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Brain tumors are difficult to treat and cause substantial fatalities worldwide. Medical professionals visually analyze the images and
mark out the tumor regions to identify brain tumors, which is time-consuming and prone to error. Researchers have proposed
automatedmethods in recent years to detect brain tumors early.)ese approaches, however, encounter difficulties due to their low
accuracy and large false-positive values. An efficient tumor identification and classification approach is required to extract robust
features and perform accurate disease classification. )is paper proposes a novel multiclass brain tumor classification method
based on deep feature fusion. )e MR images are preprocessed using min-max normalization, and then extensive data aug-
mentation is applied to MR images to overcome the lack of data problem. )e deep CNN features obtained from transfer learned
architectures such as AlexNet, GoogLeNet, and ResNet18 are fused to build a single feature vector and then loaded into Support
Vector Machine (SVM) and K-nearest neighbor (KNN) to predict the final output. )e novel feature vector contains more
information than the independent vectors, boosting the proposed method’s classification performance. )e proposed framework
is trained and evaluated on 15,320 Magnetic Resonance Images (MRIs). )e study shows that the fused feature vector performs
better than the individual vectors. Moreover, the proposed technique performed better than the existing systems and achieved
accuracy of 99.7%; hence, it can be used in clinical setup to classify brain tumors from MRIs.

1. Introduction

Brain tumors are one of the most dangerous types of brain
diseases that can develop due to abnormal cell growth inside
the skull. Brain tumors can be categorized into two types:
primary tumors and secondary tumors. Primary brain tu-
mors account for 70% of all tumors and spread only in the
brain, whereas secondary brain tumors form in other organs
such as the breast, kidney, and lung before migrating to the
brain. According to a study by NBTF, in US alone, around
29,000 cases of primary brain tumor are diagnosed each year,
resulting in the death of 13,000 people [1]. Similarly, in the
United Kingdom, about 42,000 people with primary brain

tumors die each year. Glioma, Meningioma, and Pituitary
tumors are the most prevalent brain tumors. Glioma tumor
is caused by unusual growth in Glial cells that constitute 80%
of the brain. Among all primary tumors, it has the highest
fatality rate. Meningioma tumors develop in the brain’s
protective membrane, the meninges spinal cord. In contrast,
the pituitary tumor develops in the pituitary gland. )is
gland produces various necessary hormones. Although the
pituitary tumor is benign, it can cause hormonal deficiencies
and irreparable damage to vision [2]. Hence, an early and
accurate diagnosis of brain tumors is necessary to protect
patients from damaging effects [3]. Depending on their
objective, brain tumors can be diagnosed using various
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medical imaging technologies. Ultrasonography (US),
magnetic resonance imaging (MRI), and computed to-
mography (CT) are three of the widely used techniques [4].
)e most prevalent noninvasive imaging technology is
magnetic resonance imaging (MRI), which does not emit
any harmful ionizing radiation during the examination like
X-rays. Furthermore, it generates clear images of soft tissues
and can acquire modalities like FLAIR, T1, and T2, using a
variety of parameters [5].

Proper identification of tumor type is a difficult task as
the tumors usually vary in shape, intensity, size, and loca-
tion. Usually, the medical professionals visually inspect the
images and meticulously mark out the tumor regions in the
images. Because of the surrounding healthy tissues, tumor
borders are frequently blurred. As a result, the manual
identification process via optical inspection is time-con-
suming and can cause misinterpretation of the tumor.
Furthermore, manual tumor detection relies heavily on the
radiologist’s experience [6]. It should also be mentioned that
the human eye cannot distinguish between distinct shades of
grey shown in MRI scans. Other prominent reasons for
tumor misinterpretation include fatigued radiologists or
noisy MRIs caused by variations in imaging devices. )us,
automated systems are appropriate when radiologists want
to visually evaluate the depth of the tumor or identify the
type of tumor to reduce the likelihood of biopsy [7, 8].
Various researchers have proposed CAD-based brain tumor
detection methods. However, the limitation of traditional
ML-based algorithms is that they use a hand-crafted feature
extraction strategy. )e features are extracted from training
images before classification [9].

Brain tumor classification techniques can be divided into
machine learning- (ML-) based methods and deep learning-
(DL-) based methods. )e ML-based systems employ
handcrafted feature extraction and manual segmentation
before classification that is time-consuming and error-
prone. )ese methods typically require the assistance of an
expert with extensive experience to discover optimal feature
extraction and segmentation algorithms for proper tumor
identification. As a result, when working with larger data-
bases, the performance of these systems is prone to errors
[10]. Meanwhile, DL-based algorithms perform these steps
automatically and have proven incredibly useful in various
applications, including medical image analysis. One of the
most prominent DL models, i.e., convolutional neural
network (CNN), is widely employed because of its robust
performance and weight-sharing nature. It can extract low-
level and high-level features from training data automati-
cally. Hence, these techniques have drawn the interest of
scientists and researchers [11, 12].

)is paper is a continuation of research presented in
Kibriya et al. [9] that compares the performance of two
transfer learning architectures such as ResNet18 and Goo-
gLeNet to classify brain tumors from MRI images. )e deep
features were classified using end-to-end CNN models as
well as ECOC based SVM. )is paper proposes an auto-
mated method based on the fusion of deep features obtained
via three well-known CNNs, AlexNet, ResNet18, and
GoogLeNet, for brain tumor identification and classification.

Feature fusion is a method that combines multiple low and
high-level features into a single feature vector, thus in-
creasing the discrimination performance of model by
eliminating the need of utilizing feature vector from a single
model. )e motivation behind using a feature fusion-based
technique is to produce informative and discriminative
features from MRIs, which are critical for accurate tumor
classification. To demonstrate the efficacy of the suggested
method, we used multiple quantitative measures to assess
our model on a well-known brain tumor dataset [13]. )e
primary contributions of the proposed system are as follows:

(i) We designed a completely automated hybrid system
that uses both (a) transfer learned CNN models for
deep feature extraction and (b) ML classifiers for
effective classification of the type of brain tumors.

(ii) )e proposed method consists of five core steps
such as (a) image intensity normalization, (b) ex-
tensive dataset augmentation, (c) feature extraction
via multiple CNNs, that is, AlexNet, ResNet18, and
GoogLeNet, (d) fusion of deep features vector that
achieves cutting-edge performance for classifying
brain tumors from MR images, and (e) tumor type
classification via SVM and KNN.

(iii) )e concatenation of deep features in a single vector
enhances the discriminating power. It enables ef-
fective tumor classification under various challenges
such as complex background, fuzzy tumor
boundaries, varying tumor location, and other
problems in MRI artifacts.

(iv) )e obtained results show the robustness of the
proposed approach compared to existing systems.

)e paper is arranged as follows. Section 2 analyzes
related studies. Section 3 describes the proposed method.
Section 4 and Section 5 are dedicated to experiments and
results, respectively. )e proposed work is concluded in
Section 6.

2. Literature Review

Early tumor identification and classification of brain tumors
are necessary for the effective treatment of a patient. Experts
can now provide better treatment to patients via automated
healthcare systems because of remarkable technology im-
provements. )e researchers have proposed studies
employing ML and DL based algorithms to solve medical
image diagnosis problems [14]. One of the most famous DL
models is CNN, which has achieved groundbreaking results
in different fields, including image processing. CNN-based
systems can efficiently diagnose brain tumors and assist
healthcare providers in determining treatment decisions for
patients. According to the statistics of 2016, more than 200
DL-based researches on medical images were proposed, and
190 of those employed the CNNs [11]. Some of the very
popular CNNs such as AlexNet [15], VGG [16], and Goo-
gLeNet [17] are currently being used in medical image
classification tasks. )is section discusses the recent studies
for brain tumor classification in detail.
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Mzoughi et al. [18] demonstrated 3D CNN architecture
for glioma brain tumor classification into low-grade gliomas
(LGG) and high-grade gliomas (HGG) utilizing the entire
volumetric T1-Gado MRI sequence from Brats 2018 dataset.
Using small kernels, the architecture combined local and
global contextual information with lower weights, based on a
3D convolutional layer and a deep network. )e system
achieved 96.49% accuracy. Maqsood et al. [19] suggested a
brain tumor detection method employing edge detection
and U-NET model. )e tumor segmentation framework
enhances image contrast and performs edge detection fuzzy
logic. )e features are extracted from decaying subband
images and then classified using the U-NET architecture,
which detects the presence of meningioma in brain images.
Togacar et al. [20] developed BrainMRNet using attention
modules and the hypercolumn method. Initially, the images
were preprocessed before being sent to the attention
modules. Attention modules determine the key regions of an
image and send the image to convolutional layers. Hyper-
column is one of the important techniques used by the
BrainMRNet model in the convolutional layers. )e features
extracted from each layer are maintained by the array
structure in the final layer using this technique. )e system
achieved an accuracy of 96.05%. )e authors in Khawaldeh
et al. [21] suggested a CNNmodel to detect brain tumors and
Glioma tumors by improving pretrained architecture and
achieving 91% overall accuracy. Despite the tremendous
amount of work in this field, developing a good and practical
technique for classifying brain MR images still requires
additional research. )e main limitation of the research in
[18–21] is that they only perform binary classification of
brain tumors and disregard multiclass classification, re-
quiring additional analysis to determine the kind of tumor.

Several recent researches employing transfer learning-
based methods to detect brain tumors have been proposed.
For example, the authors in Sajjad et al. [22] demonstrated a
multimodal tumor classification system based on CNN.)ey
initially segmented the MR images using Input Cascade
CNN and classified them using a fine-tuned VGG-19 with
94.5% accuracy. However, the framework is computationally
inefficient as it performs segmentation and classification via
CNNs. Ari et al. [23] fused deep features obtained from
AlexNet and VGG16. )e fused feature vector was then
classified via Extreme Learning Machine (ELM). )e study
was conducted on MRI images from publicly available
Figshare, Rider, and REMBRANDT datasets. )e system
achieved 96.6% accuracy. Noreen et al. [24] extracted deep
features using VGG16, VGG19, and AlexNet and classified
the features via ensemble classifiers. )e system achieved the
highest accuracy of 94.3%. Swati et al. [25] classified brain
tumor MRI images using fine-tuned AlexNet and VGG with
an accuracy of 94.8%. )e authors in Saxena et al. [26]
employed ResNet, Inception-V3, and VGG-16 and achieved
the highest accuracy of 95% via ResNet. However, the
techniques obtained a low overall performance and need to
be tested before real-time deployment.

)e authors in Abiwinanda et al. [27], on the other hand,
suggested five CNN designs to classify brain tumors and
obtained the highest validation accuracy of 84.1%. It may be

noted that very simplistic CNNs cannot extract deep high-
level features, resulting in poor overall accuracy. Alanazi
et al. [28] presented a brain tumor classification framework
employing novel 22 layered CNN architectures and achieved
the highest accuracy of 96.8%. However, the proposed
technique is trained and evaluated on limited imaging
samples. Khan et al. [29] proposed a Hierarchical Deep
Learning-Based Brain Tumor classification method. )e
study was conducted on MRI images from Kaggle dataset
and achieved 92.13% classification accuracy. However, the
system needs to be tested before deploying for clinical setup
for brain tumor classification due to low overall accuracy.
Anaraki et al. [30] employed the Genetic Algorithms (GA) to
find an optimal CNN architecture with lesser computation
cost for the classification of brain tumors. )ey obtained
94.2% accuracy to classify Glioma, Meningioma, and Pi-
tuitary tumors from MRI images. However, GA could not
find optimal CNN architecture, thus resulting in poor
overall accuracy. )e authors in Raja [31] employed
Bayesian fuzzy clustering (BFC) technique for image seg-
mentation, nonlocal mean filter for image denoising and
scattering transform, information-theoretic measurements,
and wavelet packet Tsallis entropy for feature extraction and
a hybrid DAE strategy for brain tumor classification.
However, this technique takes a long time to compute and is
computationally inefficient. Afshar et al. [32] used Capsule
Networks to identify and classify brain lesions with 90.89%.
It should be noted that CapsNets are particularly sensitive to
image backgrounds and perform better when segmented
images are used to train the model. As a result, the archi-
tecture is complicated.

3. Proposed Methodology

)is paper proposes a novel MRI-based brain tumor
identification and classification method employing a fusion
of deep CNN features.)e workflow diagram is presented in
Figure 1. )e MRI images are normalized and augmented
before being fed into three separate CNN models for feature
extraction. )e obtained deep feature vectors are fused in a
single feature vector and classified via SVM and KNN. )e
proposed method is robust and efficient and can be utilized
to accurately classify different types of brain tumors such as
Pituitary, Glioma, and Meningioma.

3.1. Data Preprocessing. MRI images from the dataset are
initially preprocessed by applying min-max normalization, as
explained in equation (1).)e intensity values in an image are
scaled between [0, 1] by applying the normalization tech-
nique. )is normalization technique transforms the mini-
mum value of the feature to 0 and the maximum value to 1.

f(x, y) �
f(x, y) − Zmin

Zmax − Zmin
, (1)

where f denotes the brain image, x and y are the pixel’s
location in an image, the minimum pixel value is indicated
by Zmin, and the maximum pixel value by Zmax Figure 2
shows the result of the min-max normalization technique.
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)ese images are then rescaled according to the input layer
size of the CNNs. )e preprocessing steps facilitate network
training by speeding up the learning process and solving
memory problems.

3.2. Image Augmentation. )e dataset utilized in this study
has a limited number of MRI samples; hence, the pre-
processed images are artificially increased by using the various
augmentation techniques described as shown in Figure 3.
Usually the models tend to be biased towards labelling the
new instances as majority class types due to uneven class
distribution; hence, this problem can be reduced artificially
augmenting the dataset. )e images are augmented by ap-
plying left/right mirroring, adding salt and pepper noise using
density (d) of 0.003, flipping the image around the x-axis, and
applying 45-degree rotation with bilinear interpolation, in
which the output value of the pixel is a weighted average of
pixels in the nearest 2-by-2 neighborhood. Dataset aug-
mentation techniques increased theMRI images from 3064 to
15,320 images as shown in Table 1.

3.3. Deep Feature Extraction

3.3.1. Convolutional Neural Network. )e robust perfor-
mance of CNNs has increased its popularity among aca-
demics and encouraged them to solve previously thought-to-
be-impossible issues. In recent years, researchers have built
many CNN architectures to address diverse challenges in
various disciplines, including medical image identification
[33]. CNN is composed of numerous layers stacked on top of
one another. CNN’s architecture consists of two main parts:
(i) feature extraction module employing convolutional
layers for learning the features, and pooling layers for
downsizing the image dimensions, and (ii) classification
module comprising a fully connected (FC) layer for clas-
sifying an image [8]. )e general architecture of the CNN is
illustrated in Figure 4.

3.3.2. Transfer Learning. )e CNNs generally perform better
on larger datasets than the smaller ones. Training CNN
models from scratch requires a lot of resources. Hence,
transfer learning is used in situations where it is impossible to

build a big training dataset or custom CNN architecture.
Figure 5 demonstrates the concept of transfer learning. A
model that has already been trained on bigger datasets such as
ImageNet [15] can be used as a feature extractor on a smaller
dataset assignment. Transfer learning is being implemented in
various fields, including medical image diagnosis and X-ray
screening of baggage [34]. )is technique decreases the long
network training time required for building custom deep
learning models and the requirement for a big dataset.

In this study, we employed CNN architectures, namely,
AlexNet [15], GoogLeNet [17], and ResNet18 [35], as deep
feature extractors since the CNNs are capable of collecting
significant features without any human supervision. Further-
more, because the Figshare dataset is not particularly large, we
adopt a strategy based on transfer learning to develop our
feature vector. It may be noted that training a deep learning
model from scratch requires numerous computer resources;
thus, we use transfer learned models to aid in learning target
domains using source domains and learning tasks [35, 36]. In
the proposed study, we employed a transfer learning strategy by
modifying the last three layers of the CNNs (i.e., FC, Softmax
and Classification) according to our target domain. Figure 6
shows the general architectures of (a) AlexNet, (b) ResNet, and
(c) GoogLeNet. AlexNet was proposed by Alex Keizhevsky that
is composed of 8 learnable layers, out of which 5 are Convo-
lution Layers (CLs), and 3 are Fully Connected (FC) layers [15].
Due to its lightweight nature and robust performance,
researchers widely use the model for classification tasks.
GoogLeNet is a variant of the Inception network developed by
researchers at Google. )e CNN contains 9 inception modules
and is 22 layers deep.)e architecture is efficient as it retains the
spatial information in an image even after image reduction [17].
)e ResNet18 architecture has 18 layers, including 17 CLs, an
FC layer, and an additional softmax layer for classification. )e
CLs use a 3× 3 sized kernel. )e ResNets use shortcut con-
nections that skip one or more layers, thus resulting in a lower
training loss, whereas their outputs are added to the outputs of
stacked layers; hence, it does not increase the computational
complexity. )e shortcut connections of ResNet18 skip two
layers [35]. Table 2 shows the input size, depth, and parameters
of all three CNN architectures used in this study.)e input size
refers to the size required for an input image. )e depth of
architecture represents the largest number of sequential CLs or

SVM
KNN

Glioma
Meningioma

Pituitary

Input 
Image

Preprocessing 
and 

Normalization

Augmentation
Fusion of Deep 

Features
Multiclass Classification

Deep Feature Extraction Using CNNs

Figure 1: Diagram illustrating the architecture of proposed method.
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Table 1: Number of images before and after augmentation.

Tumor type Images before augmentation Images after augmentation
Pituitary 930 4650
Glioma 708 3540
Meningioma 1426 7130
Total 3064 15,320

Input Image

Convolution Pooling Convolution Pooling Flatten Output

Glioma

Meningioma

Pituitary

Deep Feature Extraction Classification

Figure 4: General CNN architecture.

(a) (b)

Figure 2: MRI before and after normalization.

(a) (b) (c) (d) (e)

Figure 3: Various image augmentation techniques applied on Figshare dataset. (a) Original image. (b) 45-degree rotation. (c) Right/left
mirroring. (d) Upside down flip. (e) Salt/pepper noise.
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FC layers from the first layer to the classification layer. )e
parameter shows the total amount of learnable parameters in
the entire network.

3.4. Fusion of Deep CNN Features. )e success of ML
classifier is heavily reliant on an input feature vector; thus,
developing an algorithm to generate informative and dis-
criminative features fromMRIs is crucial for accurate tumor
classification. In this phase, we fuse the deep features ob-
tained from the transfer learned CNNs in the previous
phase. Feature fusion is a technique that merges numerous
features from several different models into a single feature
vector, thus avoiding the need to utilize a single feature
vector obtained from a model with low overall performance.
)is integration of features will likely improve classification
results as the new feature vector contains more information
about the MR images than a single vector [8].)e deep CNN
features obtained from two homogenous architectures have
identical feature spaces. As a result, the fusion of these
features may contain repetitive feature space, thus lacking
diversity. Hence, we used heterogeneous CNN architectures
with varying architectural design and depth to extract di-
verse low level and high level features from MR images. )e
novel fused feature vector contains more information than
the independent feature vectors. Figure 7 depicts the feature
fusion procedure employed in the proposed study. Each
independent feature vector has three feature spaces
according to the number of classes in the dataset; hence, the
fused feature vector consists of 9 features.

3.5. Classification. In this phase, the novel feature vector is
supplied to well-known classifiers such as SVM and KNN.
SVM is a supervised learning method belonging to gener-
alized linear classifiers that maximize the margin between
the hyperplane and the dataset to boost accuracy and avoid
overfitting [37]. )e classifier was proposed by Vladimir
Wapnik and his team in 1992 [38, 39], whereas KNN was
developed by )omas Cover and has been used successfully
for regression and classification tasks in a variety of fields.

Since the early 1970s, it has been employed in various
statistical applications. It is a supervised learning model that
computes the distance between a test sample and a set of (k)
training samples. )e classifier assigns the test sample to the
majority category label of its k nearest training samples [40].
Both classifiers are frequently utilized in handwriting rec-
ognition, medical image problems, etc., due to their robust
performance.

4. Proposed Method Results

4.1. Dataset. )e dataset used in this study was published
online in 2017 by Jun Cheng. It consists of T1-weighted MRI
images of Glioma, Meningioma, and Pituitary tumors taken
at three planes, i.e., Coronal, Sagittal, and Axial. )e images
in the dataset are sized 512× 512, whereas the size of each
pixel is 49mm× 49mm. [13]. A detailed description of the
dataset in terms of tumor type and no. of plane-wise images
with respect to patients is presented in Table 3, whereas
Figure 8 displays normalizedMRI images from the dataset at
different planes.

Figure 9 illustrates the exploratory data analysis to
understand the dataset class distribution. )e pie chart
shows that Glioma samples compose 46% of the entire
dataset. Meningioma and Pituitary images account for only
23% and 30% of the overall dataset, respectively. )e chart
indicates class imbalance issues; hence, in such conditions,
Recall, F1-Score, and Precision are more appropriate metrics
compared to accuracy.

4.2. Experimental Settings. )is study employed transfer
learning CNNs such as ResNet18, AlexNet, and GoogLeNet as
deep feature extractors. For classification, the deep features were
fused and supplied to SVM and KNN. All the experiments are
performed on an Intel Core i5 processor with an 8GB RAM
usingMatlab R2021a.)e hyperparameters of the CNN and the
values are shown in Table 4.

We trained the CNNs using 30 epochs. )is is an epoch
when an entire dataset is passed forward and backward
through the architecture only once. )e epoch is too large to
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Figure 5: Modifying CNN architecture for application.
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process all at once, so it is usually broken into smaller
batches. )e total number of training examples in a single
batch (or mini-batch) is referred to as a batch size/mini-
batch size (such as 10 in our case) [41]. )e CNNs in the
proposed frameworks are trained on a 1e− 4 learning rate.

)e learning rate determines how quickly an algorithm
learns the values of a parameter estimate. It may be noted
that higher learning rates frequently result in a suboptimal
set of weights [42]. Moreover, we trained the CNNs using
stochastic gradient descent momentum (SGDM) optimizer.
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Figure 6: CNN architectures of (a) AlexNet, (b) ResNet18, and (c) GoogLeNet [17].

Table 2: Parameters of deep learning models.

CNN Input size Depth Parameters (M)
GoogLeNet 224× 224 22 7
ResNet18 224× 224 18 11
AlexNet 227× 227 8 61
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)e SGD optimizes the network parameters to achieve
optimal loss function by taking incremental steps towards
negative gradient at each iteration. SGD can oscillate along
the steepest descent path to the best solution. One method
for reducing this oscillation is to include a momentum term
in the parameter update [43], as shown in the following
equation:

θi+1 � θi − ∝∇L θi(  + c θe − θi+1( , (2)

where i denotes the iteration number, a represents learning
rate, θ is the parameter vector, L(θ) is the loss function, and c

determines the contribution of the previous gradient step to
the current iteration in the SGDM algorithm.

4.3. Evaluation Metrics. When designing automated sys-
tems, evaluating themodel’s performance is vital because the
main purpose of such a model is to forecast unanticipated
data reliably; hence, analyzing the training and validation
test set reveals the generalization ability of the framework.
Usually, a classification model is assessed using a confusion
matrix, a simple cross-tabulation of actual and expected
observations for each class. Various classification measures
based on the confusion matrix, such as accuracy, precision,
recall, and f1-score, are used as a benchmark to assess the
model’s performance. )e classification accuracy is a pop-
ular metric to summarize the model’s overall performance.
)e f1-score, on the other hand, combines precision and
recall into a single statistic that contains both features. )e

ResNet18
(1 x 3)

GoogLeNet
(1 x 3)

AlexNet
(1 x 3)

Serial based 
feature fusion

Fused Vector
(1 x 9)

Brain MRI

Deep Feature Extraction

Feature Fusion

Figure 7: Serial based fusion of deep feature vectors.

Table 3: Total no. of MRI slices in each tumor type along with the number of patients.

Type of tumor No. of patients No. of images
Glioma 91 1426
Pituitary 60 930
Meningioma 82 708
Total 233 3064

Axial Coronal Sagittal

Glioma

Meningioma

Pituitary

Figure 8: Depiction of normalized MRIs at different planes.

8 Computational Intelligence and Neuroscience



recall is calculated in equation (3), Precision in equation (4),
Accuracy in equation (5), and F1-Score in equation (6).

Recall �
TP

FN + TP
, (3)

Precision �
TP

FP + TP
, (4)

Accuracy �
TN + TP

TP + FN + TN + FP
, (5)

F1 − Score �
TP
TP

+
1
2

(FP + FN), (6)

where TP�True Positives, TN�True Negatives, FP� False
Positives, and FN� False Negatives.

4.4. Proposed Method Results. )is section discusses the
proposed method results. Table 5 compares the accuracy
values obtained via independent CNN feature vectors and
novel fused feature vectors. )e feature vectors from in-
dependent CNN architectures such as ResNet18 and
AlexNet achieved the maximum accuracy of 98%, while
GoogLeNet produced an accuracy of 97.6%. On the other
hand, the fused feature vector obtained an accuracy of 99.7%
and outperformed the independent feature vectors.

)e performance of our proposed technique is also
evaluated using other metrics such as F1-Score, recall, and

precision, as shown in Figure 10. )e classifiers achieved
precision, recall, and F1-Score of 0.99, 0.1, and 0.99, re-
spectively. )ese metrics indicate our proposed method’s
robustness despite the dataset’s class imbalance due to a
fused feature vector with more robust and discriminative
features than an independent feature vector. Table 6 shows
metrics such as Recall, Precision, and F1-Score obtained
from the confusion matrix class-wise.

Figure 11(a) shows the confusion matrix obtained
from SVM. )e X-axis of the matrix represents the
predicted class, while the Y-axis represents the true class.
)e matrix indicates that SVM correctly classified 2132
Glioma samples, 1051 Meningioma samples, and 1393
Pituitary samples. )e confusion matrix obtained on the
fused feature vector via KNN is shown in Figure 11(b).
)e matrix illustrates that KNN correctly identified 2130
Glioma samples, 1052 Meningioma samples, and 1393
Pituitary samples. Both classifiers obtained an accuracy of
99.7%.

Figure 12 shows Receiver Operating Curves (ROC)
for all three classes: Glioma, Meningioma, and Pituitary.
ROC analysis was originally developed during World
War II to analyze noise in the radar signals [44]. )e use
of ROC curves for assessing the performance of medical
diagnostic systems has grown in popularity over the last
few decades. )e curve indicates the trade-off between
specificity and sensitivity. It is more efficient when the
curve is closer to the upper left corner. One of the best
properties of ROC is that the accuracy indices generated
from the analysis are not influenced by fluctuations
caused by arbitrarily chosen decision criteria or cut-offs
[45]. )e area under the ROC curve determines the
discriminative capacity showing how efficiently it per-
forms in a certain scenario [46]. An excellent model has
an AUC close to one, indicating a high level of separa-
bility between the classes.

47%

23%

30%

Glioma
Meningioma
Pituitary

Figure 9: Dataset distribution ratio.

Table 4: Training parameters for CNNs.

Hyper-parameters Values
Epoch 30
Mini-batch size 10
Optimizer SGDM
Learning rate 1e− 4

Computational Intelligence and Neuroscience 9



5. Result Comparison with State-of-the-
Art Techniques

Recent advancements in medical image analysis tools have
provided health practitioners more convenience with
detecting diseases at an early stage. Such advancements are
assisting them in various fields of medicine, including
disease identification, therapy, and quick decision-making
for clinical applications. Every day, hospitals generate a large
amount of medical data. Medical informatics research assists
doctors and scientists in their search for the best solutions
for making good use of these ever-increasing volumes of
data [47, 48].

Early detection and appropriate treatment options are
essential to treat brain tumor illnesses effectively. )ose
treatment options are determined by the stage of tumor,
type, and grade at the diagnosis time. )e conventional
identification systems employs basic ML-oriented

algorithms that extract limited features [7, 49]. )is paper
presents a novel feature fusion-based strategy to classify
brain tumors from MR images accurately.

Table 7 gives a comprehensive comparison of our proposed
tumor detection and classification algorithms with the existing
methodologies using accuracy as a metric. Afshar et al. [32]
classified brain tumors with 90.8% using a CapsNet architec-
ture. However, CapsNet architectures are extremely sensitive to
image background, severely impacting the performance. Fur-
thermore, they gave tumor boundaries extra input for improved
results, necessitating manual tumor localization prior to clas-
sification. Anaraki et al. [30] employed GA to determine op-
timal CNNdesign and achieved an accuracy of 94.2%.However,
GA was unable to find best CNN for brain tumor diagnosis,
thus resulting in low overall accuracy. Kang et al. [8] fused deep
features from DenseNet169, Inception-v3, and ResNeXt50 to
classify brain tumors. )e system obtained a high accuracy of
98.5%. Ari et al. [23] fused deep features obtained fromAlexNet

Table 5: Accuracy % obtained from independent and fused feature vectors.

Feature vector/Classifiers
Accuracy %

SVM KNN
GoogLeNet 97.6 97.6
ResNet18 98.0 97.7
AlexNet 97.9 98.0
Fused 99.7 99.7

1

0.99 0.99

SVM/KNN

Recall
Precision
F1-Score

Figure 10: Recall, precision, and F1-score values obtained from SVM and KNN.

Table 6: Class-wise evaluation metrics obtained from confusion matrix.

Tumor type F1-score Recall Precision
Glioma 1.0 1.0 1.0
Meningioma 0.99 1.0 0.99
Pituitary 1.0 1.0 1.0
Average 0.99 1.0 0.99
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Figure 11: Confusion matrix obtained from (a) SVM and (b) KNN.
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Figure 12: Continued.
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and VGG16, then classified via ELM, and achieved 96.6%
accuracy, whereas our proposed brain tumor classification
approach attained the best accuracy of 99.7% and performed
better than the existing methodologies.

Table 8 compares the performance of the proposed
feature fusion-based method with non-DL-based tech-
niques. )e authors in )ejaswini et al. [52] used the
Adaptive Regularized Kernel-based Fuzzy C-Means Clus-
tering (ARKFCM) approach to segment images and extract
statistical features from the segmented area. Using the SVM,
the system achieved a success rate of 91.4%. Kaplan et al. [53]
suggested an approach that uses Local Binary Pattern (LBP)
as a feature extraction technique and KNN as a classification

technique. )e system achieved the highest accuracy of
95.5%. Chen et al. [28] evaluated the effectiveness of various
feature extraction methods such as density histogram, grey
level cooccurrence matrix (GLCM), and Bag of Word
(BoW). )ey attained the highest accuracy of 91.4% with
SVM and KNN as classifiers and BoW as a feature extraction
method. )e traditional approaches usually rely on manual
tumor segmentation and feature extraction, which is both
time-consuming and error-prone. To find an optimal so-
lution, these techniques need to be tried and tested by a
knowledgeable expert.

CNNs have made significant advances in image pro-
cessing, allowing any classification or segmentation
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Figure 12: ROC curves for (a) glioma, (b) meningioma, and (c) pituitary.

Table 7: Comparison of proposed techniques with the existing systems.

Reference Technique Accuracy%
Anarkari et al. [30] CNN 94.2
Afshar et al. [32] CapsNet 90.8
Sejuti and Islam [50] CNN+SVM 97.1
Kang et al. [8] DenseNet169 + Inception-v3 +ResNeXt50 98.5
Ari et al. [23] AlexNet +VGG16 96.6
Proposed AlexNet +GoogLeNet + ResNet18 99.7

Table 8: Comparison with traditional ML techniques.

Reference Technique/s Accuracy (%)
Chen et al. [51] BoW, GLCM, SVM, and KNN 91.4
)ejaswini et al. [52] ARKFCM and SVM 91.4
Kaplan et al. [53] LBP and KNN 95.5
Proposed CNN, SVM, and KNN 99.7
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operation to be performed precisely, crucial in biomedical
applications. )is research proposes a novel brain tumor
classification technique based on the fusion of deep features
extracted using three distinct CNN architectures. )e
proposed brain tumor classification framework is an efficient
and segmentation-free approach that employs a hybrid
feature set. )e fusion of multiple feature vectors produces a
more discriminative feature representation than an inde-
pendent vector. Usually, the features extracted from dif-
ferent CNN architectures are more robust and descriptive
than those obtained from homogenous CNN architectures
or a single CNN architecture because of the diverse range of
low-level and high-level features.

)e dataset used in this study, however, is imbalanced. In
general, a well-balanced data set with an equal class dis-
tribution yields better prediction accuracy. It is worth noting
that a well-balanced dataset makes learning easier for the
classification system. )e dataset used in this study is
available publicly; thus, the class imbalance is obvious.
Hence, the dataset used in this study is extensively aug-
mented to deal with the class imbalance problems. More-
over, due to the imbalanced dataset, the proposed
framework is also assessed using recall, precision, and f1-
score. )e results prove that the proposed framework can be
deployed in a clinical setup for real-time diagnosis of brain
tumors.

6. Conclusion and Future Work

)is paper presents a novel deep feature fusion-based
framework to classify brain tumors from MR images. )e
proposed framework extracts a wide range of low-level and
high-level features from AlexNet, GoogLeNet, and ResNet18
architectures with varying depth and design. )ese features
are then merged using a serial fusion approach to generate a
single vector. )e novel feature vector contains robust
combination features classified using SVM and KNN. )e
proposed method is trained and evaluated on 15,320MR
images and obtained accuracy of 99.7%, recall value of 1.0, a
precision score of 0.99, and 0.99 f1-score. )e novel feature
vector outperformed the independent CNN feature vectors.
Moreover, the feature fusion strategy aids in overcoming the
drawbacks of a single CNN model, thus resulting in higher
performance, particularly for larger datasets. )e obtained
results prove the efficacy and robustness of the proposed
method in brain tumor classification. Hence, the proposed
framework can assist radiologists in detecting and classifying
brain tumors accurately. In the future, we will explore other
CNNs such as VGG, DenseNet, and machine learning
classifiers such as Random Forests and Ensemble learning.
Moreover, additional MRI datasets will be gathered with
other tumor categories and different imaging modalities for
classification.
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