
Research Article
Load Balancing Cloud Storage Data Distribution Strategy of
Internet of Things Terminal Nodes considering Access Cost

Jiansheng Wu ,1 Weimin Xu ,1 and Jiarong Xia 2

1China Tobacco Zhejiang Industrial Co., Ltd.,, Ningbo, Zhejiang 315504, China
2School of Mathmatics, Hangzhou Normal University, Hangzhou 311121, China

Correspondence should be addressed to Jiarong Xia; jrxia@hznu.edu.cn

Received 29 November 2021; Revised 28 December 2021; Accepted 3 January 2022; Published 24 January 2022

Academic Editor: Akshi Kumar

Copyright © 2022 JianshengWu et al.-is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rapid development of Internet of-ings (IoT) technology, IoTterminal nodes are facingmany challenges in data storage,
distribution, and data management. In particular, in the IoT terminal nodes considering access cost, the corresponding data
distribution and storage are professional, complex, andmiscellaneous. Based on the abovementioned current situation, this article
innovatively proposes a complex sensor data placement algorithm based on the cloud storage distribution of IoT terminal nodes.
Under this algorithm, the accurate division of IoT data I/O methods is realized through reasonable configuration. -rough the
adaptive sensing algorithm, while fully considering the access cost of the algorithm, the performance of the IoTdata storage system
is further optimized. In the corresponding terminal node load balancing problem, this article innovatively proposes the terminal
node data sorting and distribution algorithm through the node data. -e sorting and distribution algorithm realizes the precise
segmentation of the IoTdata to be processed, thereby realizing the improvement of data reading and processing speed. Based on
the proposed algorithm, this article designs a load balancing cloud storage data distribution optimization system of IoT terminal
nodes considering access cost and carries out experimental verification in a real environment. -e experimental results show that
the data pattern division accuracy corresponding to the proposed distribution strategy is improved to 97.13% and the corre-
sponding data access efficiency is improved to 98.3%, compared with the traditional distribution strategy. -erefore, the data
distribution strategy proposed in this article has obvious performance advantages and further promotion value.

1. Introduction

-e main architecture of the Internet of -ings (IoT) in-
cludes the perception layer, network layer, management
layer and application layer. -e conventional sensing layer is
mainly used to collect relevant physical information, such as
temperature, humidity, air composition, and optical signals.
-e continuous collection and storage of data by the relevant
sensor networks of the IoT cause problems of data distri-
bution and data management [1–3]. -e relevant data of the
IoT are mainly classified into structured data and un-
structured data. -e corresponding structured data mainly
depend on open-source databases and other products, while
the storage of the corresponding unstructured data depends
on the database software developed by the corresponding
unstructured data model. At the data storage level of the IoT,
cloud storage technology, as the development direction of

data storage, mainly processes and analyzes a large number
of different types of data generated by the IoT through
cluster application, network technology, and distributed
storage technology and provides external data access and
storage [4, 5]. -e conventional cloud storage architecture
includes the application interface layer, infrastructure layer,
and storage layer. -e corresponding application interface
layer mainly includes network access, user authentication,
permission management, public API interface, application
software interface, and network service interface. Moreover,
the corresponding infrastructure layer includes the cluster
system, distributed file system, grid system, content distri-
bution and data deduplication, data compression, and data
encryption processing. -e corresponding storage layer
mainly includes storage virtualization, centralized storage
management, status monitoring, maintenance, and
upgrading [6]. Data placement and node load balancing are

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 7849726, 11 pages
https://doi.org/10.1155/2022/7849726

mailto:jrxia@hznu.edu.cn
https://orcid.org/0000-0003-4975-3321
https://orcid.org/0000-0001-9815-2528
https://orcid.org/0000-0001-6598-2015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7849726


important technologies of distributed storage in cloud
storage technology. Load balancing mainly realizes the
dynamic expansion of storage resources to further improve
the utilization of resources, minimize the data response time,
and further reduce the fault recovery and data switching
time to ensure the quality of user data access in the IoT
system [7, 8]. At the level of corresponding data placement
and distribution, the flat distribution of the data system is of
great significance.-e directory organization corresponding
to the traditional data distribution is unreasonable, and the
node data distribution is too scattered or too centralized,
which will further affect the response-ability of the data
system, further reduce the system performance, and increase
the data maintenance cost [9, 10]. Compared with other
storage models, cloud storage has the following advantages:
(1) easy to expand: the storage space is expanded in time
according to the number of users and space of the server,
which will also not affect the use of the front-end users; (2)
reliable and safe: data synchronization effectively avoids
media storage of data. Cloud storage can fully realize load
balancing, which can realize the flow distribution control
service of distributing access traffic to multiple back-end
cloud servers according to the forwarding strategy. More-
over, the external service capabilities of the application
system are extended through traffic distribution, and the
availability of the application system is improved by elim-
inating single points of failure.

-e traditional cloud storage data distribution strategy
of load balancing of IoT terminal nodes has some disad-
vantages in data placement and load balancing technology.
At the data placement level, the disadvantages are as fol-
lows: differences in data storage performance and avail-
ability storage cost between different data storage service
providers and differences in different data reading and
writing modes in the IoT sensor network. -erefore, the
traditional data placement algorithm only meets a single
optimization goal and cannot meet the application storage
requirements under the huge amount of data in IoT. Based
on this, constructing an efficient data placement algorithm
to optimize the performance of different data access is of
great significance to improve the performance of cloud
storage data systems for load balancing of IoT terminals
[11, 12]. For the problem of load balancing, after the
corresponding IoTdata are initialized, as the storage system
continues to serve various big data-related applications on
the upper layer, the data layout corresponding to each
cloud storage system will be unevenly distributed, which
will lead to a serious decline in the performance of data
access [13–15]. After the storage system has been running
for a period of time, it will become normal that the cor-
responding data load is seriously unbalanced. Once the
corresponding load of a data storage service provider is very
high, the system may be blocked and stagnant. When the
data are stagnant, the corresponding outside world must
send out sudden data access and the whole system will have
a bottleneck [16, 17]. Based on this, we aim to realize the
load balancing of IoT terminal nodes to make the system
achieve load balancing and realize the application opti-
mization access function.

Based on the disadvantages of the corresponding data
distribution and storage of IoT terminals considering the
access cost, this article will propose a complex perceptual
data placement algorithm based on the cloud storage dis-
tribution of IoT terminal nodes and realize the I/O mode of
accurately dividing IoT data by reasonably configuring
hybrid perceptual algorithm and adaptive perceptual algo-
rithm to optimize further the performance of the IoT data
storage system considering the access cost. Aiming at the
problem of terminal node load balancing, this article in-
novatively proposes the terminal node data sorting and
distribution algorithm, which realizes the accurate seg-
mentation of the IoT data to be processed through the node
data sorting and distribution algorithm to further accelerate
the data reading and processing speed. At the same time, a
periodic load balancing algorithm is added to the terminal
node data sorting and distribution algorithm so as to further
solve the problem of unbalanced node data layout. Based on
the proposed algorithm, this article designs a load balancing
cloud storage data distribution optimization system of IoT
terminal nodes considering access cost and carries out ex-
perimental verification in a real environment. -e experi-
mental results show that the data pattern division accuracy
corresponding to the distribution strategy proposed in this
article is improved to 97.13% and the corresponding data
access efficiency is improved to 98.3% compared with the
traditional distribution strategy. -e data distribution
strategy proposed in this article has obvious performance
advantages and further promotion value.

-emain structure of this article is as follows: the second
section will mainly analyze the current research status of the
load balancing cloud storage data distribution system of IoT
terminal nodes considering access cost.-e third section will
focus on the analysis of complex perceptual data placement
algorithm and terminal node data sorting and distribution
algorithm and design the cloud storage data distribution
optimization system for load balancing of IoT terminal
nodes considering access cost. -e fourth section will verify
the system and analyze its data. Finally, the article is
summarized.

2. Related Research: Research Status of Load
Balancing Cloud Storage Data Distribution
System of Internet of Things Terminal
Nodes considering Access Cost

A large number of researchers and scientific research in-
stitutions have studied and analyzed the data placement and
load balancing problems faced by the load of terminal nodes
of the IoT. At the research level of data placement and
distribution, relevant cloud storage manufacturers in the
United States put forward simple storage services, and their
corresponding storage mainly involves three indicators:
basic storage unit, unique identifier, and storage object
container. When there are a few corresponding IoTdata, the
corresponding distribution strategy is relatively simple;
therefore, not too much data will be stored in the corre-
sponding storage object container. However, once there is

2 Computational Intelligence and Neuroscience



too much or blocked data, the performance of the cloud
storage system will decline, which is not conducive to the
maintenance and dynamic development of the system
[18, 19]. European cloud storage service providers propose a
static directory layering strategy, whichmainly adopts a two-
tier static object distribution model, alleviating the problem
of too centralized data distribution on nodes to a certain
extent, but this model still has certain limitations. -e even
distribution of the corresponding data depends on the
corresponding IoT data level [20]. At the level of corre-
sponding load balancing algorithms, relevant Chinese re-
searchers have proposed a scheme to realize load balancing
distribution in a distributed environment. However, this
scheme does not consider the corresponding data copies,
which may lead to multiple data copies appearing on the
same data node after the relevant migration. At the same
time, this load balancing strategy does not explicitly specify
how much data can be migrated during the migration
process. If the corresponding migration amount is too large,
the load node will exceed the threshold [21]. Relevant Eu-
ropean researchers have proposed a load balancing algo-
rithm based on private cloud storage, which mainly realizes
the balanced storage of data by calculating the weight
corresponding to the storage node. However, the algorithm
does not fully consider the heterogeneity of the node itself in
the operation process. It treats all nodes equally, and it does
not fully consider the heavy data at this time; if the data is too
heavy, data migration will lead to the risk of increasing
system bandwidth [2, 22]. Based on the analysis of the above
research status, the current traditional load data placement
algorithm and load balancing algorithm of IoT terminal
nodes have more or fewer disadvantages, which leads to the
accuracy of data mode division of cloud storage system and
then leads to a serious decline in the corresponding data
access efficiency.

3. Research on Load Balancing Cloud Storage
Data Distribution Strategy of Internet of
Things Terminal Nodes considering
Access Cost

-is section mainly analyzes and studies the corresponding
key algorithms and system design of the IoT terminal node
load balancing cloud storage data distribution system
considering access cost. -e corresponding system principle
block diagram is shown in Figure 1. As shown in Figure 1,
the key algorithms proposed in this article mainly have two
points: the complex aware data placement algorithm and
node load balancing strategy for processing data placement.
At the corresponding hardware system design level, it also
includes the distribution of IoT terminal nodes, IoTnetwork
element data management layer, IoT file service layer, and
IoT data node control layer. -ere is no data management
layer in the corresponding system, including IoT user and
equipment management, IoT user data node allocation, IoT
monitoring data management equipment, and IoT migra-
tion data management. -e corresponding IoT file service

layer includes the upload and download of IoTdata files, the
upload and download of quantity network audio and video
files, the deletion of IoT files and other related modules. -e
whole system includes monitoring system components.

3.1. Complex Perceptual Data Placement Algorithm. -e
complex perceptual data placement algorithm proposed in
this article mainly solves the problem of data placement
distribution in the IoT. -e complex perceptual data
placement algorithm is mainly divided into two processing
levels. Firstly, the I/O mode of the terminal data nodes of the
IoT is identified and classified based on the decision tree
algorithm. -en, the placement strategy is formulated based
on the processed IoTdata.-e principle block diagram of the
corresponding complex perceptual data placement algo-
rithm is shown in Figure 2.

-e IoTdata I/O mode discrimination and classification
algorithm based on decision tree mainly discriminates the
data I/O type based on the six key factors of IoT data. -e
corresponding six factors are as follows: IoT data size, data
type, IoT data life cycle, IoT data creation time, the last
creation time, and the last modification time of IoT data
[23–25]. Based on the above six factors, the I/O mode of IoT
data is determined.-emodes determined in this section are
as follows: read-only mode, write-only mode, read more and
write less mode, read less and write more mode.-e IoTdata
I/O mode discrimination and classification algorithm based
on decision tree mainly follows the following operation
steps:

Step 1: calculate the gain value of IoT terminal node
data based on six factors: IoT data size, data type, IoT
data life cycle, IoT data creation time, IoT data last
creation time, and last modification time. -e corre-
sponding calculation formulas are shown in formulas
(1), (2), and (3), the corresponding IoT data size is V,
the data type is L, the life cycle of IoT data is S, the
creation time of IoT data is C, the last creation time of
IoT data is L, and the last modification time is D.

G(data, D) � Q data1 + data2 + · · · + datai( 

− Q data1|D1(  + · · · Q datai|Di( ,
(1)

Q(D)�− η1 a1( log η1 a1( (  + · · ·

+ηi ai( log ηi ai( ( ,
(2)

Q(data|D) � η D1( ∗Q data1|D1(  + · · ·

+ η Di( ∗Q datai|Di( .
(3)

Step 2: divide the I/Omode of the IoTdata according to
the gain value calculated in Step 1, and repeat the
operations of Step 1 and Step 2 for the IoTdata until all
the IoT data can be defined as unique data mode.
Step 3: generate a data I/O mode classification model of
IoT terminal nodes based on a decision tree to deter-
mine the complete data I/O type.

Computational Intelligence and Neuroscience 3



Step 4: continuously collect the data to be placed, collect
its corresponding six eigenvalues, call the corre-
sponding decision tree IoT terminal node data I/O
mode classification model, and constantly put new
prediction results into the model so as to improve the
accuracy of the model until all IoT terminal node data
can be finalized.

After being processed by the I/O mode discrimination
and classification algorithm of IoTdata in the decision tree, it
enters the link of the adaptive data placement algorithm.
-is algorithm is mainly based on the I/O mode type of IoT
data to further determine its corresponding placement
strategy and placement scheme. Based on this assumption,
the read more write less mode is mode 1, the read less write

Core process

Place pretreatment

Terminal data read
only mode

Mode
confirmation

Discrimination
of I/O mode

data size

data type

Life cycle

Creation time

Last creation time
Last modification time

Data elements
Terminal gain

Decision tree theory

Comprehensive discrimination

Terminal data write
only mode

Terminal data read more
and write less mode

Terminal data write more
and read less mode

1

2

3

4

Terminal data I/O mode

Data placement scheme of Internet
of things terminal nodes

constraint
condition

constraint
condition

constraint
condition

constraint
condition

collection

Various terminals

Figure 2: Principle block diagram of complex perceptual data placement algorithm.

Core algorithm

Principle block diagram of Internet of thing sterminal node load
balancing cloud storage data distribution system considering access cost

Decision tree
algorithm

Complex perceptual data
placement algorithm

Node load
balancing strategy

1 2

Cloud storage

Discrimination
of I/O mode

Classification of
I/O modes

Development of
placement

strategy

Pretreatment

data size 1

data type 2

Life cycle 3

Creation time 4

Last creation time 5

Last modification time 6

Six elements

Load distribution
storage node

Load migration
algorithm

Load node weight
calculation

Migration basis
Terminal node load

balancing

system design

Internet of things
data division

module
Power
supply
module

Internet of things
terminal node
data placement

decision module
Codec module

System network
communication

module

Internet of
things with
access costs

Interact with people

Progressive fusion

Progressive fusion
Terminal load distribution

Figure 1: Principle block diagram of Internet of -ings terminal node load balancing cloud storage data distribution system considering
access cost.

4 Computational Intelligence and Neuroscience



multimode is mode 2, the read-only mode is mode 3, and the
write-only mode is mode 4. Take the read more write less
mode and read less write more mode as case modes, and
formulate their corresponding placement strategies.

-e placement strategy objective function corresponding
to the read more write less mode is shown in formula (4).

-is mode has large downlink traffic and is sensitive to the
read delay of the corresponding IoTdata.-e corresponding
data placement constraints in this mode are shown in
formulas (5)–(7) and (8). In the corresponding formula, A
represents the cost proportion threshold and C represents
the downstream data cost.

S � min
L∗G1(mode1)( 

(A∗d∗w)
 , (4)

L∗G1(mode1) � max
C
4
1 ∗ lg1 + · · · + C

4
i ∗ lgi 

mi, 1< i< n
, (5)

A1 �  i ∈ Ni 1 − a1( ∗ i ∈ Ni a1(  + · · · +  i ∈ Ni 1 − ai( ∗ i ∈ Ni ai( , (6)

A
s
1 + A

g
1 + A

T
1 < a∗A1, (7)

A
T
1 � a

4
1 ∗P

T
η1
∗Gd1

  + · · · + a
4
1 ∗P

T
ηi
∗Gdi

 . (8)

-eplacement strategy objective function corresponding
to the read less write multimode is shown in formula (9).
-is mode is mainly relatively sensitive to write delay. -e

corresponding data placement constraints in this mode are
shown in formulas (10)–(12) and (13).

S � min
L∗G2(mode2)( 

(A∗ d∗w)
 , (9)

L∗G2(mode2) � max
C
2
1 ∗ lg1 + · · · + C

3
i ∗ lgi 

mi, 1< i< n
, (10)

A2 �  i ∈ Ni 1 − a1( ∗ i ∈ Ni a1(  + · · · +  i ∈ Ni 1 − ai( ∗ i ∈ Ni ai( , (11)

A
s
2 + A

g
2 + A

T
2 < a∗A2, (12)

A
T
2 � a

2
1 ∗P

T
η1
∗Gd1

  + · · · + a
2
1 ∗P

T
ηi
∗Gdi . (13)

-rough the confirmation of the above data placement
scheme, the data sorting and distribution of IoT terminal
nodes can be further confirmed so as to further optimize the
data placement of the system.

In summary, based on the above algorithm, the het-
erogeneity of IoT terminal node data can be fully considered
so as to realize the rationality of IOT terminal node data
placement considering access cost and then prepare for load
balancing.

3.2. Terminal Node Load Balancing Strategy. -e terminal
node load balancing strategy proposed in this section
mainly includes load distribution, storage nodes, and load
migration. -e principle block diagram of the corre-
sponding load balancing strategy is shown in Figure 3.

From Figure 3, we can see the load distribution, storage
nodes, and load migration of the entire wireless sensor
network.

In data node allocation, the weight of terminal node data
needs to be calculated first. -e corresponding calculation
formula is shown in formula (14). -e corresponding S
represents the data state of the node, the corresponding a
represents the heterogeneous weight of the data node, Ws
represents the storage space used by the corresponding node
data, and Wn represents the number of IoT nodes currently
allocated. When the corresponding data weight is larger, the
comprehensive available resources of the corresponding
data node are smaller.

W �
S∗Ws( 

WT ∗A( ∗Wn

. (14)

Computational Intelligence and Neuroscience 5



-e corresponding data node allocation process is shown
in Figure 4. It can be clearly seen from Figure 4 that each
storage node corresponding to the wireless sensor network
needs to continuously calculate the heterogeneous weight of
its corresponding data node and feed the data back to the
corresponding control node of the wireless sensor network
in real-time. At the same time, the data also cover key in-
formation such as the storage space used by data nodes and
the number of IoT nodes allocated. In order to ensure the
correct rate of the algorithm of the entire system, the system
is implemented with a locking scheme when multiple IoT
data nodes are concurrent.

After completing the data node allocation, carry out the
data migration operation. First, set the data load threshold as
Wy, judge whether the load of IoT terminal nodes is too
heavy based on this threshold, and carry out relevant mi-
gration actions. When the load weight of the corresponding
cloud storage system is far less than the load threshold and
the weight of the corresponding single load node is greater
than the load weight of the whole system, notify the system
to trigger the corresponding data migration algorithm for
data migration.When the corresponding system load weight
is much greater than the load threshold, notify the system to
add the corresponding data storage node and notify the
system that the load is too heavy at this time. In the actual
data migration process, in order to ensure the correctness of
data migration, the system needs to ensure that only one data
migration operation is allowed at the same time, and the
system needs to control the migration rhythm.

3.3. Design of Cloud Storage Data Distribution System for
Load Balancing of Internet of 2ings Terminal Nodes Con-
sidering Access Cost. -e design framework of the cloud
storage data distribution system for load balancing of
IoT terminal nodes considering access cost is shown in
Figure 5. It can be seen from the figure that the corre-
sponding hardware system mainly includes IoT data di-
vision module, IoT terminal node data placement decision
module, system network communication module, and IoT
terminal node data encoding and decoding module.

At the design level of the corresponding IoT terminal
node data division module, it mainly realizes the I/Omode
division of the placed data. -e module includes the data
I/O model determination strategy, and the corresponding
implementation method realizes the data type division
model based on the decision tree through scikit-learn. -e
corresponding data placement decision module of the IoT
terminal node is mainly a module to formulate the cor-
responding data placement strategy, which includes the
data placement strategy algorithm. -e corresponding
network communication module is mainly to realize the
interaction between multicloud storage, provide the
function of cloud storage to obtain data and services from
the upper server, provide the function of independent
search and modification and other related operations of
the IoT terminal, and provide the function of obtaining
and monitoring cloud storage operators. -e IoT terminal
node data encoding and decoding module mainly helps
restore relevant data. -is module encodes the IoT

computer

Typical terminal node load of Internet of things

handheld devicesmart wearvarious sensors

Data acquisition
and storage

Calculate the weight of
terminal node data

Pretreatment start

Data status of the node

Heterogeneous
weights of nodes

Storage space used

Number of IOT nodes
allocated

System control node
module

Terminal node data
locking processing

Ensure correctness

Terminal node data
threshold setting

Each node makes
threshold judgment

Not exceeding
threshold

Threshold exceeded

Data migration
algorithm

Terminal data
migration

Only one migration is
guaranteed at a time

Complete terminal load
data migration and load

balancing

Migration process control
rhythm

load balancing

Figure 3: Principle block diagram of terminal node load balancing algorithm.

6 Computational Intelligence and Neuroscience



Data placement
strategy

Hardware system design

Internet of things
data division

module

Internet of things
terminal node
data placement

decision module

System network
communication

module

IOT terminal
node data

encoding and
decoding module

…………

IOT terminal cloud storage environment

Stored data-training data

message passing

Data placement
scheme

Load distribution
and migration

Load balancing
strategy

Data decision 1

Data decision 2

……

Data decision n

Group 1

Group 2

……

Group n

Data network communication interface

Encoder part

Decoder part

Algorithm-target

Part 1

Part 2

Part 3

Part 4

Human computer
interaction of Internet of

things

visit Collect data

Figure 5: Design framework of cloud storage data distribution system for load balancing of Internet of -ings terminal nodes considering
access cost.

Collect node eigenvalues

……

Terminal node data distribution process

Weight judgment

data storage node 2data storage node 1 data storage node 3

data storage node
i+1data storage node i data storage node

i+2

Data status of the node

Heterogeneous
weights of nodes

Storage space used

Number of IOT nodes
allocated

……

Systemcontrolnode

Timely feedback

Multiple cloud storage terminals

1 2 3 4

Data locking
processing

Ensure the correctness
of the algorithm

Calculate the weight
of terminal node data �reshold setting

Data placement
min-max

Available resources
max-min

Data weight

Figure 4: Principle block diagram of terminal node data distribution process.

Computational Intelligence and Neuroscience 7



terminal data through the encode() function and decodes
the relevant IoT terminal data through the decode()
function.

4. Experimental Verification and Data Analysis

In order to further verify the advantages of the actual system
and the corresponding data distribution algorithm, this
article is verified by the performance comparison experi-
ment with the traditional distribution algorithm.

In the data mode division accuracy experiment, this
article selects 100, 1000, 5000, and 10000 IoT terminal node
files for comparative experiments. -e corresponding ex-
perimental data are shown in Figure 6. It can be seen from
the figure that the data distribution strategy proposed in this
article is improving with the increasing number of files.
When the number of files reaches 10000, the corresponding
data partition accuracy is improved to 97.13%, which has
obvious advantages over the traditional data distribution
strategy.

Verify the response speed advantages of the distribution
algorithm at the read, write, store, and delete levels when the
number of files corresponds to 100, 1000, 5000, and 10000.
-e corresponding experimental results are shown in
Figures 7(a), 7(b), and 7(c). As can be seen from the figure, at
the corresponding write operation level, the write speed of
the algorithm proposed in this article is about 15% higher
than that of the traditional algorithm. At the corresponding
read operation level, the write speed of the proposed

algorithm is about 20% higher than that of the traditional
algorithm. At the corresponding storage operation level, the
writing speed of the proposed algorithm is about 17% higher
than that of the traditional algorithm. At the corresponding
level of delete storage operation, the writing speed of the
proposed algorithm is about 17% higher than that of the
traditional algorithm. Based on the above data, it can be seen
that the performance of the algorithm proposed in this
article has been comprehensively improved compared with
the traditional algorithm at the basic operational level.

In order to verify the advantages of this algorithm in the
level of load balancing, the comparative verification is
carried out when the number of files of IoT terminal nodes is
100, 1000, 5000, and 10000, and the corresponding load
number of each storage node in the system is observed in the
experiment. Under different file numbers, the corresponding
load distribution is shown in Figure 8. It can be seen from
the figure that the load distribution of the distribution al-
gorithm proposed in this article is relatively uniform in each
memory. At the same time, with the increase of the number
of files, the number of files between the corresponding
memories fluctuates little, while the corresponding load is
seriously unbalanced under the corresponding traditional
distribution strategy.

In order to verify the superiority of the algorithm
proposed in this article in system data access efficiency, a
comparative experiment is carried out based on the tradi-
tional distribution strategy. -e experimental results are
shown in Figure 9. It can be seen from the figure that the

files:100 files:1000

files:5000 files:10000
Max:07.13%

100

80

60

40

20

0

ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
number sequence

Traditional algorithm
Paper algorithm

100

80

60

40

20

0

ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
number sequence

Traditional algorithm
Paper algorithm

100

80

60

40

20

0

ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
number sequence

Traditional algorithm
Paper algorithm

100

80

60

40

20

0

ac
cu

ra
cy

 (%
)

1 2 3 4 5 6 7 8 9 10
number sequence

Traditional algorithm
Paper algorithm

Figure 6: Column chart of data pattern division accuracy experiment.

8 Computational Intelligence and Neuroscience



distribution strategy proposed in this article has the highest
system data access efficiency of 98.3%, which is nearly 20%
higher than the traditional distribution algorithm. -ere-
fore, this algorithm has obvious advantages over traditional
algorithms.

-e above analysis and experimental results further show
that the algorithm proposed in this article has obvious

advantages over the traditional algorithm in the cloud
storage data system of load balancing of IoT terminal nodes
considering access cost, and it can realize the optimization of
data placement and load balancing. -is greatly improves
the accuracy of the system’s data mode division of IoT
terminal nodes and further improves the data access effi-
ciency of the system.

90

80

70

60

50

40

30

20

0

Write operation
Sy

ste
m

 re
ac

tio
n 

tim
e (

s)

21s
10s

43s

22s

72s

51s

83s

62s
21s

21s

min max
Write operation

100 1000 5000 10000

Traditional algorithm
Paper algorithm

Number of documents

(a)

Read operation

20s

10s

29s

21s

31s
42s

78s

37s

min max
read operation

max:38s

90

80

70

60

50

40

30

20

0

Sy
ste

m
 re

ac
tio

n 
tim

e (
s)

100 1000 5000 10000

Traditional algorithm
Paper algorithm

Number of documents

(b)

Sy
ste

m
 re

ac
tio

n 
tim

e (
s)

16

14

12

10

8

6

4

2

0

Storage operation

3.7s
4.4s

4.3s

6s
6.2s

8.4s

10.8s

8s

min max
Storage operation

100 1000 5000 10000

Traditional algorithm
Paper algorithm

Number of documents

(c)

Figure 7: (a)Write operation level performance comparison column chart. (b) Read operation level performance comparison column chart.
(c) Storage operation level performance comparison column chart.

Computational Intelligence and Neuroscience 9



5. Conclusion

-is article mainly analyzes and studies the relevant research
algorithms of cloud storage data distribution system with
load balancing of IoT terminal nodes considering access cost
and analyzes and compares their advantages and disad-
vantages. Based on the existing problems, this article pro-
poses a complex sensing data placement algorithm based on
the cloud storage distribution of IoT terminal nodes and
realizes the accurate division of I/O mode of IoT data by

reasonably configuring hybrid sensing algorithm and
adaptive sensing algorithm so as to further optimize the
performance of IoT data storage system considering access
cost. Aiming at the problem of terminal node load balancing,
this article innovatively proposes the terminal node data
sorting and distribution algorithm. -rough the node data
sorting and distribution algorithm, the accurate segmenta-
tion of the IoTdata to be processed is realized so as to further
accelerate the data reading and processing speed. At the
same time, a periodic load balancing algorithm is added to
the terminal node data sorting and distribution algorithm.
-us, the problem of unbalanced node data layout is further
solved. Based on the proposed algorithm, this article designs
a load balancing cloud storage data distribution optimiza-
tion system of IoT terminal nodes considering access cost
and carries out experimental verification in a real envi-
ronment. -e experimental results show that the data pat-
tern division accuracy corresponding to the distribution
strategy proposed in this article is improved to 97.13% and
the corresponding data access efficiency is improved to
98.3%, compared with the traditional distribution strategy.
-e data distribution strategy proposed in this article has
obvious performance advantages and further promotion
value. In the follow-up research, the article will focus on
analyzing the energy consumption of wireless sensor net-
works. At the same time, it will further optimize the load
balancing situation in the load balancing strategy. Moreover,
it will further discuss the load balancing strategy problem of
the traditional cloud storage network considering the cost.

Traditional algorithm
Paper algorithm

100 1000 5000 10000

98.3%

Difference:20%

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ef
fic

ie
nc

y 
(%

)

Figure 9: Comparison of system data access efficiency under
different numbers of files.

50

40

30

20

10

0

files: 100

1 2 3 4 5 6 7 8 9 10
Storage node label

Traditional algorithm
Paper algorithm

1 2 3 4 5 6 7 8 9 10
Storage node label

Traditional algorithm
Paper algorithm

1 2 3 4 5 6 7 8 9 10
Storage node label

Traditional algorithm
Paper algorithm

1 2 3 4 5 6 7 8 9 10
Storage node label

Traditional algorithm
Paper algorithm

1000

800

600

400

200

0

1000

800

600

400

200

0

files: 1000
N

um
be

r o
f s

to
ra

ge
N

um
be

r o
f s

to
ra

ge

N
um

be
r o

f s
to

ra
ge

N
um

be
r o

f s
to

ra
ge

files: 5000
2000

1600

1200

800

400

0

files: 10000

Loadnumber: 100Loadnumber: 10

Loadnumber: 500
Loadnumber: 1000

Figure 8: Broken line diagram of load distribution of each storage node under different numbers of files.

10 Computational Intelligence and Neuroscience



Data Availability

-e data used to support the study are available from the
corresponding author upon request.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

References

[1] M. Quezada-Naquid, R. Marceĺın-Jiménez, and
J. L. Gonzalez-Compeán, “RS-Pooling: an adaptive data
distribution strategy for fault-tolerant and large-scale storage
systems,” 2e Journal of Supercomputing, vol. 72, no. 2,
pp. 1–21, 2015.

[2] M. Li, J. Zhang, J. Wan et al., “Distributed machine learning
load balancing strategy in cloud computing services,”Wireless
Networks, vol. 26, no. 8, pp. 5517–5533, 2020.

[3] J. Huang, W. Liu, and Y. Su, “Load balancing strategy and its
lookup-table enhancement in deterministic space delay/dis-
ruption tolerant networks,” Advances in Space Research,
vol. 61, no. 3, pp. 811–822, 2017.

[4] B. Cui, Z. Liu, and L. Wang, “Key-aggregate searchable en-
cryption (KASE) for group data sharing via cloud storage,”
IEEE Transactions on Computers, vol. 65, no. 8, pp. 2374–2385,
2016.

[5] J. Kumar and A. Singh, “Secure and energy aware load bal-
ancing framework for cloud datacenter networks,” Electronics
Letters, vol. 55, no. 9, pp. 11–23, 2019.

[6] A. Ghasemi and A. T. Haghighat, “A multi-objective load
balancing algorithm for virtual machine placement in cloud
data centers based on machine learning,” Computing, vol. 102,
no. 9, pp. 2049–2072, 2016.

[7] A. Cucchetti, C. Ricci, G. Ercolani et al., “Efficacy and cost-
effectiveness of immediate surgery versus a wait-and-see
strategy for sporadic nonfunctioning T1 pancreatic endocrine
neoplasms,” Neuroendocrinology, vol. 101, no. 1, pp. 25–34,
2015.

[8] C. T. Yang, W. C. Shih, and C. L. Huang, “On construction of
a distributed data storage system in cloud,” Computing,
vol. 98, no. 1, pp. 93–118, 2016.

[9] J. P. B. Mapetu, L. Kong, and Z. Chen, “A dynamic VM
consolidation approach based on load balancing using
Pearson correlation in cloud computing,” 2e Journal of
Supercomputing, vol. 77, no. 6, pp. 5840–5881, 2021.

[10] S. S. Sefati, M. Mousavinasab, and R. Z. Farkhady, “Load
balancing in cloud computing environment using the Grey
wolf optimization algorithm based on the reliability: per-
formance evaluation,”2e Journal of Supercomputing, vol. 11,
no. 3, pp. 1–25, 2021.

[11] J. Prassanna and N. Venkataraman, “Adaptive regressive
holt–winters workload prediction and firefly optimized lot-
tery scheduling for load balancing in cloud,” Wireless Net-
works, vol. 34, no. 3, pp. 2313–2322, 2019.

[12] C. Liu, R. Ranjan, C. Yang, X. Zhang, L. Wang, and J. Chen,
“MuR-DPA: top-down levelled multi-replica merkle hash tree
based secure public auditing for dynamic big data storage on
cloud,” IEEE Transactions on Computers, vol. 64, no. 9,
pp. 2609–2622, 2015.

[13] J. K. Liu, K. Liang, W. Susilo, J. Liu, and Y. Xiang, “Two-factor
data security protectionmechanism for cloud storage system,”
IEEE Transactions on Computers, vol. 65, no. 6, pp. 1992–2004,
2016.

[14] Z. Yin, X. Li, Z. Yao et al., “Divergences in reproductive
strategy explain the distribution ranges of Vallisneria species
in China,” Aquatic Botany, vol. 132, no. 3, pp. 41–48, 2016.

[15] A. Hussain, M. Aleem, M. A. Iqbal, and M. A. Islam, “SLA-
RALBA: cost-efficient and resource-aware load balancing
algorithm for cloud computing,” 2e Journal of Super-
computing, vol. 75, no. 10, pp. 6777–6803, 2019.

[16] S. Vazquez, P. Acuna, R. P. Aguilera, J. Pou, J. I. Leon, and
L. G. Franquelo, “DC-link voltage-balancing strategy based on
optimal switching sequence model predictive control for
single-phase H-npc converters,” IEEE Transactions on In-
dustrial Electronics, vol. 4, no. 19, pp. 11–19, 2019.

[17] A. Tchernykh, M. Babenko, N. Chervyakov et al., “AC-RRNS:
anti-collusion secured data sharing scheme for cloud storage,”
International Journal of Approximate Reasoning, vol. 102,
no. 11, pp. 60–73, 2018.

[18] Y. Li and Y. Wang, “Synergistic strategy for the geographical
traceability of wild Boletus tomentipes by means of data
fusion analysis,” Microchemical Journal, vol. 140, no. 34,
pp. 38–46, 2018.

[19] B. Hwa, Z. Yuan, and G. Kce, “Functional broadcast en-
cryption with applications to data sharing for cloud storage,”
Information Sciences, vol. 502, no. 78, pp. 109–124, 2019.

[20] A. A. Periola, O. A. Osanaiye, and A. T. Olusesi, “Future
cloud: spherical processors for realizing low-cost upgrade in
underwater data centers,” 2e Journal of Supercomputing,
vol. 32, no. 2, pp. 1–27, 2021.

[21] K. Karmakar, R. K. Das, and S. Khatua, “An ACO-based
multi-objective optimization for cooperating VM placement
in cloud data center,” 2e Journal of Supercomputing, vol. 91,
no. 9, pp. 1–29, 2021.

[22] Z. Zhou, P. Q. Tran, and K. Kieft, “Genome diversification in
globally distributed novel marine Proteobacteria is linked to
environmental adaptation,”2e ISME Journal, vol. 141, no. 8,
pp. 1–18, 2020.

[23] J. Wu, L. Shen, and L. Liu, “LSH-based distributed similarity
indexing with load balancing in high-dimensional space,”2e
Journal of Supercomputing, vol. 76, no. 1, pp. 636–665, 2020.

[24] R. Regaieg, M. Koubàa, and Z. Ales, “Multi-objective opti-
mization for VM placement in homogeneous and heteroge-
neous cloud service provider data centers,” Computing,
vol. 11, no. 3, pp. 1–25, 2021.

[25] M. Riahi and S. Krichen, “A multi-objective decision support
framework for virtual machine placement in cloud data
centers: a real case study,” 2e Journal of Supercomputing,
vol. 74, no. 7, pp. 2984–3015, 2018.

Computational Intelligence and Neuroscience 11


