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In this paper, the regulation stability problem of the human arm continuous movement is investigated based on Markovian
jumping parameters. In particular, the intermittent control mechanism is adopted in the arm movement regulation procedure to
model the human intermittent motor control strategy. Furthermore, by taking into account the Markovian jumping parameters
with diferent modes, the asynchronous regulation issue is proposed tomodel modemismatch between the motor control and arm
movement. On the basis of model transformation, sufcient stability conditions are established during the arm movements, and
the desired regulation gain can be obtained by the convex optimization method. In the end, an illustrative example is presented to
show the applicability and efectiveness of our developed model and optimized regulation approach.

1. Introduction

As a fundamental yet signifcant issue, the human arm
movement regulation has been extensively studied over
the last years with high interest. Especially, various
computational theories with mathematical models have
been developed to describe the human arm movements
with corresponding motor control [1–3]. From the system
point of view, the human motor system can be considered
as a closed-loop control system that has complex dy-
namics and time-varying parameters. In fact, a simple
arm movement is a complicated control procedure
consisting of joint torques, external forces, and motor
commands [4–6]. As a result, these dynamical models
would lead to system analytical and synthetical com-
plexities. Fortunately, diferent models of human arm
movement control have been reported in the literature,
where stability and trajectory tracking problems of
movement regulation are efectively studied with theo-
retical results [7–9]. Furthermore, it is noted that most
common computational methods of human arm

movements are always embedded with constant param-
eters. As such, the optimal solution can be obtained by the
computational method, which is dependent on precise
model parameters. However, it should be pointed out that
human arm control systems might have diferent control
modes to achieve more adaptive abilities, and then, the
activated muscles would change the shapes during the
arm movements according to motion modes [10–12].
Hence, these jumping features can be further extended by
the hybrid system models. In the meantime, Markovian
jumping systems, as a special kind of hybrid system, have
distinguishing modeling ability to depict the complex
dynamic systems under structure or parameter changes
[13–15]. Te Markov chain has played a signifcant role in
Markovian jumping systems to govern the mode jump-
ings. In fact, Markovian jumping systems have been
widely studied to model robotic systems, neural network
systems, and other control systems in numerous practical
areas [16–20]. However, the control design difculties
would increase due to multiple subsystems under system
mode information. More precisely, it is more applicable
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to the intrinsic variables within human arm movement
control procedures. It is noticed that most simplifed
models have a common assumption on constant variable
parameters, which have neglected the stochastic behav-
iors of intrinsic variables and then have certain model
limitations. Terefore, employing many merits of theo-
retical analysis on Markovian jumping systems to the
human arm dynamics can considerably help to improve
the computational models and analysis methods.
Moreover, it is worth mentioning that in practical ap-
plications, true system modes are always difcult to ac-
quire, which gives rise to the so-called asynchronous
control problems. Furthermore, the controller modes
might be diferent from true system modes due to de-
tection delays or external disturbances. Under this
context, without considering the matching modes would
lead to control performance degradation or even system
unstable. As such, another interesting research topic lies
in the fact of true mode information acquirement for
synchronous mode-dependent control in practical
implementations. By considering the observed modes
and true modes, more robust mode-dependent control-
lers can be synthesized accordingly. As a result, it is
natural and reasonable to further address the asyn-
chronous regulation of human arm movements.

On the other hand, there are substantial evidences that have
proven the intermittent strategies during human motor control
[21–23]. More specifcally, it can be found that human controls
bodymovements in an intermittent way rather than continuous
neural mechanisms [24, 25]. On the basis of this interesting
feature, much efort has been devoted to the intermittent issues
of human movements, and several mathematical models have
been developed to exhibit the details. Generally speaking, by
applying intermittent control, high efciency and low cost can
be achievedwhile the body operatesmovements [26, 27]. Under
this context, intermittent control strategies can be employed for
the human arm regulation problem from a system perspective.
Moreover, the asynchronous intermittent control is more sig-
nifcant to deal with the multiple movement modes, which can
further reveal the intrinsic dynamical characteristics. Very re-
cently, intermittent control is also becoming a hot research topic
in dynamical systems, and burgeoning investigations have been
made towards the intermittent state estimation and stability
control solutions, especially for the neural network systems
[28–30]. From the control system perspective, minimal control
cost is also an important issue for high-performance systems. As
such, many in-continuous control strategies have been pro-
posed, which include impulsive control, intermittent control,
sampled-data control, event-triggered control [31–33]. Com-
pared with continuous feedback control approaches, the in-
termittent control, as one of the notable discontinuous control
strategies, can not only improve the control efciency but also
save the control cost. More precisely, by utilizing the nonzero
control width, the intermittent control is more applicable for
practical implementations. Furthermore, the intermittent
control could be more conveniently formulated without event-
triggering thresholds. However, to the best of the authors’
knowledge, there are still few results on the asynchronous
intermittent regulation of human arm movement with

Markovian jumping parameters, which motivates us for this
current study.

For the above discussions on the challenging and open
areas, in this paper, the asynchronous regulation issue of
human arm movement with Markovian jumping pa-
rameters is discussed, where the key idea is to mimic the
motor intermittent control. Firstly, the mathematical
model of human arm movement with Markovian
jumping parameters is proposed. Secondly, the expo-
nential regulation stability is analyzed with asynchronous
intermittent control. Tirdly, sufcient stabilization
criterion is derived, and the regulation synthesis is
achieved via convex optimization. Finally, simulation
results are provided to validate the usefulness and su-
periority of our theoretical results. Tis paper focuses on
the theoretical investigations under the mean-square
framework. Compared with major existing results, the
main novelties of our paper can be summarized as
follows:

(1) A novel intermittent regulation model of human
arm movement with Markovian jumping pa-
rameters is frst proposed to mimic the dynamical
human motor control mechanisms, which is
presented in the state-space states with jumping
modes for further regulation analysis and syn-
thesis. Te proposed hybrid model with jumping
parameters is more applicable for practical
implementations. It is noted that intermittent
control for Markovian jumping control systems is
also signifcant with exponential stability under
the mean-square sense.

(2) The asynchronous intermittent control scheme is
presented to deal with the regulation stability
under human motor and arm movement mode
mismatch. In particular, the intermittent control
strategy is proposed along with the practical
asynchronous mode-dependent control scheme
for the formulated Markovian jumping system. By
utilizing the observed mode information instead
of true modes, the mode-dependent regulation
controllers can have more robustness for mode
information acquirement. Tis can potentially
improve the model’s ability in describing the
Markovian jumping regulation model.

(3) A convex optimization approach is developed
with sufcient linear matrix inequality conditions
to ensure the mode-dependent regulation gain
synthesis, and the corresponding illustrative
simulation is performed to demonstrate the de-
sign adaptability. By solving the established
conditions, the feasible solutions of desired mode-
dependent regulation gains can be calculated
accordingly.

Notations are as follows: N dimensional Euclidean space
matrices are denoted by RN. Matrix P> 0 implies that P is
positive symmetric defnite. (Ω, F ,P) denotes a complete
probability space. E ·{ } stands for mathematics expectation.
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Finally, let ∗ denote the ellipsis terms in symmetry matrices
and all matrices be algebraically compatible.

2. Problem Formulation and Preliminaries

2.1. Human Arm Movement Regulation Model. As depicted
in Figure 1, consider the following two-link human arm
model with rigid motions:

M(q)€q + C(q, _q) _q + G(q) � τ, (1)

where

M(q) �
m1l

2
c1 + m2l

2
1 + I1 m2l1lc2 cos q1 − q2( 

m2l1lc2 cos q1 − q2(  m2l
2
c2 + I2

⎡⎢⎣ ⎤⎥⎦,

C(q, _q) �
0 m2l1lc2 sin q1 − q2(  _q2

− m2l1lc2 sin q1 − q2(  _q1 0
 ,

G(q) �
− m1lc1 + m2l1( g sin q1( 

− m2lc2g sin q2( 
 .

(2)

More precisely, q denotes the joint displacement, M(q)

denotes the inertia matrix, C(q, _q) denotes the Coriolis and
centripetal forces matrix, G(q) denotes the gravitational
force vector, τ denotes the forces acting on the arm.Without
loss of generality, it is assumed that the rotating cuboid
feature is kept for the rotational links. Based on Lagrange’s
equation of motion in robotics, the two-link nonlinear
dynamical model of the human arm is formulated to ef-
fectively describe the operating motions with multiple
modes.

Consequently, in light of the fact that the muscles would
change their shapes during arm motions, the Markovian
jumping human arm model is then established to depict the
jumping features of corresponding variations of the arm
angular mass. Ten, denote a continuous-time discrete-state
Markov process r(t) in (Ω, F ,P) to describe the jumping
modes, where the transition probability matrix
Π � (πij)N×N, ∀i, j ∈ S � 1, . . . ,N{ } is defned by

Pr (r(t + Δt) � j|r(t) � i) �
πijΔt + o(Δt), i≠ j,

1 + πiiΔt + o(Δt), i � j,
 (3)

πii � − N  j�1,i≠ jπij. (4)

As a result, the linear Markovian jumping model can be
obtained by the linearization method that

_x(t) � Ar(t)x(t) + Br(t)u(t), (5)

where (t) � [ _q1, €q1, _q2, €q2]
T ∈ R4 , u(t) � [τ1, τ2]

T ∈ R2 and
Ar(t), Br(t) are known weight matrices for certain system
mode r(t).

Remark 1. Te hybrid system models have been widely
studied for human motion systems since the moment of
inertia is infuenced by human armmotions. In particular, as
one kind of the important hybrid system, the Markov jump
system can efectively model the complex dynamics under

multiple operatingmodes. By introducing theMarkov chain,
diferent motion modes of the human arm can be depicted
accordingly.

2.2. Asynchronous Intermittent Regulation Control. In order
to mimic the concept of intermittent control strategy for
human arm motions, the following mode-dependent in-
termittent regulation controller is synthesized with asyn-
chronous features:

u(t) �
Kσ(t)x t( ), t ∈ k[ )T, kT + δ( ),

0, t ∈ [kT + δ, kT + T],
 (6)

where Kσ(t) denotes the asynchronous feedback regulation
gain matrix to be determined, k is the nonnegative integer, T
represents the regulation control period, δ corresponds to
the regulation control width with 0< δ <T. Without loss of
generality, δ and T are supposed to be prescribed setting
parameters during the regulation design. Moreover,
σ(t) ∈ 5 � 1, . . . ,M{ } is the observable process of mode-
dependent controllers, which has the same efect as r(t) and
is related to r(t) with the following conditional probability
representation Λ [34]:

Pr σ(t) � ρ|r(t) � i  � λiρ, 
M

ρ�1
λiρ � 1. (7)

Remark 2. It is worth mentioning that the biological evi-
dences have been reported to show the fact that the efective
intermittent motor control is adopted by human muscle
activations for energy-saving reasons. From the Markovian
jumping system point of view, if the asynchronous mode
mismatch is not fully taken into account, it would lead to
certain control performance degradation or even system
unstability. Furthermore, the asynchronous intermittent
regulation control model is more applicable for Markovian
jumping human arm systems by taking into account the
possible neural-induced mode delays. Tis integrated
scheme could improve the generality and applicability of the
human arm control model to some extent.

q2

q1

l1

l2

lc2

lc1

Figure 1: Illustration of the two-link human arm confguration.
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Ten, the resultant closed-loop human arm system can
be obtained by

_x t( ) � Ar(t)x t( ) + Br(t)Kσ(t)x t( ), t ∈ k[ )T, kT + δ( ),

_x(t) � Ar(t)x(t), t ∈ [kT + δ, kT + T].

⎧⎨

⎩

(8)

Hence, the following mean-square exponential stability
defnition is presented to illustrate the equilibrium points:

Defnition 1. [35, 36] Te resultant closed-loop human arm
system is said to be exponentially stable in the mean-square
sense for any initial conditions x(0) if it holds that

E ‖x(t)‖{ }≤ ce
− λ t− t0( )E ‖x(0)‖{ }, (9)

where λ> 0 and c> 0 are called the decay rate and decay
coefcient, respectively.

Without loss of generality, it is denoted that r(t) � i and
σ(t) � ρ for simplicity, respectively. To this end, the fol-
lowing matrix lemma is given for later use.

Lemma 1. [37] Given real matrices A, B, C, X, W1, W2
with appropriate dimensions, if there exists a positive sym-
metric P satisfes that

PA
T

+ AP + X B PC
T

∗ W1 W2

∗ ∗ W3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (10)

Ten, there exist a positive symmetric matrix Z and a
positive scalar μ> 0 such that

− Z − Z
T

ZA
T

+ P 0 ZC
T

Z

∗ − μ− 1
P + X B 0 0

∗ ∗ W1 W2 0

∗ ∗ ∗ W3 0

∗ ∗ ∗ ∗ − μP

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

3. Main Results

In this section, the theoretical, analytical, and synthetical
results for closed-loop Markovian jumping human arm
system regulation are derived with detailed mathematical
proofs.

Theorem 1. Given constants α> 0, β> 0, T> 0, the closed-
loop Markovian jumping human arm system can achieve the
mean-square exponential stability with given mode-depen-
dent regulation gains Kρ, ρ ∈ F, if there exists a mode-de-
pendent matrix Pi > 0, i ∈ S, such that the following linear
matrix inequality convex optimization conditions are feasible,
where

αδ − β(T − δ)> 0,

2αPi + 2PiAi + 
N

j�1

πijPj + 2M  ρ�1λiρPiBiKρ < 0, − 2βPi + 2PiAi + 
N

j�1
πijPj < 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

Proof. Construct the following mode-dependent Lyapunov
function as

V(x(t), i, t) � x
T
(t)Pix(t), (13)

And defne the infnitesimal operatorL for V(x(t), i, t)

by

LV(x(t), i, t) � lim
Δ⟶ 0+

1
Δ

E V(x(t + Δ), j, t + Δ)|(x(t), i, t)  − V(x(t), i, t) . (14)
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Consequently, for t ∈ k[ )T, kT + δ), it can be derived
with respect to time that

LV(x(t), i, t)

� E 
N

j�1
πijx

T
(t)Pjx(t) + 2x

T
(t)Pi _x(t)

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� 

N

j�1
πijx

T
(t)Pjx(t) + 2x

T
(t)PiAix(t) + 2 M 

ρ�1
λiρx

T
(t)PiBiKρx(t).

(15)

Such that

LV(x(t), i, t) + 2αV(x(t), i, t)

≤ 2αx
T
(t)Pix(t) + 2x

T
(t)PiAix(t)

+ 
N

j�1
πijx

T
(t)Pjx(t) + 2 M 

ρ�1
λiρx

T
(t)PiBiKρx(t),

(16)

where α> 0 is a constant scalar. Ten, it can be deduced by integrating the above in-
equality that

E V(x(kT + δ), r(kT + δ), kT + δ){ }≤E V(x(kT), r(kT), kT){ }e
− 2αδ

. (17)

If it holds that

2αx
T
(t)Pix(t) + 2x

T
(t)PiAix(t)

+ 

N

j�1
πijx

T
(t)Pjx(t) + 2 

M

ρ�1
λiρx

T
(t)PiBiKρx(t)< 0.

(18)

Similarly, for t ∈ [kT + δ, kT + T], one has that

E V(x(kT + T), r(kT + T), kT + T){ }

≤E V(x(kT + δ), r(kT + δ), kT + δ){ }e
2β(T− δ)

.
(19)

If it holds that

− 2βx
T
(t)Pix(t) + 2x

T
(t)PiAix(t) + 

N

j�1
πijx

T
(t)Pjx(t)< 0,

(20)

where β> 0 is another constant scalar.
Hence, it follows that

Computational Intelligence and Neuroscience 5



E V(x(kT + T), r(kT + T), kT + T){ }

≤E V(x(kT + δ), r(kT + δ), kT + δ){ }e
2β(T− δ)

≤E V(x(kT), r(kT), kT){ }e
− 2αδ

e
2β(T− δ)

≤E V(x(kT − T + δ), r(kT − T + δ), kT − T + δ){ }e
2β(T− δ)

e
− (2αδ− 2β(T− δ))

⋮

≤E V(x(0), r(0), 0){ }e
− (2αδ− 2β(T− δ))(k+1)

.

(21)

Consequently, it can be verifed that

E V(x(t), i, t){ }

≤ e

2αδ − 2β(T− δ)

T
δ
E V(x(0), r(0), 0){ }e

− (2α− − 2β(T − δ))

T
t
, t ∈ k[ )T, kT + δ⎞⎟⎟⎟⎟⎠

(22)

and

E V(x(t), i, t){ }

≤E V(x(0), r(0), 0){ }e

− (2αδ − 2β(T − δ))

T
t
, t ∈ k[ )T + δ, kT + T( ),

(23)

which implies that

E V(x(t), i, t){ }≤ c0E V(x(0), r(0), 0){ }e

− (2αδ − 2β(T − δ))

T
t
,

(24)

with c0 � e2αδ− 2β(T− δ)/Tδ.
Furthermore, by Lyapunov function V(x(t), i, t), it

yields that

E V(x(t), i, t){ }≥ λmin Pi( ‖x(t)‖
2
, (25)

and

E V(x(0), r(0), 0){ }≤ κ‖x(0)‖
2
, κ> 0. (26)

Such that

E ‖x(t)‖
2

 ≤
κc0

λmin Pi( 
e

−
(2αδ − 2β(T − δ))

T
t
‖x(0)‖

2
. (27)

Tis means that the mean-square exponential stability
can be satisfed according to Defnition 1 and therefore
completes the proof. □

Remark 3. It should be pointed out that although multiple
operation modes would afect the human arm motions, the

mean-square exponential stability could ensure the fast
convergence to the equilibrium points under the mode-
dependent regulation control inputs. Especially, the con-
ditional probability method for asynchronous feedback
control is more applicable and efcient to deal with the
parameter jumpings.

Theorem  . Given constants α> 0, β> 0, T> 0, the closed-
loop Markovian jumping human arm system can achieve the
mean-square exponential stability if there exist mode-de-
pendent matrices Pi > 0, i ∈ S, Kρ, ρ ∈F, and matrix Z, such
that the following linear matrix inequality convex optimi-
zation conditions are feasible, where

αδ − β(T − δ)> 0,

− 2βPi + 2Ai
Pi + πii

Pi

���πi1
√ Pi · · ·

���πiN

√ Pi

∗ − P1 · · · ⋮

∗ ∗ ⋱ 0

∗ ∗ ∗ − PN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

Θi1 Θi2

∗ Θi3
 < 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

With
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Θi1 � − Z − Z
T αZ + ZA

T
i + πii

Pi + M 
j�1λiρ

K
T

ρ B
T
i + Pi ∗− μ− 1Pi ,

Θi2 �
Z 0 · · · 0

0 ���πi1
√ Pi · · ·

���πiN

√ Pi

⎡⎣ ⎤⎦,

Θi3 �

− μPi 0 · · · ⋮

∗ − P1 · · · 0

∗ ∗ ⋱ 0

∗ ∗ ∗ − PN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(29)

Furthermore, when the above convex optimization
conditions have feasible solutions, the desired asynchronous
mode-dependent regulation gains can be determined by

Kρ � KρZ
− 1

. (30)

Proof. Denote Pi � P− 1
i and Kρ � KρZ and perform matrix

transformation manipulation to convex optimization con-
ditions in Teorem 1. As a result, by applying Lemma 1, the
rest of the proof can be straightforwardly obtained. □

Remark 4. Te established convex optimization condi-
tions inTeorem 1 andTeorem 2 are in the form of strict
linear matrix inequality, whose feasible solutions can be
easily solved by Matlab or Yalmip software. Moreover, it
should be addressed that the computational complexity is
related to the matrix dimensions and mode information,
which implies that the control design should efectively
consider the model modes and model dynamical
descriptions.

4. Illustrative Example

In this section, a simulation example is provided to validate
the applicableness and efectiveness of the obtained results.

Consider the human arm model with two motion
modes modifcation of operating equilibrium points as
[π/2, 0, π/2, 0]T and [0, 0, π/2, 0]T, respectively, and the
following model parameters are chosen [38]:

m1 � 1kg, m2 � 2kg,

l1 � 0.4m, l2 � 0.4m,

lc1 � 0.2m, lc2 � 0.2m,

I1(r(t)�1) � 0.07kg/m2
, I2(r(t)�1) � 0.017kg/m2

,

I1(r(t)�2) � 0.09kg/m2
, I2(r(t)�2) � 0.018kg/m2

,

g � 9.8.

(31)

Ten, the corresponding Markovian jumping model
matrices can be obtained as follows:

A1 �

0 1 0 0

− 0.0003 0 0.0003 0

0 0 0 1

0.0006 0 − 0.0006 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 �

0 1 0 0

− 0.0001 0.0326 0.0001 0

0 0 0 1

7.5990 0 14.1788 0.0071

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(32)

B1 �

0 0
6.0211 − 9.9317

0 0
− 9.9317 26.6915

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2 �

0 0
2.2222 0

0 0
0 10.1729

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(33)

where the transition rate for Markov chain of motion modes
r(t) is assumed to be

Π �
− 0.6 0.6

0.4 − 0.4
 . (34)

And σ(t) denoting asynchronous features is supposed to
be with

Λ �
0.7 0.3

0.1 0.9
 . (35)

By solving the convex optimization conditions in Te-
orem 2, the desired asynchronous mode-dependent control
gains are obtained as follows:

K1 �
− 44.1239 − 117.7880 9.7824 − 75.8848

− 18.5286 − 26.3105 − 25.4521 − 28.5790
 ,

K2 �
− 52.2699 − 132.9372 − 3.5499 − 68.7495

− 20.8549 − 32.7957 − 29.7469 − 29.5057
 .

(36)

In the simulation, the simulation computer is with Intel
Core i7 5GHz processor, and the MATLAB software is
utilized with variable-step confgurations. Te numerical
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parameters for the simulation model are based on the Monte
Carlo method. For the intermittent control confguration, it
is assumed that the regulation control period is T � 0.3s, and
the regulation control width is δ � 0.1s. As a result, by
setting zero initial conditions in the simulation, the jumping
modes for the human arm model with asynchronous
Markovian jumping mode features are depicted in Figure 2.
With the prescribed simulation parameters, Figures 3 and 4

can show the closed-loop regulation armmotion trajectories
and control inputs, respectively, where it can be found that
our obtained asynchronous mode-dependent synthesized
results can be well adapted to regulate the human arm
movement under the intermittent stability control strategy.
Figure 5 shows the comparison results between asynchro-
nous continuous control and our proposed asynchronous
intermittent control strategies. It can be seen that the
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Figure 2: Illustration of the asynchronous jumping modes.
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Figure 3: Illustration of the arm movement.

50

0

-50

-100

-150

-200

C
on

tro
l i

np
ut

Time (s)
0 5 10 15

Figure 4: Illustration of the arm control input.
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intermittent control can achieve the stable motion regula-
tion with desired performance and less control cost, which
also supports our established theoretical fndings.

5. Conclusions

Tis paper is concerned with the human arm regulation control
problem based on the established hybrid Markovian jumping
system model. More specifcally, the signifcant intermittent
control strategy is explored by considering the fact of motor
control mechanism. Furthermore, the asynchronous mode-
dependent control features are employed to deal with the mode
information mismatch by mode-induced delays. By means of
convex optimization method, sufcient analysis and synthesis
results are established. In the end, the applicability and efec-
tiveness of our theoretical results are demonstrated via relevant
simulation results. In future research, an important research is
focusing on extending the current model to cases with more
realistic motion constraints.
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