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In order to train at high-intensity, athletics can again cause varying degrees of myocardial damage. Evaluating the balance between
exercise myocardial injury and exercise intensity should actively prevent myocardial injury caused by high-intensity athletic
training. In this paper, an intelligent optimization algorithm is used to investigate the degree of myocardial injury. e basic idea is
to de�ne the measured data and the output of the numerical model as an objective function of the structural parameters, to obtain
the structural parameters by �nding ways to continuously optimize the objective function to be close to the observed values, and to
identify the injury based on the changes in these parameters before and after myocardial injury.  e objective function can be
de�ned in various ways, and the myocardial injury optimization algorithm can be chosen. In order to obtain the best com-
putational results, numerical simulations of damage identi�cation are performed using the objective function and three machine
learning-based optimization algorithms.  e computational results show that the combination of the objective function and the
machine learning algorithms provides good accuracy and computational speed in identifying myocardial injury.

1. Introduction

Sports injury refers to a variety of physical injuries that occur
during athletes’ sports activities due to various improper
sports activities. In the process of sports, sports injuries are
easily ignored by athletes and coaches. In recent years, it has
become an important task in modern sports to improve
athletic performance and to reduce myocardial injury in
athletes, which is the goal of modern sports.  e combi-
nation of scienti�c training and physical �tness assessment is
an important prerequisite for achieving the development
goals of modern athletics, and in this context, how to ac-
curately analyze the relationship between intensity training
and myocardial injury in track and �eld athletes has become
a major problem in this �eld.  e modeling of the rela-
tionship between intensity training and myocardial injury in
track and �eld athletes is an e�ective way to solve these
problems and has attracted the attention of many re-
searchers. Intensity training is necessary for competitive
sports, but when the load exceeds the physiological limits of
athletes, it can cause myocardial ischemia and hypoxia,

which can lead to myocardial injury.  e heart is the central
command of the human body, and damage to the heart will
inevitably reduce the athletic ability of the athlete and a�ect
the training e�ect [1].  e contraction and diastole of the
heart wall plays an important role in exercise. Long-term,
systematic, load-appropriate exercise training can lead to
adaptations in the morphology of the athlete’s heart and
increase the pumping function of the heart. A growing body
of research today indicates that exercise training is not as
e�ective as more intense stimulation. Intense training causes
a disruption of endogenous protective substances in the
myocardium. In addition, high-intensity training can cause
damage to the heart muscle.  is suggests that intense
training can cause some damage to the myocardium,
resulting in relatively localized ischemic and hypoxic
myocardial changes in myocardial �bers [2–7].

Considering that myocardial damage recognition can be
regarded as an optimization problem, intelligent optimi-
zation techniques have received attention in recent years,
like Monarch Butter�y Optimization (MBO) [8], Slime
Mould Algorithm (SMA) [9], Hunger Games Search (HGS)
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[10], Runge Kutta method (RUN) [11], genetic algorithm
(GA) [12], differential evolution algorithm (DE) [13], par-
ticle swarm algorithm (PSO) [14], and other optimization
algorithms. Optimization technology is a mathematically
based application technique for solving various engineering
problems with optimal solutions. In summary, the opti-
mization problem is to construct a suitable objective
function such that the solution of this objective function
taken to the extreme is what you require; let the computer
discover the hidden relationships between the data instead of
the human. +e reason for using a computer is that the
amount of data is so large that it far exceeds the processing
power of the human brain. +e goal is to find a way to get a
solution that takes the extreme value of this objective
function. Although their structures are very different, they
all have in common that they have a large set of parameters
just waiting for you to feed data for it to learn. +e control
parameters of the relevant algorithms are shown in Table 1
[15–24].

Some scholars proposed a lot of different machine
learning-based optimization approaches to implement some
optimization problems [25–30]. KAdam and Mahajan [31]
tried to optimize the cutting temperature prediction model
using GA to optimize the objective function, and the out-
comes acquired through experimental test are likewise
similar to the outcomes of GA. El et al. [32] compared the
optimizationmodels between PSO and GA.+e results show
that, for the majority of the proposed strategies, PSO is more
efficient than the GA, whereas the latter is generally much
more used for the optimization of detailed kinetic mecha-
nisms. Zhou et al. [33] proposed an adaptive hierarchical
update particle swarm optimization (AHPSO) algorithm,
and one real-world optimization problem is employed to
evaluate the AHPSO against eight typical PSO variants.
Balasubramani et al. [34] proposed a PSO algorithm-based
artificial neural network (ANN) model to optimize the
adsorption process parameters. Zhong and Cheng [35]
proposed an elite-guided hierarchical differential evolution
algorithm. Finally, for the sake of evaluating the perfor-
mance of the proposed method, sensitivity analysis to the
size of elite individuals, efficiency analysis of the control
parameters adaptive strategy, and comparisons with baseline
methods on 29 universal benchmark function in terms of
convergence accuracy and convergence speed have been
taken out. All the obtained results show that the proposed
model has excellent optimization performance. +arwat and
Hassanien [36] proposed a novel chaotic antlion optimi-
zation (CALO) algorithm to optimize the parameters of
support vector machine (SVM) classifier, so that the clas-
sification error can be reduced. +e experimental results
proved that the proposed algorithm is capable of finding the
optimal values of the SVM parameters and avoids the local
optima problem. +e results also demonstrated lower
classification error rates compared with baseline methods.
Although all of these algorithms have positive examples to
support their effectiveness, the general applicability of these
methods cannot be demonstrated only by the analysis and
validation of a specific example. To compare the damage
recognition effects of various intelligent optimization

algorithms, this paper first defines four objective functions for
structural damage recognition, then describes three well-
known intelligent optimization algorithms, finally conducts
numerical simulations of myocardial damage recognition
using three typical types of structural models, and summa-
rizes the comparison of the damage recognition effects of each
objective function and intelligent optimization algorithm.

2. Finite Element Model of the
Optimization Algorithm

+e identification of the degree of myocardial injury needs to
be achieved by continuous modification of the finite element
model, which can be equivalent to the treatment of a
nonlinear optimization problem, and therefore, the opti-
mization module and the related theory in the finite element
software will be introduced in detail in the following sec-
tions. +e mathematical model of the optimization problem
is

minf(x), x � x1, x2, . . . , xn( 􏼁
T
, (1)

S.T. gi(x)≤gi, i � 1, 2, . . . , m1,

hi(x)≥ hi, i � 1, 2, . . . m2,

wi ≤wi(x)≤wi, i � 1, 2, . . . , m3,

xi ≤xi ≤ xi, i � 1, 2, . . . , n,

(2)

where f(x) is the objective function and gi, hi, wi are state
variables with upper, lower, and double limits, respectively.
X�x1, x2,. . ., xn are design variables and n is the number of
design variables.

+e design variables that satisfy (2) are called feasible
solutions, while those that satisfy (1) are called optimal
solutions.

Two optimization methods are provided in the finite el-
ement software, namely, the zero-order method and the first-
ordermethod.+ezero-ordermethoduses only the calculated
values of the objective function and state variables, while the
first-order method requires the calculation of the first-order
inverse values of the objective function and state variables.

2.1. Zero-Order Method. Basic concept of the zero-order
method is to approximate the complex nonlinear optimi-
zation problem as a quadratic programming problem. For
example, the objective function can be approximated by the
following equation:

Table 1: Control parameters.

Optimization algorithm Parameter setting

GA algorithm NP� 30; Pc� 0.7; Pm� 0.08;
search Scope� [0,1]

PSO algorithm NP� 30; w � 0.8; c1 � c2 � 2;
search Scope� [0,1]; speed range� [0,1]

DE algorithm NP� 30; F� 0.5; Cr� 0.9;
search Scope� [0,1]

∗Genetic algorithm (GA), differential evolution algorithm (DE), and
particle swarm algorithm (PSO).
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+e coefficients in the above equation can generally be
determined by the least squares calculation, i. e.,
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whereφj is theweight obtained at the ith design point andnd is
the total numberofdesignpoints,whichmustmeetnd ≥ n + 2.

+ere are five methods of taking the weight coefficients
in (4):

(1) +e objective function method, even if the smaller
the objective function value, the greater the value of
the weight at the design point

(2) +e optimal design point method, that is, the closer
to the optimal design point, the greater the value of
the weight at the design point

(3) Feasible design point method, i.e., the weight of the
feasible design point is greater than the weight of the
infeasible design point

(4) Combination method, that is, the combination of the
above methods

(5) Uniform method, i.e., all the weights are taken as 1

+e optimization problem described by equation (1) is
simplified as

minf
∧

(x), x � x1, x2, . . . , xn( 􏼁
T
,

S.T. gi(x)gi, i � 1, 2, . . . , m1,

hi(x)≥ hi, i � 1, 2, . . . m2,

wi ≤wi(x)≤wi, i � 1, 2, . . . , m3,

xi ≤xi ≤xi, i � 1, 2, . . . , n.

(5)

+is constrained quadratic programming problem can
be transformed into an unconstrained problem by using a
penalty function, i.e.,

MinF x,pk( 􏼁

�min f
∧

(x) + f0pk 􏽘

n

i�1
X xi( 􏼁 + 􏽘
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W xi( 􏼁⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦,

(6)

where f0 is the target reference function; pk is the response
surface parameter, whose value increases with the number of
iterations; and X is the design variable to obtain penalty
functions.
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(7)

At each iteration, the design variables take the values:

xj + 1 � xb + C xb − xj􏼐 􏼑, (8)

where xb is the most optimal design variable among the
current design variables. C is the constant, being 0–1.

2.2. First-OrderMethod. +e first-order method can directly
transform the constrained optimization problem into an
unconstrained optimization problem, but it needs to be
under the action of penalty function as follows:

Q(x, q) �
f(x)

f0
+ 􏽘

n

i�1
Px xi( 􏼁

+ q 􏽘

m1

i�1
PG(gi) + 􏽘

m2

i�1
PH hi( 􏼁 + 􏽘

m3

i�1
PW wi( 􏼁⎛⎝ ⎞⎠,

(9)

where Q is dimensionless, unconstrained objective function;
PX is the design of variable penalty functions, using the out-
point method. PG, PH, and PW are state variable penalty
functions, using the interior point method.

+e difference between the first-order method and the
zero-step method is that the direction of advance and the
step size are determined in the iterative calculation, and the
design variables are taken in the iteration.

xj+1 � xj + sjdj, (10)

where dj is the (j+1)th iteration yielding the forward method
and sj is the (j+1)th iteration getting the previous progress
length.

In the finite element method, the forward direction is
determined by the conjugate gradient method with the it-
erative formula.

Here, dj, dj-1 denote the jth and (j−1)th iteration forward
directions, respectively.
∇Q(xj, q) and ∇Q(xj-1, q) denote the jth and j-1th it-

eration objective function gradients, respectively.
After determining the forward direction, the forward

progress length is determined by the following equation:

minQ xj + sjdj, q􏼐 􏼑. (11)

+e above is the process of objective function modifi-
cation and optimization of finite element model. +e op-
timization algorithm can quickly determine the optimal
objective function.

3. Intelligent Algorithms

3.1. Optimization Algorithm. GA is a global optimization
algorithm based on Mendelian genetics and Darwinian
evolution to simulate the biological evolution process in
nature. +e GA algorithm simulates the biological evolu-
tionary process by abstracting the biological population as
an effective approach to a set of optimization problems,
referred to as the population, and each effective solution in
the population is called an individual, mapping the natural
environment as the solution space, using “survival of the
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�ttest” as the selectionmechanism for the optimal individual
and using genetics and variation for the self-adjustment of
the individual.  e advantages of the GA algorithm in
solving NP-complete problems, nonlinear, multipeak
function optimization, and multiobjective function opti-
mization has attracted a lot of attention from researchers in
various �elds. After decades of development, GA algorithms
have been deeply involved in various scienti�c research and
engineering applications and have become an important
branch of intelligent optimization algorithms.  e particle
swarm optimization (PSO) algorithm is a heuristic opti-
mization algorithm, inspired by the behavior of a �ock of
birds during foraging. For this process, the PSO algorithm
abstracts each bird as a possible optimal solution to the
optimization problem, called a “particle,” and the “particle.”
 e PSO algorithm uses real number coding for easy un-
derstanding and implementation, and it is computationally
e¡cient and can be e�ectively used to solve global multi-
objective optimization problems.  e basic idea of this al-
gorithm is similar to that of genetic algorithm, which
searches for the optimal solution by simulating the natural
biological evolution mechanism of “survival of the �ttest.” In
the �rst International Competition on Evolutionary Opti-
mization (ICEO) held by IEEE, the DE algorithm achieved
the 3rd place in terms of computational speed, but the top
two algorithms are deterministic computational methods and
have limited applications, so the DE Storn and price analyzed
the computation of nine standard functions and showed that
the iteration e¡ciency and robustness of the DE algorithm
outperformed the annealedNelder andMead strategy (ANM),
the adaptive simulated annealing algorithm (ASA), and the
annealed Nelder and Mead algorithm (AMA).  e DE algo-
rithm has the features of simple principle, real number
encoding, easy implementation, parallel computation, etc. It
has better e¡ciency and robustness in solving the minimiza-
tion of nonlinear and nondi�erentiable continuous functions,
which attracts wide attention and is applied in various �elds.

3.2. Trial-and-Error Judgment Algorithm.  e intelligent
trial-and-error learning algorithm consists of two main steps:
(1) the creation step of the behavior-performance mapping
table; and (2) the adaptation step.  e creation of the
behavior-performance mapping table is done by the multi-
dimensional archive of phenotypic Elites algorithm.  e

MAP-Elites algorithm is based on the evolutionary algorithm
proposed by core process is also the selection and mutation of
elite solutions. e adaptation process is also done by the new
algorithm.  is algorithm is called the map-based Bayesian
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Figure 1: Computational �ow of the optimization algorithm.

Figure 2: Schematic diagram of the optimized path.

0

0

1

2

3

Ve
lo

ci
ty

 (m
/5

s) 4

5

6

7

1 2 3 4 5
Iteration number

6 7 8 9

Predicted value
No damage
Observations

Figure 3: Damage-free velocity and observation and prediction
iterations.

0

1

2

3

V
el

oc
ity

 (m
/5

s)

4

5

6

0

10

20

30

40

50

60

S

1 2 3 4 5
Training intensity

6

1.25

0.76

2.05
2.35

2.98
2.76

4.01 3.91

4.93 4.92

5.46 5.42

Observations
Optimization value

Iteration time
Number of iterations

Figure 4: Observed and statistical values at di�erent intensities in
terms of iterations.

4 Computational Intelligence and Neuroscience



optimization algorithm (M-BOA, map-based Bayesian opti-
mization algorithm).  e M-BOA algorithm is based on the
proposed Bayesian optimization algorithm, with the di�er-
ence that M-BOA starts from a map table and incorporates
the information from the mapping table into the Bayesian
optimization process.  e entire process is computationally
presented as shown in Figure 1.

4. Numerical Calculation Examples

 e objective function proposed by the minimization op-
timization algorithm is used to solve to derive the location
and degree and to compare the damage identi�cation e�ect
under di�erent objective functions, in addition to consid-
ering 1% uncertainty factor.  e heartbeat motion model is
used as the numerical simulation object, and the data of the
inherent frequency in the vertical direction of the structure
are taken for state identi�cation.  ere are many methods in
the optimization process, as shown in Figure 2.

However, the most important thing is that we look for
the most suitable method to perform the optimization
process. Based on this, we tried three optimization algo-
rithms for comparison to understand the optimization, it-
eration, and accuracy of the myocardial injury process.

We �rst selected a particular myocardial state for vali-
dation. Generally, we guess that myocardial injury occurs or
tends to occur with increasing exercise intensity, and here,

the exercise speed is used to represent the exercise intensity.
In this paper, the model of myocardial injury at di�erent
exercise intensities created in the simulation tool V-REP is
used for validation.  en, we �rst select the velocity as the
evaluation of the validated injured myocardium, while we
assume that it will appear in a certain state after the injury.
From the qualitative analysis, the e�ect of exercise speed on
myocardial injury is relatively large, as shown in Figure 3.

 is is a prediction process for damage, shown in Fig-
ure 3 from the starting moment of performing the adap-
tation process.  e horizontal coordinate is the number of
iterations.  e lower line represents the change in the
maximum observed value after each select-observation-
update iteration, and it is known that the observed per-
formance value increases after the number of iterations.  e
upper line shows the maximum predicted performance
value given in the behavior-performance mapping table after
each selection-observation-update iteration. It can be known
that the maximum predicted value decreases with the in-
crease of the number of iterations because when a steep drop
in performance is monitored, the observed value of this steep
drop in performance is updated by the update process of the
Gaussian model to make a corresponding decrease in other
behaviors around its corresponding behavior.

As can be seen from Figure 3, this damage process
found the target compensation behavior after only 7 it-
erations. 1.255 (m/5s) in the absence of injury and 6.442
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(m/5s) in the myocardial injury velocity.  e �rst three
iterations of the damage recovery process found the best
velocity without damage, and the last compensation be-
havior found resulted in a myocardial damage travel
velocity of 3.022 (m/5s), a 42% improvement in com-
putational e¡ciency.

In the above process, it has been demonstrated that the
optimization algorithm can help to determine the statistical
or observed values that the optimization algorithm can
obtain with.  e following can be further understood by the
motion algorithm at di�erent motion intensities as shown in
Figure 4.

 e change of the number of iterations is not very
obvious with the increase of the training intensity, but the
computation time is increased relatively obviously.

By verifying the e�ectiveness of the objective function
and intelligent optimization algorithm above in structural
damage identi�cation, the damage models at di�erent in-
tensities were selected to use the velocity of motion as input,
and the calculated damage states were used as measurement
data, and all the information of the model before the damage
was known, and the objective functions were optimized
using the GA algorithm, PSO algorithm, and DE algorithm
to identify the damage degree DK of each layer, and the
damage degree DK was de�ned is the relative change of
sti�ness or elastic modulus before and after the damage; DK
takes the value of [0,1], DK� 0 means no damage, and
DK� 1 means complete damage. Table 1 shows the pa-
rameter settings of various optimization algorithms, and the
best identi�cation result is taken as the �nal identi�cation
result of the optimization algorithm in order to compare
various identi�cation results fairly under the same calcu-
lation scale as shown in Figure 5.

 e comparison of the above optimization algorithms
shows that each optimization algorithm reaches conver-
gence within a certain number of iteration steps. e average
number of convergence iterations under each algorithm is
shown in Figure 6.

 e iterative e¡ciency diagram provides an under-
standing of the iterative e¡ciency of each algorithm, and
further, we need to understand the iterative computational
accuracy of each algorithm, as shown in Figure 7.

 e optimized model can further understand the cir-
cumferential damage pattern of myocardium by exercise
intensity as shown in Figure 8.

Figure 8 shows the extent of myocardial damage in each
direction at a given moment.

It is clearly visible that the degree of damage varies
around the entire myocardium. e beating time of the heart
muscle was monitored several times at di�erent �uctuation
frequencies, as shown in Figure 9.

Figure 9 shows that the heartbeat frequency is con-
sistent for multiple monitoring of the same state, while the
peak myocardial damage is reached at a frequency of 10.
 erefore, it is necessary to optimize the algorithm to
always remember the injury frequency to prevent the
injury during the usual training process. And, the algo-
rithm is optimized to keep in the low injury moment.
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5. Summary and Recommendations

By studying the characteristics and extent of myocardial
injury under high-intensity sports training, combining
clinical experimental follow-up and physiological index test
methods for myocardial performance testing and injury
assessment, the prevention and treatment of myocardial
injury is achieved, and the physical health of athletes is
safeguarded.  e results of the changes of myocardial
physiological index parameters under high-intensity sports
training exercise are analyzed, and the signi�cant di�erence
characteristics of heart rate beating of athletes with high-
intensity sports training are used as test indexes to analyze
the functional indexes of myocardial injury under prolonged
aerobic energy supply, and the parametric system structure
of myocardial function of athletes under high-intensity
sports training is obtained.  e best damage identi�cation
method was selected from various objective functions and
optimization algorithms, and the acceleration time response,
frequency, vibration, and �exibility matrices were de�ned as
the objective functions.  e results show that the acceler-
ation time response is more suitable as the objective function
than the frequency, vibration type, and �exibility matrix.
Using the DE algorithm shows better search ability than
using GA algorithm or PSO algorithm; the combination of
DE algorithm and the objective function based on the ac-
celeration time response has the best accuracy force for
damage identi�cation.

 e analysis of the conclusions enables to give relevant
recommendations mainly in terms of not sustaining high-
intensity training. In short, the athletic sports workers and
sports medicine workers should pay enough attention to the
training of athletes because scienti�c training is an impor-
tant method for athletes and coaches to reduce sports in-
juries.  us, through reasonable training methods and
scienti�c sports medicine guidance, the quality of training
and health of athletes can be doubly guaranteed.
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