], the algorithm proposed in this article
achieves better results in both RD performance and
complexity reduction. Mainly we terminate early for
texture-simple coding blocks based on image texture
properties. +erefore, compared to the literature [26], the
encoding time is saved by about 0.16%, while BDBR drops
more by about 0.21%.

4.3. Ablation Experiment. In our algorithm, we will conduct
an ablation study to analyze the impact of each feature on the
overall algorithm. From the experimental results, the fea-
tures we selected are rich and representative and the two
classifiers trained have high prediction accuracy. +erefore,
the prediction accuracy of the two classifiers A and B is first
calculated. Figure 14 shows the prediction accuracy of A and
B on different video sequences under four QP settings. It can
be seen that the prediction accuracy of A is more than 90%.
At the same time, for different video sequences and different
QP settings, the prediction accuracy is also stable, main-
tained at 90%–95%. +e prediction accuracy of B is more
than 93%. Moreover, for different video sequences and
different QP settings, the prediction accuracy is also stable,
maintained at 93%–97%. +erefore, the proposed VVC
intra-coding fast decision algorithm can accurately predict
the best CU partition type for complex types of CUs.
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Figure 13: Comparison of the RD performance curve of this algorithm with VTM10.0.

Table 3: Comparison of coding performance between the algorithm in this paper and literature [17], literature [26], and literature [31].

Sequence type Test sequence
Wang [17] Yang [26] Chen [31] Proposed

BDBR (%) △T (%) BDBR (%) △T (%) BDBR (%) △T (%) BDBR (%) △T (%)

B

Basketball drive 4.22 67.98 1.93 59.51 3.09 65.34 2.83 60.67
BQ terrace 3.47 48.57 2.07 56.07 1.16 49.46 1.76 55.37
Cactus 4.14 49.20 1.26 51.84 1.74 55.97 1.57 50.63
Kimono 1.97 65.40 1.9 63.87 1.72 55.31 1.08 50.18

Park scene 5.08 60.80 1.53 56.6 1.28 56.36 0.97 49.23

C

Basketball drill 6.64 44.61 2.01 48.19 1.91 53.19 1.94 52.43
BQ mall 4.87 30.19 1.34 47.36 1.79 56.51 1.76 50.22

Party scene 1.90 40.25 0.6 45.73 0.28 41.76 0.91 50.07
Race horsesC 2.42 36.24 1.16 48.39 0.84 52.14 1.08 49.23

D

Basketball pass 9.21 49.33 1.28 50.16 2.02 54.15 1.43 55.24
BQ square 4.53 37.47 0.81 46.06 0.17 32.35 0.86 49.47

Blowing bubbles 2.36 27.65 0.77 41.56 0.49 43.97 1.03 49.91
Race horses 2.74 29.33 0.86 43.17 0.54 44.94 0.94 53.17

E
Four people 5.08 43.10 2.75 57.64 2.55 62.27 1.62 53.35

Johnny 7.33 52.27 3.29 58.98 3.07 62.61 1.73 54.31
Kristen and Sara 5.15 43.34 2.51 59.19 2.26 60.83 1.16 53.48

Average 4.44 45.36 1.63 52.15 1.56 52.95 1.42 52.31
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5. Summary

In this paper, the detailed process of VTM10.0 coding block
division is first introduced in detail. +en, the texture
complexity is analyzed, and a fast partitioned intra-coding
algorithm for CU based on a concatenated decision
framework is proposed. +e main ideas of the algorithm
include: firstly, the relationship between image texture
features and CU partition mode is analyzed, and then we
design corresponding acceleration strategies for CUs of
different texture types, namely, simple types and complex
types. +e characteristics of the CU partition structure
decision are analyzed to terminate the CU partition process
in advance. According to the analysis results, three infor-
mation categories, including global sample information,
local sample information, and context information, were
selected for CU that did not meet the requirements of early
termination of partition, and the classification method with
the maximum probability was selected by using the series
decision framework designed by us. Finally, we compare our
algorithm with other state-of-the-art algorithms, and the
proposed algorithm saves 52.63% in encoding time, while
BDBR only increases by 1.36%. Although our proposed
algorithm significantly reduces the coding complexity, there
are still some shortcomings, such as only predicting whether
to terminate the partition early or not for simple types of
CUs. Combined with the current research results, if the
optimal partition mode is directly predicted for all types of
CUs, the coding complexity will be further reduced, which is
also the direction we can continue to study and improve.
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