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E�ective and accurate parameter identi�cation, especially the identi�cation of load torque, is one of the key factors to improve the
control performance of the robot servo system. Sliding mode observer (SMO) has always been a common method for identifying
load torque due to its advantages of simple implementation, strong robustness, and fast response. However, due to the dis-
continuity of the SMO switching function, the system will generate high-frequency chattering, which will reduce the accuracy of
load torque identi�cation and a�ect system performance. In this paper, an adaptive parameter identi�cation method based on an
improved slidingmode observer is proposed. A continuous deformationmode of saturation function based on boundary variation
is proposed as the switching function to alleviate the chattering phenomenon. Meanwhile, the relationship between the sliding
mode gain and the feedback gain of proposed SMO is de�ned so that it can be selected properly to improve the accuracy of
identi�cation, and the radial basis function neural network (RBFNN) is used to adaptively tune the boundary layer gain according
to the speed change. Moreover, considering that the identi�cation result of the load torque is related to the moment of inertia and
the mismatch of the inertia will cause identi�cation errors, the variable period integration method is proposed to identify the
inertia and rede�ne the calculation period of the load torque and inertia.e e�ectiveness and superiority of the proposed method
are veri�ed by simulation experiments. Experimental results demonstrate that the improved SMO combines observer gain
coe�cient tuning and inertia matching can smoothly and accurately estimate the value of load torque, which is an adaptive
identi�cation method worthy of reference for robot servo system.

1. Introduction

With the development trend of global industrial intelligence,
high-precision servo systems play an important role in in-
dustrial robots, medical equipment, military equipment, and
other �elds. As the core component of the equipment, servo
system needs to accurately control motor in full speed range
and have good dynamic performance to meet various
complex working conditions. However, due to the internal
parameters of the servo motor change and the existence of
external disturbance, the motor speed will �uctuate and
produce chattering phenomenon. For the purpose of sup-
pressing the e�ect of parameter change and disturbance to

alleviate the chattering phenomenon, the load torque of
servo motor should be estimated online [1–7].

e operation of servo system depends not only on the
control lawbut also on the load. In the de�nitionof the control
law, the dynamic characteristics of the controller at the op-
erating point are mainly concerned, but the in�uence of load
torque is seldom considered. In fact, the load torque can cause
signi�cant disturbance to the operation of the servo system,
thus changing the operating behavior of the servo system
[8–12].Toavoid this situation, the identi�cationof load torque
can achieve satisfactory results. Because the load torque sensor
is complex and expensive, it is a good solution to estimate the
load torque by observer and control strategy [13, 14].
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In recent years, many methods to identify load torque
have been mentioned in relevant literature. Common load
torque identification methods include Kalman filter [15, 16],
reduced-order observer [17, 18], and adaptive control
strategy based on disturbance observer [19, 20]. In [21], after
considering the extended Kalman filter and the unscented
Kalman filter, an extended nonlinear Kalman filter is pro-
posed for online coupling and estimation of the load. In [22],
a quaternion-based Kalman filter is proposed for industrial
robotic applications to estimate and compensate the dy-
namics of the load and the experimental results demonstrate
the feasibility of the approach and its industrial applicability.
However, the load identification method based on Kalman
filter has the problem of complex observer structure, which
makes it difficult to be applied to the system with large
inertial load. In [23], in order to reduce the influence of
disturbance factors such as load torque change on system
performance, a reduced-order load torque observer is
proposed, which significantly improves the system’s ability
to resist load torque disturbance. However, this method is
mostly used in heavy load drive and is not suitable for
complex systems. Literature [24] combines extended Kal-
man filter and adaptive linear active disturbance rejection
control, which can quickly measure the shock of sudden load
and has strong anti-interference ability. In [25], an adaptive
control strategy for load torque identification based on
observer is proposed, and the observation error, external
disturbance, and internal parameter uncertainty are com-
pensated, which effectively enhances the stability of the
system. Although the method has good antidisturbance
ability, it relies on the mathematical model of the motor and
is less robust to changes in the internal parameters of the
motor.

After summarizing the problems of the above methods,
the sliding mode variable structure control is introduced to
identify the load torque, which is simple in implementation,
strong in robustness, and fast in response [26–28]. In [29],
an improved SMO load torque adaptive identification
method is proposed, which is applied to the motor running
under variable operating conditions, and the load has been
fluctuating. +e optimization problem of the cut-off fre-
quency is studied, and the estimation accuracy is high.
Reference [30] proposes a nonlinear load torque identifi-
cation strategy, which combines traditional PI control with
high-order fast terminal sliding mode, and uses the iden-
tified torque as the feedforward compensation of the PI
controller. In [31], a fuzzy sliding mode speed controller that
can identify the load is designed. When the internal pa-
rameters of the motor or the external load changes, it can
effectively suppress the motor chattering and ensure the
robust speed control of the system. It is shown from the
mentioned literature that the theory of load torque identi-
fication method based on SMO is relatively mature and
widely used. However, there are still some problems in
practical application, such as the identification accuracy
which is not high enough and the existence of chattering
phenomenon. In particular, the chattering phenomenon of
servo motors will cause terminal vibration of industrial
robots, which will seriously affect the working performance

and efficiency. In this paper, the structure of the conven-
tional SMO is improved and the observer gain coefficient is
tuned to solve the chattering problem.

+e moment of inertia is needed in the calculation of
load torque and it is regarded as a fixed value in most of the
studies, while the inertia will change with the dynamic re-
sponse of the system in practice.+emismatch of inertia will
affect the identification of load torque, so it is necessary to
carry out online identification of inertia [32].+e commonly
used methods of inertia identification include high-order
observer [33], multialgorithm compound structure [34],
integral method [35], and various optimized neural net-
works [36]. Compared to other methods, the integral
method can overcome the influence of interference and
identify inertia smoothly and periodically and has strong
antinoise ability; therefore, it is an appropriate method of
inertia identification. Literature [37] utilizes the principle
that the sinusoidal speed and inertia are out of phase and
friction torque is in phase, and the accurate inertia value is
obtained by integrating the torque in half period under the
control of the low-frequency sinusoidal speed. In order to
weaken the influence of the encoder quantization error,
literature [38] proposes using an improved variable period
integration method to identify the inertia online and use the
identified inertia value for the self-tuning of the controller
parameters. Literature [39] improves the traditional integral
method inertia identification by redefining the update
conditions of the sampling period and then optimizes the
speed measurement value through the improved neural
network, making the whole inertia identification process
more accurate. Based on the above discussion, this paper
also uses the variable period integration method to identify
the inertia and considers the working state of the robot servo
controller position adjustment mode, redefines the appro-
priate sampling period, and alternately identifies the load
torque and inertia. Simulation and experimental results
verify the effectiveness of the scheme.

Combined with the above literature, the main contri-
bution of this paper is to first propose a variable structure
sliding mode observer to identify the load torque. Compared
with the conventional SMO, this paper adopts a boundary
variation saturation function deformation mode adaptive to
the speed change to replace the sign function as the
switching signal to alleviate the original chattering phe-
nomenon, and the boundary layer adaptively adjusts with
speed. At the same time, the relationship between sliding
mode gain and feedback gain of SMO is defined, and
RBFNN is used to fit the boundary layer gain function,
which solves the configuration problem of the important
parameters in the proposed SMO. Another contribution of
this paper is that, for the inertia mismatch problem, which is
often overlooked in the process of load torque identification,
the inertia is identified by the variable period integration
method, and the inertia and load torque identification pe-
riods are defined. Simulation results demonstrate the ef-
fectiveness and superiority of the proposed scheme.

+e overall structure of the paper is given as follows.
Section 2 formulates the mathematical mode of servo system
permanent magnet synchronous motor (PMSM) and the
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conventional SMO design method. Section 3 presents the
improved SMO design combining observer gain coefficient
tuning and inertia matching. Section 4 presents the overall
design of the robot servo system. Section 5 presents the
simulation experiment part. Section 6 presents the
conclusion.

2. Conventional SMO Design

2.1. Mathematical Model of Servo System PMSM. PMSM, as
the drive device of the servo system, first of all, must be
mathematically modeled, and its voltage equation in d/q-
coordinates can be expressed as

ud � Rid − Lqiqωe + Ld

did

dt

uq � Riq + Ldid + ψf  · ωe + Lq

diq

dt

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (1)

where ud and uq are the d/q-axis voltages, R is the stator
resistance, Ld and Lq are the d/q-axis inductances, ωe is the
electrical angular speed of motor, id and iq are the d/q-axis
currents, and ψf is the rotor permanent magnet flux-linkage.

+e electromagnetic torque equation of PMSM can be
expressed as

Te �
3
2
Pn · ψf + Ld − Lq id  · iq, (2)

where Te is the electromagnetic torque and Pn represents the
pole pairs of motor.

+e mechanical motion equation of PMSM can be
expressed as

J
dωm

dt
� Te − Bωm − TL, (3)

where J is the moment of inertia, B is the viscous friction
coefficient, TL is the load torque, and ωm is the mechanical
angular speed of the motor.

2.2. Design of the Conventional SMO. Substituting equations
(2) and (3), the state equation of PMSM can be expressed as

dωm/dt �
3
2
Pn · ψf + Ld − Lq id  · iq/J − Bωm/J − TL/J.

(4)

Based on this, the conventional SMO with speed as
observation object can be described as

dωm/dt �
3
2
Pn · ψf + Ld − Lq id  · iq/J − Bωm/J − Gs, (5)

where ωm is the estimated mechanical angular speed, TL is
the estimated load torque, Gs � k · sgn(ωm − ωm) is the
switch signal function defined by sign function sgn(x), and k

is the sliding mode gain.
+e speed estimation error is defined as ωm � ωm − ωm,

and, by subtracting (4) from (5), the following can be
obtained:

dωm/dt � TL/J − Bωm/J − Gs. (6)

Define the sliding surface as

S � ωm � ωm − ωm. (7)

According to the SMO control theory, when the system
enters the sliding mode, it satisfies S � _S � 0 and the load
torque on the basis of (6) can be estimated as

TL � Gs · J. (8)

+e sliding mode control function becomes discontin-
uous due to the introduction of sign function, which results
in high frequency noise in estimated load torque. +erefore,
the actual estimated load torque can be expressed as

TL � TL + Δns, (9)

where Δns is the high frequency noise. +e existence of high
frequency noise will cause the chattering phenomenon to the
SMO and degrade the identification performance of the load
torque.

For suppressing the chattering phenomenon of the load
torque identification process, a low-pass filter (LPF) is in-
troduced to suppress the chattering signal. After all, the
estimated load torque can be expressed as

TL � Gs · J ·
ωc

s + ωc

, (10)

where ωc is the cut-off frequency of the LPF. +e principle
diagram of conventional SMO to identify the estimated load
torque is shown in Figure 1.

However, the introduction of the LPF will cause prob-
lems of system delay and identification error, which de-
grades the identification performance. Meanwhile, based on
the above analysis and derivation, the estimated load torque
is related to the moment of inertia. If the inertia changes so
that the parameters mismatch, it also affects the identifi-
cation performance of the system.+erefore, for the purpose
of solving the above problems, a switch function with better
continuity to replace the sign function and real-time
identification of moment of inertia are needed.

3. Improved SMO Combines Observer Gain
Coefficient Tuning and Inertia Matching for
Load Torque Identification

According to the above analyses, the conventional method of
load torque identification based on SMO produces high
frequency noise and causes the chattering phenomenon that
reduces the performance of the system. In the meantime,
another reason for the degradation of system identification
performance is the mismatching of moment of inertia. To
solve these problems, this paper proposes an improved SMO
identification method by introducing a continuous defor-
mation mode of saturation function based on boundary
variation as the switching function combines observer gain
coefficient tuning and inertia matching. Detailed description
of the proposed method is presented in this section.
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3.1. Design of the Improved SMO. +e main reason for the
chattering phenomenon is the system discontinuous jump
caused by the sliding mode control law during the switching
action; especially when the switching function is sign
function, it is easy to cause the system to switch back and
forth discontinuously near S � 0. +erefore, the output of
SMO needs to filter high frequency noise through LPF, but
this will cause time delay to the system. To eliminate this
unexpected chattering and serialize discontinuous switch
items as much as possible, a boundary mutation of the
saturation function deformation mode with boundary layer
as independent variable is proposed as the switching
function in this paper. Compared with the sign function, the
continuity of saturation function is better and the output of
SMO is smoother which can effectively alleviate the chat-
tering phenomenon. +e proposed saturation function
Sat(S) can be expressed as

Sat(S) �
sgn(S) |S|≥ϕ

tanh(2πS/ϕ) |S|<ϕ
 , (11)

where S � ωm − ωm, ϕ is the boundary layer, and the
switching function Gs can be redefined as

Gs � k · Sat(S). (12)

If the boundary layer is unchanged, with the increase of
the response time, the system will generate a lot of chattering
at high speed. +erefore, in order to guarantee the switching
response time, the boundary layer width needs to become
wider as the speed increases. +e diagram of the saturation
function is shown in Figure 2, where ωϕ1 >ωϕ2.

Inspired by [40], an additional component Ga is in-
troduced to represent the average estimated load torque, and
the load torque observer can be reexpressed as

dωm/dt �
3
2
Pn · ψf + Ld − Lq id  · iq/J − Bωm/J − Gs − l · Ga,

(13)

where l is the feedback gain and Ga can be obtained through
an LPF and expressed as

Ga � Gs ·
ωc

s + ωc

. (14)

After introducing the average estimated load torque,
according to (13), the speed estimation error can be
expressed as

dωm/dt � TL/J − Bωm/J − Gs − l · Ga. (15)

According to SMO control theory, when the system
enters the sliding mode that satisfies S � _S � 0, the estimated
load torque can be expressed as

TL � Gs + l · Ga(  · J. (16)

It follows that (16) is divided into two parts: l · Ga · J is
the low-frequency effective component of the estimated load
torque filtered by LPF, while Gs · J is the harmonic com-
ponent generated by switching function. Since the LPF filters
the estimated effective component of the load torque, its
response delay will affect the accuracy of the system iden-
tification under dynamic conditions. +erefore, the error of
load torque estimation will be compensated in the following
research.

3.2. Observer Gain Coefficient Tuning. Based on above
analysis, the appropriate selection of the sliding mode gain,
feedback gain, and boundary layer value is significant for the

Sliding Mode 
Observer based 

on PMSM

id iq

Gs

Switch signal function

J

s+ωc

Low-pass filter

k

-k

ωm

ωc

s+ωc

ωc

+

-

×
ωmˆ

TL = Gs . J .ˆ

Figure 1: +e principle diagram of conventional SMO to identify the estimated load torque.
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accuracy of load torque identification. Larger or smaller
parameters selection can cause chattering phenomenon or
reduce dynamic performance of the system.+erefore, these
parameters are selected appropriately in this paper.

According to the sliding mode control theory, the sliding
mode reachability condition is S · _S< 0. It should be noted

that when the error value of the speed estimation oscillates
around the zero point of the sliding mode surface, the values
of the switching functions are different. +erefore, combine
equations (14)–(16) and consider the situation of S≥ϕ,
− ϕ< S<ϕ, and S≤ − ϕ; the reachable condition of the
sliding mode can be expressed as

S · _S �

S ·
TL − B · S

J
− 1 + l ·

ωc

s + ωc

  · k  S≥ ϕ

S ·
TL − B · S

J
− 1 + l ·

ωc

s + ωc

  · k · tanh(2πS/ϕ)  − ϕ< S< ϕ

S ·
TL − B · S

J
+ 1 + l ·

ωc

s + ωc

  · k  S≤ − ϕ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

< 0. (17)

Because inertia J and the viscous friction coefficient B are
all positive numbers, − B · S/J< 0. Similarly, because
tanh(2πS/ϕ) · S> 0, − (1 + l · ωc/s + ωc) · k · tanh(2πS/
ϕ) · S< 0. In conclusion, the sufficiently unnecessary con-
dition satisfying (17) can be expressed as

1 + l ·
ωc

s + ωc

  · k>TL/J. (18)

On the basis of (18), the selection condition of feedback
gain can be expressed as

l>
TL

J · k
− 1  ·

s + ωc

ωc

. (19)

In order to simplify the calculation process while sat-
isfying the realization of sliding mode motion, remove the
second term to the right of (19), and the relation between the
sliding mode gain and the feedback gain can be expressed as

l � 2TLmax/(J · k) − 1, (20)

where TLmax is the motor maximum load torque. It can be
seen from (20) that when the value of sliding mode gain or
feedback gain is given, the value of the other parameter can
be obtained.

As mentioned above, when the speed changes dynam-
ically, the chattering occurs near the sliding mode surface if
the boundary layer of the saturation function is fixed. A lot of
chattering will occur as response time increases at high speed
and the steady-state error increases at low speed. +us, the
boundary layer of a saturation function which can be ad-
justed dynamically with speed changes can alleviate the
chattering phenomenon when the system runs at different
speed. +e relationship between boundary layer and speed
can be expressed as

ϕ � m · ωm − ωm( , (21)

where m is the boundary layer gain.

To obtain an accurate relationship between boundary
layer gain and speed dynamics so that the observer chat-
tering is the weakest, RBFNN is adopted to approximate the
function of (21) in which the boundary layer gain can be
adaptively estimated with the speed dynamics in this paper.
As a powerful tool for defining uncertain systems, adaptive
neural networks are widely used to solve the problems of
unknown systems and functions [41–45]. Similarly, RBFNN
is a feedforward neural network with the unique best ap-
proximation, simple training, and fast learning convergence.
It can approximate any continuous nonlinear function with
arbitrary precision.+e steps of the RBFNN algorithm are as
follows:

Step 1: define ωm and ωm as the input of the RBFNN
and x � [ωm, ωm]Τ.
Step 2: select Gaussian function as hidden layer function
and it can be expressed as

φi(x) � exp −
x − μi

����
����
2

σ2i
⎛⎝ ⎞⎠ i � 1, 2, · · · M, (22)

where μi and σi are the center point of the Gaussian
function and variance of the ith node, respectively. M is
the number of radial basis neurons in the hidden layer.
Step 3: the boundary layer gain m is the output of the
RBFNN and the output is calculated as

mj � 
M

i�1
wijφi j � 1, 2, · · · , P, (23)

where wij is the weight and P is the number of linear
neurons in the output layer.
Step 4: train RBFNN with supervised learning algo-
rithm, and define the objective function as
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E �
1
2



P

j�1
e
2
j

ej � mj − 
M

i�1
wij · exp −

x − μi

����
����
2

2σ2i
⎛⎝ ⎞⎠.

(24)

In order to minimize the objective function, the cor-
rection amount of each parameter should be propor-
tional to its negative gradient.
Step 5: set the error threshold; if the chattering de-
creases and the estimation error is less than the
threshold, output the boundary layer gain m; otherwise,
go back to step 1.

By adjusting the appropriate value of m, the chattering
phenomenon can be alleviated.

3.3. Identification of Moment of Inertia. It can be obtained
that the value of the estimated load torque is related to the
moment of inertia. However, in previous studies, most
papers regarded the moment of inertia as a fixed value. In
practice, the moment of inertia will deviate with the change
of the system running state, especially for industrial robot
servo systems that the moment of inertia will change with
the attitude of the manipulator. +erefore, in order to avoid
the load torque identification error due to the mismatch of
inertia, an improved integral method is adopted to identify
the inertia in this paper.

First assume that the viscous friction coefficient remains
constant.+emechanicalmotion equation can be rewritten as

Te(t) � J
dωm(t)

dt
+ ΔJ

dωm(t)

dt
+ Bωm(t) + TL, (25)

where J is the observe value and ΔJ is the error value caused
by the disturbance torque. Multiplying both sides of the
equation by the derivative of the speed and integrating
equation (25), we have


tf

ti

Te(t)
dωm(t)

dt
dt � J ·

tf

ti

dωm(t)

dt
 

2

dt+ΔJ ·
tf

ti

dωm(t)

dt
 

2

+B ·
tf

ti

ωm(t)
dωm(t)

dt
dt+TL ·

tf

ti

dωm(t)

dt
dt,

(26)

where ti and tf are the initial and finish times of the in-
tegration period, respectively. Arranging (26), the sum of J

and ΔJ can be expressed as

J +ΔJ �


tf

ti
Te(t)dωm(t)/dtdt


tf

ti
dωm(t)/dt( 

2
dt

−
1
2

B ·
ωm tf 

2
− ωm ti( 

2
 


tf

ti
dωm(t)/dt( 

2
dt

− TL ·
ωm tf  − ωm ti(  


tf

ti
dωm(t)/dt( 

2
dt

.

(27)

+enumerators of the second and third terms of (27) can
be regarded as a constant and if the integration period is long
enough, the second and third terms can be approximately
equal to zero. Similarly, if the speeds at the initial and finish
times of the integration period are equal, the second and
third terms can also be equal to zero. However, the long
integration period is not suitable for real-time inertia
identification and periodic speed condition is too rigorous
for industrial robot servo systems because the commands are
irregular under normal circumstances, which limits the use
of traditional integral methods.

When the robot servo system works in the position
regulation mode, it will frequently start and stop recipro-
cating motion. +erefore, the sampling period is improved
by increasing sampling period to make it more suitable for
position regulation mode, from which speed is equal at the
initial and finish times of the integration period to speed of
zero in this paper. +e improved sampling period update
condition can be expressed as

ωm(k) � ωm(k − i) � 0,
dωm

dt
≠ 0, (28)

where k is the sampling point and k ∈ N+.
Finally, the identification inertia can be expressed as

follows:

J(k) �


kTpi

(k− i)Tpi
Te(t)dωm(t)/dtdt


kTpi

(k− i)Tpi
dωm(t)/dt( 

2
dt

, (29)

where Tpi is the inertia identification period. To prove the
convergence of (29), the total error value ΔJtotal can be
expressed as

lim
k⟶∞
ΔJtotal � ΔJ(k). (30)

+en,

J � lim
k⟶∞

J(k). (31)

From (31), it can be seen that using the integral method
to identify the inertia will eventually converge to a constant,
which proves the convergence of the method.

According to the above analysis, the proposed SMOhas a
prerequisite in the identification process of the load torque,
in which the inertia needs to remain unchanged throughout
the identification period. +erefore, this paper redefines the
sampling period of two-parameter identification. First set
the initial value of inertia, and calculate the load torque
through the initial value of inertia until the inertia satisfies its
update condition.+e update condition for inertia is that the
speed at the initial and finish time of the integration period is
equal to 0, as shown in equation (29). +e updated inertia
value obtained is used for the estimation of the load torque
in the next identification period, until the inertia satisfies the
next update condition and the new inertia value is recal-
culated, and complete a sampling period and repeat the
above process. +e redefined sampling period timing se-
quence diagram is shown in Figure 3 and the identification
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of load torque is always in progress. Ts represents a complete
sampling period.

In summary, compared with the conventional method
with a fixed sampling period and no consideration of pa-
rameter changes, the proposed method redefines the sam-
pling period in this paper, sampling, and identification of
inertia and load torque alternately to make it more suitable
for position regulation mode of robot servo system. By
updating load torque and inertia continuously, the system
has more accurate dynamic identification results.

3.4. Stability Analysis of the Improved SMO. +e stability
analysis of the improved SMO proposed in this paper is
based on (15). Consider the position of S on the sliding
surface, respectively, and suppose that the LPF has a high-
frequency cut-off that S is not affected. When S≥ ϕ , the
value of the switching signal function is k. Similarly, when
S≤ − ϕ, the value of the switching signal function is − k.
When − ϕ< S< ϕ, where the error of the speed observation
slides near the zero of the sliding mode, the value of the
switching signal function is k · tanh(2πS/ϕ). Equation (15)
can be expressed as

dS/dt − TL/J+B ·S/J�

− (1+ l) ·k S≥ϕ

− (1+ l) ·k ·tanh(2πS/ϕ) − ϕ<S<ϕ

(1+ l) ·k S≤ − ϕ

⎧⎪⎪⎨

⎪⎪⎩
.

(32)

Since J and B are always positive, when S≥ϕ or S≤ − ϕ,
the system is always stable according to the Routh-Hurwitz
stability criterion. When − ϕ< S<ϕ, all the coefficients in B ·

S/J + (1 + l · ωc/s + ωc) · k · tanh(2πS/ϕ) are positive, so the
system is also stable. Meanwhile, the larger the value of the
coefficient, the shorter the transient time of the system.
+erefore, according to above analysis, the switching signal
function adopted in this paper can not only alleviate the

chattering phenomenon of the system but also improve its
convergence rate.

4. Design of the Servo Drive System

+e design of the servo drive system designed includes the
following modules: the position control loop based on P

regulator, the speed control loop based on PI regulator, and
the current control loop based on P regulator; Park inverse
transformation; space vector pulse width modulation
(SVPWM); inverter; PMSM; encoder; Park and Clark
transformation; and inertia and load torque identification
module. +e calculated load torque is used to compensate
the input current of the current controller. +e schematic
diagram of the servo drive system is shown in Figure 4.

5. Simulation Experimental Verification

In this paper, an SMO with boundary mutation saturation
function deformation form which is combined with the
moment of inertia matching is proposed to identify the load
torque. In order to verify the effectiveness and superiority of
the improved method, a simulation experimental model of
servo motor drive system based on SMO is designed. +e
detailed parameters of the servo controller model are
descripted in Table 1.

5.1. EstimatedPerformance of the ImprovedSMO. To validate
the effectiveness of the improved SMO, the estimated per-
formance of conventional SMO and improved SMO which
adopt the saturation function deformation mode are com-
pared firstly. +e speed of the simulation experiment is
chosen to be a constant speed of 1000 r/min.+e load torque
of the simulation experiment is chosen to be a constant load
torque of 5N·m and 10N·m, respectively. +e parameters of
the SMO are as follows: k � 1000, l � 9, and ϕ � 20.

t

J (k+2) J (k+3) J (k+4)

Calculate load torque:

J (k+1)

Inertia identification 
sampling point:

Ts (k+1) Ts (k+2) Ts (k+3)

J (k)

Ts (k)

T̂L= (Gs+l.Ga) .JTs (k+1)
JTs (k+1)=J (k)

T̂L= (Gs+l.Ga) .JTs (k+2)
JTs(k+2)=J(k+1)

T̂L= (Gs+l.Ga) .JTs (k+3)
JTs (k+3)=J(k+2)

�e subsequent 
process is omitted

T̂L =(Gs+l.Ga).JTs (k)
JTs(k)=J(k-1)

ωm

Figure 3: +e redefined sampling period timing sequence diagram.
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Table 1: Main parameters of the servo controller model.

Parameter Value
Rated speed 1000 r/min
Rated power 600W
Rated current 3.5 A
Rated torque 10N m
DC link voltage 220V
Pole pairs 4
Stator resistance 0.643Ω
Stator inductance 8.5mH
Flux linkage 0.175Wb
Inertia of servo motor 2×10− 3 kgm2

Friction coefficient of servo motor 0 Nm s

PMSM

INVERTER

Udc

a , b, c

ia

ib

ic

iα

iβ

SVPWM

d , q

d , q

Current 
Controller

u*
d u*

α

u*
βu*

q

Encoder

+

id

iq

1
Kt

i*
q

i*
d =0

d
dt

T*
e

Identify J

PIP

Identify TL based
on improved SMO

Update the sampling period constantly

θm

θ*
m+

θm

ω*
m

ωm

ωm

––
α , β

α , β

α , β

Figure 4: +e schematic diagram of the servo drive system.
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Figure 5: Partial experimental results of load torque estimation performance under the condition of 1000 r/min and fixed boundary layer.
(a) Load torque is 5 N·m. (b) Load torque is 10 N·m.
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In this part, the improved SMO in three cases of constant
speed with fixed boundary layer, constant speed and variable
boundary layer gain tuning combined with RBFNN, and
variable speed and variable boundary layer gain tuning
combined with RBFNN is compared with the conventional
SMO in the estimation performance of load torque by
simulation experiments. +e simulation results are shown in
Figures 5–8. Due to the large number of sampling points, in
order to clearly observe the experimental results of load
torque identification, all experimental results in this paper
are partially enlarged experimental results.

Figure 5 shows the conventional and improved SMO
load torque estimation results after the motor runs
smoothly. In Figure 5(a), it is calculated from experimental

data that themean error of estimation for conventional SMO
and improved SMO is about 4.2% and 3.4%, respectively,
when the load torque is 5N·m. In Figure 5(b), it is calculated
from experimental data that the mean error of estimation for
conventional SMO and improved SMO is about 1.9% and
1.4%, respectively, when the load torque is 10 N·m.

+erefore, it can be proved from the experimental results
that when the boundary layer is fixed, the waveform ripples
of the improved SMO for load torque estimation are much
smaller than those of the conventional SMO under constant
speed. +e estimated load torque is closer to actual load
torque and the chattering phenomenon has eased.

Similarly, the estimated performances of conventional
SMO and improved SMO which adopt the saturation
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Figure 6: Partial experimental results of load torque estimation performance under the condition of 1000 r/min and boundary layer gain
tuning combined with RBFNN. (a) Load torque is 5N·m. (b) Load torque is 10N·m.
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function deformation mode with boundary mutation are
verified next. +e speed is also chosen to be a constant at
1000 r/min. +e load torque of the simulation experiment is
chosen to be a constant load torque of 5 N·m and 10 N·m,
respectively. +e parameters of the SMO are as follows: k �

1000 and l � 9. Tuning boundary layer gains via RBFNN and
the boundary layer gain m � 10.

Figure 6 shows the conventional and improved SMO
load torque estimation results after the motor runs smoothly
when the speed is constant. In Figure 6(a), it is calculated
from experimental data that the mean error of estimation for

conventional SMO and improved SMO is about 4.2% and
2.2%, respectively, when the load torque is 5 N·m. In
Figure 6(b), it is calculated from experimental data that the
mean error of estimation for conventional SMO and im-
proved SMO is about 1.9% and 1.1%, respectively, when the
load torque is 10N·m.

A speed waveform that simulates servo system position
regulation mode start-stop motion in which part of the
waveform is shown in Figure 7 is given. +e load torque of
the simulation experiment and the parameters of the SMO
are the same as those set above.
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Figure 8: Partial experimental results of load torque estimation performance under the condition of variable speed and boundary layer gain
tuning combined with RBFNN. (a) Load torque is 5N·m. (b) Load torque is 10N·m.
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Figure 8 shows the conventional and improved SMO
load torque estimation results under the given speed
waveform. After the system runs smoothly, it is calculated
from experimental data that the mean error of estimation for
conventional SMO and improved SMO is about 1.8% and
1%, respectively, when the load torque is 5N·m as shown in
Figure 7(a) and about 1% and 0.7%, respectively, when the
load torque is 10 N·m as shown in Figure 7(b).

It is shown from the experimental results that whether
the motor is running in constant speed or variable speed, the
waveform ripples of the improved SMO for load torque

estimation are much smaller than those of the conventional
SMO under variable boundary layer gain tuning combined
with RBFNN, and the load torque varies with the actual
speed of the motor in the process of position regulation
mode start-stop motion. +e chattering phenomenon of the
improved SMO is weaker than that of conventional SMO.

5.2. Estimated Performance of the Improved SMO Combined
with moment of Inertia Matching. According to the above
analysis, the calculation of load torque requires the value of
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Figure 10: Comparison of inertia identification results based on classical and improved integral method.
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Figure 11: Partial experimental results of load torque estimation performance under the condition of variable boundary layer and variable
speed combined with moment of inertia matching. (a) Load torque is 5 N·m. (b) Load torque is 10 N·m.
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moment of inertia. +e uncertainty of the inertia will change
the dynamic characteristics of the observer. +erefore, the
mismatching of moment of inertia will cause errors in the
estimation of load torque.

First, verify the influence of inertia offset on load torque
identification and Figure 9 shows the simulation results. +e
speed of the simulation experiment is chosen to be a con-
stant speed of 1000 r/min. +e initial load torque is 1 N·m
and it increases to 5N·m when the system runs to
0.15 seconds. +e parameters of the SMO are as follows:
k � 1000, l � 9, and ϕ � 10.

It is shown from the experimental result that when the
inertia increases by 50%, the dynamic characteristics of the
observer also change, the estimated value of load torque is in
error and oscillates, and the steady-state response time
becomes longer. When the inertia reduces by 50%, although
the steady-state response time is shorter, the observer be-
comes less sensitive to parameter changes and the estimated
value of load torque is also in error and oscillates. +erefore,
accurate moment of inertia matching is significant to esti-
mate the load torque.

Figure 10 shows the simulation experiment results of the
classical fixed period integral method and the proposed

improved sampling period update conditions integral
method.+e speed of the simulation experiment is also set at
1000 r/min constant speed. It can be seen that, compared
with the classical integral method in which the average error
is about 5%, the error of the improved integral method in
which the average error is about 1% is smaller. +e method
has high accuracy and stability, which proves that it has good
identification performance for inertia.

After real-time matching of parameters, the inertia is
used to calculate the load torque combined with the im-
proved SMO, adopting the saturation function deformation
mode with boundary mutation. +e speed is the simulated
speed waveform mentioned above of the servo system po-
sition regulation mode start-stop motion. +e load torque of
the simulation experiment and the parameters of the SMO
are the same as those set above.

Figure 11 shows the conventional and improved SMO
combined with parameter matching load torque estimation
results under the given speed waveform. After the system
runs smoothly, it is calculated from experimental data that
the mean error of estimation for conventional method and
proposed method is about 1.2% and 0.5%, respectively, when
the load torque is 5 N·m as shown in Figure 11(a) and about
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Figure 12: Tracking performance of the improved SMO combined with parameter matching. (a) Speed tracking performance. (b) Rotor
position tracking performance.
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0.9% and 0.3%, respectively, when the load torque is 10 N·m
as shown in Figure 11(b).

It is shown from the experimental results that after the
inertia has been matched, the load torque varies with the
actual speed and the waveform ripples are very small.
Compared with the conventional SMO, the improved SMO
has smaller estimation error and better dynamic response
performance. It is proved that the improved SMO combined
with moment of inertia matching method proposed in this
paper can estimate the load torque effectively and accurately,
and the chattering problem of the servo system is alleviated
to a certain extent.

5.3. Tracking Performance and Stability of the Improved SMO.
To further verify the superiority and ability of the proposed
improved SMO combined with parameter matching, the
tracking performance and antidisturbance performance of
the observer are simulated.

Firstly, for the purpose of achieving high performance
servo control system, accurate rotor position and speed
information is generally required. Figure 12 is the tracking
performance of the improved SMO combined with pa-
rameter matching. +e load torque of the simulation ex-
periment is 5 N·m and the parameters of the SMO are as
follows: k � 1000, l � 9, and m � 10. Figure 12(a) shows the
actual speed and estimated speed of the simulate servo
system position regulation mode start-stop motion speed
waveform. Figure 12(b) shows the actual and estimated rotor
position simulation result.

It can be seen from the experimental results of tracking
performance that the estimated speed and estimated rotor
position can vary with the change of the actual speed and
rotor position and the dynamic response performance is
good. It is proved that the improved SMO combined with
parameter matching in this paper has excellent tracking
performance.

Secondly, the sudden load is added at constant and
variable speed, respectively, to verify the antitorque dis-
turbance ability of the improved SMO. Figure 13 shows the
stability test results of the improved SMO combined with
parameter matching. Figure 13(a) shows the constant speed
of 1000 r/min with sudden load change experimental result
that the initial load torque is 1 N·m and a sudden load torque
of 5 N·m is added at 0.2 seconds. Figure 13(b) shows the
variable speed with sudden load change experimental result
that the initial load torque is 1 N·m and a sudden load torque
of 5 N·m is added at 1 seconds.

+e simulation results show that, no matter at the
condition of constant speed or variable speed, after a short
fluctuation, the estimated load torque enables smooth
tracking of actual load during sudden loads, and the errors
and chattering are small. +erefore, it is proved that the
improved SMO combined with parameter matching in this
paper has excellent resistance to disturbance and can re-
spond quickly when the load torque changes.

+rough the above theoretical analysis and simulation
results, the load torque identification method based on
improved SMO combined with inertia matching proposed
in this paper can effectively alleviate the chattering problem
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Figure 13: Stability of the improved SMO combined with parameter matching. (a) Constant speed. (b) Variable speed.
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existing in conventional SMO and improve the identification
accuracy of load torque. In the future research, we will focus
on the torque fluctuation suppression, the parallel identi-
fication, and optimization of multiple mechanical parame-
ters of the robot servo system.

6. Conclusion

In this paper, the problem of load torque identification for
servo system is studied. Chattering phenomenon has been
one of the problems affecting the performance of conven-
tional SMO. Firstly, we propose an improved SMO that uses
the boundary-variant saturation function deformationmode
as the switching function to alleviate the chattering phe-
nomenon in this paper. +e boundary layer adaptively
adjusts with motor speed changes and the RBFNN is used to
adaptively tune the boundary layer gain. Meanwhile, the
configuration problem of sliding mode gain and feedback
gain is analyzed. Secondly, due to the fact that themoment of
inertia is required for load torque calculation and the
mismatch of it will cause calculate errors, a variable period
integral method is used for inertia identification, and the
inertia and load torque sampling calculation period are
redefined to update each order. Finally, the corresponding
experiments are simulated and compared to verify the
correctness of the scheme. +e experimental results show
that the proposed improved SMO combines observer gain
coefficient tuning and inertia matching can alleviate the
chattering and reduce the estimation error adaptively during
the identification process. Although the chattering phe-
nomenon cannot be completely eliminated, the proposed
SMO is still an effective, superior, and stable method.
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