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In this paper, the globally asymptotic synchronization of multi-layer neural networks is studied via aperiodically intermittent
control. Due to the property of intermittent control, it is very hard to deal with the e�ect of time-varying delays and ascertain the
control and rest widths for intermittent control. A new lemma with generalized Halanay-type inequalities are proposed �rst. en,
by constructing a new Lyapunov–Krasovskii functional and utilizing linear programming methods, several useful criteria are
derived to ensure the multilayer neural networks achieve asymptotic synchronization. Moreover, an aperiodically intermittent
control is designed, which has no direct relationship with control widths and rest widths and extends existing aperiodically
intermittent control techniques, the control gains are designed by solving the linear programming. Finally, a numerical example is
provided to con�rm the e�ectiveness of the proposed theoretical results.

1. Introduction

In the past few decades, coupled neural networks have
drawn much attention because of their inherent charac-
teristics and wide applications, such as secure communi-
cation [1], image encryption [2], and information processing
[3]. As one of the fundamental research areas, synchroni-
zation is used to better understand the self-organization
phenomena among coupled systems, which can be existed in
many physical, social, and biological systems with various
applications [4–6]. From the viewpoint of practical appli-
cations, investigating globally asymptotic synchronization of
coupled neural networks is meaningful [7, 8].

It is well known that time delays are unavoidable for
coupled neural networks due to the limited bit rate of
communication channels and the limited bandwidth.
 erefore, much attention has been attracted to studying the
synchronization problem of coupled neural networks with
time delays [9]. Yang et al. [10] investigated the synchro-
nization problem of coupled time-delay neural networks
with mode-dependent average dwell time switching. In [11],

synchronization of memristive neural networks with mixed
delays via quantized intermittent control was considered.
However, the aforementioned results of delayed neural
networks are based on one or two layers networks. In fact,
multilayer neural networks with more than two layers can be
seen as some subnetworks distributed in di�erent layers. For
example, there exist three-layers networks about informa-
tion transmission in smart grids [12] and Kuramoto-oscil-
lator networks [13–15]. erefore, it is necessary to study the
globally asymptotic synchronization for multilayer dynamic
networks with time delays.

To drive dynamic networks to achieve synchronization,
suitable controllers should be designed and added to the
nodes of dynamic networks. In practical applications, the
transmitted information is inevitably a�ected by external
perturbations, which make the information weak or inter-
rupted intermittently. In this case, the continuous-time
control is not suitable. Hence, intermittent control schemes
were proposed [16, 17]. Moreover, intermittent control can
greatly reduce control cost and the amount of transmitted
signals. Considering the fact that the structural limitation of
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periodically intermittent control is not applicable in reality
[18], aperiodically intermittent control was considered in
[19, 20], which is characterized by nonfixed control time and
rest time in a nonfixed time span. In [21], Liu et al. in-
vestigated the exponential synchronization problem for
linearly coupled networks with delay by using aperiodically
intermittent control. (e authors of [22, 23] considered
finite-time synchronization of delayed dynamic networks via
aperiodically intermittent control. However, the above-
given existing aperiodically intermittent control is complex
and some strict restrictions are imposed on the control width
and noncontrol width, which make it difficult to be
implemented in practice. It is demonstrated that new ape-
riodically intermittent control methods [24] are proposed to
improve the above existing control. (us, adopting a new
control strategy to study the asymptotic synchronization of
multilayer delayed networks is necessary.

Motivated by the above-given analysis, this paper is
devoted to studying the asymptotic synchronization of
multilayer delayed networks by aperiodically intermittent
control. (e main contributions are summarized as follows:

(1) An original lemma is an extended form of many
general Halanay-type differential inequalities
[21, 25–27]. (e lemma is proposed for the as-
ymptotic stability with an intermittent divergence of
system’s state and is applicable to the asymptotic
synchronization of delayed networks with inter-
mittent control.

(2) Aperiodically intermittent controllers without any
information of time delays are designed, which need
less restrictive conditions and make the controllers
more economic and practical than those controllers
in [21–23].

(3) Novel Lyapunov–Krasovskii functional is designed,
which can reduce the conservativeness of the results.
Sufficient conditions derived by linear programming
methods are acquired to ensure the asymptotic
synchronization of delayed networks with inter-
mittent control, where the effects of time delays are
well dealt with.

(e rest of this paper is organized as follows: in Section 2,
some necessary assumptions and lemmas are given. In
Section 3, the asymptotic synchronization of multilayer
delayed neural networks is studied via aperiodically inter-
mittent control. In Section 4, a numerical example is given to
verify the effectiveness of the proposed theoretical schemes.
Conclusions are drawn in Section 5.

Notations: letRn denote then-dimensionalEuclideanspace
and Rn×m denote the set of n × m real matrix. ⊗ stands for
Kronecker product. ai(t), bi(t)(i � 1, 2, 3, 4)(t ∈ R) are con-
tinuous and bounded functions. ai∗ � inf t∈Rai(t), a∗i �

supt∈Rai(t), bi∗ � inf t∈Rbi(t), b∗i � supt∈Rbi(t), i � 1, 2, 3, 4.

2. Preliminaries

In this paper, we consider the following dynamic networks
with p layers and N nonlinearly identical nodes:

_xi(t) � fi xi(t)(  + 
N

j�1
a
0
ijg0j xj(t) 

+ 

p− 1

r�1


N

j�1
a

r
ijgrj xj t − τr(t)(  ,

(1)

where xi(t) � [xi1(t), xi2(t), . . . , xin(t)]T ∈ Rn denotes the
state vector of the i th node. (e function fi(·): Rn⟶ Rn

and grj(·): Rn⟶ Rn are continuous.
To simply the notations, let x(t) � [x1(t)T, . . . ,

xN(t)T]T, f(x) � [f1(x1), . . . , fN(xN)]T and gr(x) � [gT
r1,

. . . , gT
rN]T(r � 0, 1, . . . , p − 1), grj(·): Rn⟶ Rn are con-

tinuous.(e functions τr(t)> 0(r � 1, . . . , p − 1) denote the
bounded and continuously differentiable coupling delays,
which means there exist positive constants τ and ϖ such that
0< τr(t)≤ τ and 0≤ _τr(t)≤ϖ< 1(r � 1, . . . , p − 1). Ar �

(ar
ij) ∈ R

N×N(r � 0, 1, . . . , p − 1) are the weight configura-
tion matrices. If there is a link between nodes i and j(i≠ j),
then ar

ij � ar
ji > 0; otherwise, ar

ij � ar
ji � 0, and the diagonal

elements of matrices Ar are represented by the following
equation:

a
r
ii � − 

N

j�1,j≠ i

a
r
ij, r � 0, 1, . . . , p − 1. (2)

For simplicity, the drive system (5) can be written in the
Kronecker product form:

_x(t) � f(x(t)) + A0 ⊗ In( g0(x(t))

+ 

p− 1

r�1
Ar ⊗ In( gr x t − τr(t)( ( ,

(3)

(e corresponding response systems are written as
follows:

_y(t) � f(y(t)) + A0 ⊗ In( g0(y(t))

+ 

p− 1

r�1
Ar ⊗ In( gr y t − τr(t)( (  + u(t),

(4)

where y(t) � (yT
1 (t), . . . , yT

N(t))T, yi(t) � [yi1(t), yi2(t),

. . . , yin(t)]T ∈ Rn denotes the response output vector of the i

th node. u(t) � [uT
1 (t), . . . , uT

N(t)]T, ui(t) denotes the input
control of the i th node.

Remark 1. When the multi-layer parameter p � 2, the same
models (3) degenerate into that considered in [23], even
many similar models to (3) were discussed, e.g., [21, 22].
(erefore, the models of systems (3) in this paper are
broader model forms. In addition, most of the practical
neural networks are interrelated and interact with each other
such that they generate more complicated structures and
unpredictable behaviors than that with one layer. (at is,
general models with multilayer structures can simulate the
real network world better, please see, e.g., [28, 29]. (us, the
models are worthy to be further discussed.

In this paper, the structure of aperiodically intermittent
control is briefly described as follows: each time span
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[t2k, t2k+1) and [t2k+1, t2k+2)(t0 � t− 1 � t− 2 � 0, k � − 1, 0, 1, 2
, . . .) denote the control time and the rest time, respectively.
(e aperiodically intermittent control becomes a periodic
one, when t2k+2 − t2k ≡ T , t2k+1 − t2k ≡ δ, where T, δ are
positive constants and 0< δ <T.

(e main objective is to apply the aperiodically inter-
mittent control to force the states of networks (4) to be
asymptotically synchronized with the ones of (3), i.e.,
limt⟶∞‖y(t) − x(t)‖ � 0. (e multilayer error systems
e(t) � y(t) − x(t) are obtained as follows:

_e(t) � f(y(t)) − f(x(t)) + A0 ⊗ In( g0(y(t))

− A0 ⊗ In( g0(x(t)) + 

p− 1

r�1
Ar ⊗ In( gr y t − τr(t)( ( 

− 

p− 1

r�1
Ar ⊗ In( gr x t − τr(t)( (  + u(t).

(5)

To obtain our main results, the following assumptions
and lemmas are given as follows.

Assumption 1 (see [30]). If there exists a positive definite
diagonal matrix P � diag P1, P2, . . . , PN  ∈ RnN×nN, a di-
agonal matrix Δ � diag Δ1,Δ2, . . . ,ΔN  ∈ RnN×nN, and a
positive scalar ξ such that

(y(t) − x(t))
T
P[f(y(t)) − f(x(t)) − Δ(y(t) − x(t))]

≤ − ξ(y(t) − x(t))
T
(y(t) − x(t)),

(6)

holds for any x(t), y(t) ∈ RnN, where Pi,Δi ∈ Rn×n are di-
agonal matrices.

Lemma 1 (see [31]). Given any real matrices X, Y and K of
appropriate dimensions and a scalar ε> 0 such that
K � KT > 0. 4en, the following inequality holds:

X
T
Y + Y

T
X≤ εXT

KX + ε− 1
Y

T
K

− 1
Y. (7)

Obviously, when K � I (I is an identity matrix), the in-
equality is transformed into XTY + YTX≤ εXTX+ ε− 1YTY.

Lemma 2 (see [32]). Let x(·) be a nonnegative function
satisfying the following equation:

_x(t)≤ − a(t)x(t) + b(t) sup
t− τ(t)≤s≤t

x(s),  t> t0,

x(s) � |φ(s)|, ∀s ∈ t0 − τ∗, t0 ,

⎧⎪⎪⎨

⎪⎪⎩
(8)

where τ(t) denotes a nonnegative, continuous and
bounded function defined for t ∈ R and τ∗ � sup

t∈R
τ(s); φ(s)

is continuous and defined for s ∈ [t0 − τ∗, t0]; a(t) and
b(t)(t ∈ R) denote nonnegative, continuous, and bounded
functions. Suppose

a(t) − b(t)≥ σ, t ∈ R, (9)

where σ � inf
t∈R

(a(t) − b(t))> 0. Let 0< σ < σ, there exists a

positive number μ satisfying the following inequality:

− a(t) + μ + b(t) exp μτ∗ ≤ − σ < 0, for allt ∈ R. (10)

4en,

x(t)≤ sup
s∈ t0− τ∗,t0[ ]

x(s)⎛⎝ ⎞⎠exp − μ t − t0(  , t> t0. (11)

Lemma 3 (see [33]). Let w(·): [t0 − τ, +∞)⟶ [0, +∞) be
a continuous function such that _w(t)≤ a(t)w(t) + b(t)w(t)

holds for t≥ t0, where w(t) � sup− τ≤k≤0 (w(t + k)). If b(t)> 0
and a(t) + b(t)≥m∗, we have the following equation:

w(t)≤w t0(  exp m
∗

t − t0(  , t≥ t0. (12)

It should be noted that realizing the asymptotic syn-
chronization is generally difficult due to the use of inter-
mittent control and the effect of time-varying delay. the
intermittent control shows some difficulties to be handled,
including the fact that the values of error state e(t) � y(t) −

x(t) increase on all rest intervals. (e time-varying delay
brings several uncertain factors in tending towards the
process of asymptotic synchronization. However, these
difficulties will be well dealt with by studying new analytical
methods.

Before proceeding with our research, a lemma is given in
the following, with which the difficulty induced by inter-
mittent control is surmounted.

Lemma 4. Assume that a function y(t) is continuous and
nonnegative when t ∈ (− τ, +∞), and satisfies the following
condition:

_y(t)≤ − a1(t)y(t) + a2(t)sup0<τr(t)≤τ,1≤ r≤p− 1y t − τr(t)( , t2k ≤ t< t2k+1,

_y(t)≤ a3(t)y(t) + a4(t)sup0<τr(t)≤τ,1≤ r≤p− 1y t − τr(t)( , t2k+1 ≤ t< t2k+2,

⎧⎪⎨

⎪⎩
(13)

where k ∈ N and p> 1 is a positive integer. Assume further
that the following inequalities hold, i.e.,
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sup
t∈R

a1(t) − a2(t)  � λ> 0, a3(t) + a4(t)≥ ε> 0,

λ t2k+1 − t2k( 

ε t2k+2 − t2k+1( 
� χk > 1.

(14)

4en, y(t)⟶ 0 as t⟶ +∞.

Proof 1. Denote y � sups∈[t0− τ,t0]
y(s), then from Lemma 2,

when t ∈ [t0, t1), it is obtained from that

y(t)≤y exp − λ t − t0(  ,

y t1( ≤y exp − λ t1 − t0(  ,
(15)

where t0 � 0.
From Lemma 3, when t ∈ [t1, t2), the second inequality

of (13) leads to the following inequality.

y(t)≤ y t1(  exp ε t − t1(  , (16)

which means that

y t2( ≤ y t1(  exp ε t2 − t1(  . (17)

Similarly, when t ∈ [t2, t3), one has

y(t)≤ y t2(  exp − λ t − t2(  ≤y exp − λ t1 − t0(  

exp ε t2 − t1(  exp − λ t − t2(  ,
(18)

and

y t3( ≤y exp − λ t1 − t0(  exp ε t2 − t1(  

exp − λ t3 − t2(   � y exp − λ t1 − t0(  + t3 − t2(   

exp ε t2 − t1(  .

(19)

By induction, when t ∈ [t2k, t2k+1), k ∈ N+, it follows that

y(t)≤y exp − λ 
k− 1

m�− 1
t2m+1 − t2m( 

⎧⎨

⎩

⎫⎬

⎭

exp ε 
k

m�0
t2m − t2m− 1( 

⎧⎨

⎩

⎫⎬

⎭exp − λ t − t2k(  ,

(20)

where t− 1 � t− 2 � 0.
When t ∈ [t2k+1, t2k+2), k ∈ N+, it follows that

y(t)≤y exp − λ 
k

m�0
t2m+1 − t2m( 

⎧⎨

⎩

⎫⎬

⎭

exp ε 
k

m�0
t2m − t2m− 1( 

⎧⎨

⎩

⎫⎬

⎭exp ε t − t2k+1(  .

(21)

(en, for any k≥ 1, one has from

y(t)≤y exp − λ 
k− 1

m�− 1
t2m+1 − t2m( 

⎧⎨

⎩

⎫⎬

⎭exp ε 
k

m�0
t2m − t2m− 1( 

⎧⎨

⎩

⎫⎬

⎭exp − λ t − t2k(   � y exp − λ t − t2k(  exp

− λ 

k− 1

m�0
t2m+1 − t2m(  + ε 

k− 1

m�0
t2m+2 − t2m+1( 

⎧⎨

⎩

⎫⎬

⎭ � y exp − λ t − t2k(  exp  

k− 1

m�0
1 − χk(  t2m+2 − t2m+1( 

⎧⎨

⎩

⎫⎬

⎭, t ∈ t2k, t2k+1 ,

y(t)≤y exp − λ 
k

m�0
t2m+1 − t2m( 

⎧⎨

⎩

⎫⎬

⎭exp ε 
k

m�0
t2m − t2m− 1( 

⎧⎨

⎩

⎫⎬

⎭exp ε t − t2k+1(  

≤y exp − λ t2k+1 − t2k(  exp − λ 

k− 1

m�0
t2m+1 − t2m( 

⎧⎨

⎩

⎫⎬

⎭exp ε 
k

m�0
t2m − t2m− 1(  + ε t − t2k+1( 

⎧⎨

⎩

⎫⎬

⎭

≤y exp − λ t2k+1 − t2k(  + ε t2k+2 − t2k+1(  exp − λ 
k− 1

m�0
t2m+1 − t2m( ≤y exp − λ t2k+1 − t2k( 

⎧⎨

⎩

+ ε t2k+2 − t2k+1( exp + ε 
k− 1

m�0
t2m+2 − t2m+1(  − λ 

k− 1

m�0
t2m+1 − t2m( ε 

k

m�1
t2m − t2m− 1( 

⎧⎨

⎩

⎫⎬

⎭

⎫⎬

⎭

� y exp ε 

k

m�0
1 − χk(  t2m+2 − t2m+1( 

⎧⎨

⎩

⎫⎬

⎭, t ∈ t2k+1, t2k+2 .

(22)

For any t≥ t2, there is a k∈ N+ such that t ∈ [t2k
, t2k+1) or

t ∈ [t2k+1, t2k+2). When t⟶ +∞, it follows that


k− 1
m�0(t2m+2 − t2m+1)⟶ +∞. Since χk > 1, one has exp ε{


k− 1
m�0(1 − χk)(t2m+2 − t2m+1)}⟶ 0 and exp {εm�0

k(1−

χk)(t2m+2 − t2m+1)}⟶ 0. To sum up, y(t)⟶ 0 as
t⟶ +∞. (e proof is completed. □

Remark 2. When the coefficients of differential inequalities
(13) become constants (i.e., ai(t) � ai, i � 1, 2, 3, a4(t) � a2)
and the layers become one layer (p � 2), this lemma

degenerates into the one studied in [21]. Lemma 4 relaxes
the limiting conditions of the coefficients in the in-
equalities and generalizes the differential form of the
inequalities. Moreover, without the existence of inter-
mittent, Lemma 4 degenerates into Lemma 2 in [32] and
Lemma 3 in [33]. (us, Lemma 4 is a more general form
and can be applied to the case of both nonintermittent and
intermittent.

Remark 3. Lemma 4 can be applied to asymptotic syn-
chronization or asymptotic stabilization via aperiodically
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intermittent control. Compared with the conditions of the
designed aperiodically intermittent control in [21, 22], Lemma
4 relaxes some harsh conditions. For example, in [23], the
lower bound of control interval (i.e., infk∈N t2k+1 − t2k  � θ)
and the upper bound of rest width (i.e., infk∈N t2k+2

− t2k+1} � ω) have to be previously assumed and satisfied θ<ω,
where θ and ω are two positive constants. It presents from the
condition (λ(t2k+1 − t2k)/ε(t2k+2 − t2k+1)) � χk that the in-
tervals of control and rest can be flexibly adjusted.(at is, both
the control interval and the rest interval canbe arbitrarily large.
(erefore, the aperiodically intermittent controller shows its
superiority and operability in practice.

3. Synchronization of Multilayer Neural
Networks with Time-Varying Delays via
Aperiodically Intermittent Control

(is section is aimed to investigate the asymptotic syn-
chronization problem of multi-layer neural networks with
time-varying delays via aperiodically intermittent control.
With the help of designing strictly aperiodically intermittent
control and applying Lemma 4, (eorem 1 is obtained to
ensure that multilayer neural networks (4) asymptotically
synchronize on (3).

Design a mode-dependent controller as follows:

u(t) �
− De(t), t2k ≤ t< t2k+1,

0, t2k+1 ≤ t< t2k+2,
 (23)

where e(t) � [eT
1 (t), . . . , eT

N(t)]T, ei(t) � yi(t) − xi(t)

(i � 1, 2, . . . , n), D � diag(d1, d2, . . . , dnN), and di > 0 are
the control gains.

Remark 4. To eliminate the effects of time delays, some
complex terms, such as integrals and time delays, are added
to the intermittent controller in [34]. However, in many
cases, it is difficult to obtain detailed information of time
delays; hence, intermittent controller with time delays is
usually difficult to be implemented in practice. (erefore, an
intermittent controller without any information of delays is
designed, which makes the controller more practical than
the state-feedback controller in [35].

For the above-designed controller, we will reveal how to
design suitable control gains di(i � 1, 2, . . . , nN) such that
the multilayer error systems (5) can achieve asymptotic
synchronization. (e main results are elaborated as follows.

Theorem 1. Assume that the function f(t) satisfies As-
sumption 1 and the function g(t) satisfies the Lipschitz
condition, there exist positive constants ξ, ξ1, ξ2, l, b∗1 , b3∗,

ϖ, ς, di(i � 1, 2, . . . , nN) such that

(i) (b∗1 /2)P − ξInN + PΔ + ξ1(A0 ⊗ I n)T P(A0 ⊗ In) +

(l2/ξ1)P + 
p− 1
r�1 ξ2(Ar ⊗ In)TP(Ar ⊗ In) − D + exp

b∗1τ /2(p − 1)P< 0,
(ii) − (1/2)b3∗P − ξInN + PΔ + ξ1(A0 ⊗ In)TP(A0 ⊗ In)+

(l2/ξ1)InN + 
p− 1
r�1 ξ2(Ar ⊗ In)TP(Ar ⊗ In) + (exp

b∗1τ /2)(p − 1)P< 0,

(iii) b2(t) � 2(p − 1)((l2/ξ2) − ((1 − ϖ)exp b∗1(τ−

τ(t))}/2)) ≥ 0,

where p> 1 is a positive integer, the matrixes P,Δ ∈ RnN are
defined in Assumption 1. Assume further that the inequalities
hold, i.e.,

sup
t∈R

b1(t) − b2(t)  � μ> 0, b3(t) + b4(t)≥ ]> 0,

μ t2k+1 − t2k( 

] t2k+2 − t2k+1( 
� χk > 1.

(24)

4en, the multilayer error systems (5) are globally as-
ymptotically synchronized.

Proof 2. Consider the following Lyapunov–Krasovskii
functional:

V(t) � V1(t) + V2(t), (25)

where V1(t) � 1/2eT(t)Pe(t), V2(t) � exp b∗1τ /2
p− 1
r�1


t

t− τr(t)
exp b∗1(s − t) eT(s)Pe(s)ds.

Computing the derivative of V(t), we have the following
equation:

_V1(t) � − b1(t)V1(t) +
b1(t)

2
e

T
(t)Pe(t) + e

T
(t)P _e(t), (26)

_V2(t) � − b
∗
1V2(t) +

exp b
∗
1τ 

2
(p − 1)e

T
(t)Pe(t)

− 

p− 1

r�1
exp − b

∗
1τr(t)  × 1 − τr(t)( e

T

t − τr(t)( Pe t − τr(t)( 

≤ − b1(t)V2(t) +
exp b

∗
1τ 

2
(p − 1)e

T
(t)Pe(t)

− 

p− 1

r�1
exp − b

∗
1τ (1 − ϖ) × e

T

t − τr(t)( Pe t − τr(t)( .

(27)

From (26) and (27), along the trajectories of (5) with
controllers (23), we deduce two cases as follows. □

Case 1. When t2k ≤ t< t2k+1, for k ∈ N

_V(t)≤ − b1(t)V(t) +
b1(t)

2
e

T
(t)Pe(t) + e

T

(t)P [f(y(t)) − f(x(t))] + A0 ⊗ In(  g0(y(t))

− g0(x(t)) + 

p− 1

r�1
Ar ⊗ In(  gr y t − τr(t)( ( 

− gr x t − τr(t)( (  − De(t)

+
exp b

∗
1τ 

2
(p − 1)e

T
(t)Pe(t) − 

p− 1

r�1
exp − b

∗
1τr(t) ⎡⎣

1 − ϖ)eT
t − τr(t)( Pe t − τr(t)(  .

(28)
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Since the function f(t) satisfies Assumption 1 and the
function g(t) satisfies the Lipschitz condition, and by
Lemma 2, we get the following equation:

e
T
(t)P[f(y(t)) − f(x(t)) − Δe(t)]≤ − ξe

T
(t)e(t), e

T
(t)

P A0 ⊗ In(  g0(y(t)) − g0(x(t)) ≤ ξ1e
T
(t) A0 ⊗ In( 

T

P A0 ⊗ In( e(t) +
l
2

ξ1
e

T
(t)Pe(t),

e
T
(t)P Ar ⊗ In(  gr y t − τr(t)( (  − gr x t − τr(t)( (  

≤ ξ2e
T
(t) Ar ⊗ In( 

T
P Ar ⊗ In( e(t)

+
l
2

ξ2
e

T
t − τr(t)( Pe t − τr(t)( ,

(29)

where l, ξ, ξ1, ξ2 > 0 are positive constants.
(en, according to the conditions (i) and (iii), it follows

from (28) that

_V(t)≤ − b1(t)V(t) + e
T
(t)

b
∗
1
2

P − ξInN + PΔ

+ξ1 A0 ⊗ In( 
T
P A0 ⊗ In(  +

l
2

ξ1
P + 

p− 1

r�1
ξ2 Ar ⊗ In( 

T

P Ar ⊗ In(  − D +
exp b

∗
1τ 

2
(p − 1)P

e(t) + 

p− 1

r�1
e

T
t − τr(t)( 

l
2

ξ2
−
exp b

∗
1τ 

2
exp − b

∗
1τr(t) 

1 − ϖ)( ] × Pe t − τr(t)( ≤ − b1(t)V(t)

+b2(t) sup
0<τr(t)≤τ,1≤ r≤p− 1

V t − τr(t)( ,

(30)

where b2(t) � 2(p − 1)((l2/ξ2) − ((1 − ϖ)exp b∗1(τ−

τ(t))}/2)).

Case 2. when t2k+1 ≤ t< t2k+2, k ∈ N, using the conditions (ii)
and (iii), we have the following equation:

_V(t)≤ − b1(t)V(t) + b1(t) + b3(t)( V(t) + e
T
(t)

−
1
2
b3∗P − ξInN + PΔ + ξ1 A0 ⊗ In( 

T
P A0 ⊗ In(  +

l
2

ξ1
P

+ 

p− 1

r�1
ξ2 Ar ⊗ In( 

T
P Ar ⊗ In(  +

exp b
∗
1τ( 

2
(p − 1)P⎤⎦

e(t) + 

p− 1

r�1
e

T
t − τr(t)( 

l
2

ξ2
−
exp b

∗
1τ 

2


×exp − b
∗
1τr(t) (1 − ϖ) + ςPe t − τr(t)( 

≤ b3(t)V(t) + b4(t)sup0<τr(t)≤τ,1≤ r≤p− 1 V t − τr(t)( ,

(31)

where b4(t) � (p − 1)(b2(t) + ς).
(us, we get the following equation:

_V(t) ≤ − b1(t)V(t) + b2(t)sup0<τr(t)≤τ,1≤ r≤p− 1 V t − τr(t)( , t2k ≤ t< t2k+1,

_V(t) ≤ b3(t)V(t) + b4(t)sup0<τr(t)≤τ,1≤ r≤p− 1 V t − τr(t)( , t2k+1 ≤ t< t2k+2.

⎧⎪⎨

⎪⎩
(32)

By Lemma 4 and condition (24), we obtain V(t)⟶ 0 as
t⟶ +∞. (erefore, lim

t⟶ +∞
‖e(t)‖ � 0. (at is, (4) is

globally asymptotically synchronized with (3). (e proof is
completed.

Remark 5. From condition (24) one can see that, for fixed
value ](t2k+2 − t2k+1), the value of the control interval t2k+1 −

t2k can be decreased when the value μ is large as long as χk > 1
is satisfied. (at is, by tuning the value of the control gain D

such that the value of μ increase or decrease. It can be seen
that the conditions of (eorem 1 fully reveal the constraint
relationship of parameters D, μ and ].

Remark 6. Due to the existence of time delay, it will affect
the convergence of the error system. By utilizing the

inequality (13) in Lemma 4, a new Lyapunov–Krasovskii
functional is designed in the proof of (eorem 1, which
makes the effect of time delays to be well handled. With the
help of Lemma 4, sufficient criteria by linear programming
methods for asymptotic synchronization of the drive-re-
sponse networks (3) and (4) are derived and the conser-
vativeness of the obtained results can be reduced greatly.

4. Numerical Simulations

In this section, an example is given to verify the effectiveness
of the proposed results in this paper.

Example 1. We consider the following multilayer dynamic
networks with 10 identical nodes:
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_x(t) � f(x(t)) + A0 ⊗ I3( g0(x(t))

+ 
2

r�1
Ar ⊗ I3( gr x t − τr(t)( ( ,

(33)

where

fi xi(t)(  �

− a a 0

b − 1 0

0 0 − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xi1(t)

xi2(t)

xi3(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

0

− xi1(t)xi3(t)

xi1(t)xi2(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

g0(x(t)) � sin(x(t)),

g1 x t − τ1(t)( (  � sin x t − τ1(t)( ( ,

g2 x t − τ2(t)( (  � 0.3x(t)cos x t − τ2(t)( ( ,

A0 �

− 4 0 0 1 1 0 0 0 1 1

0 − 4 1 1 0 1 0 1 0 0

0 1 − 5 1 0 1 0 1 1 0

1 1 1 − 6 0 1 1 1 0 0

1 0 0 0 − 3 1 0 0 1 0

0 1 1 1 1 − 7 1 1 1 0

0 0 0 1 0 1 − 3 0 0 1

0 1 1 1 0 1 0 − 6 1 1

1 0 1 0 1 1 0 1 − 5 0

1 0 0 0 0 0 1 1 0 − 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A1 �

− 7 1 1 0 1 0 1 1 1 1

1 − 5 1 0 1 0 0 1 1 0

1 1 − 5 1 1 1 0 0 0 0

0 0 1 − 3 1 1 0 0 0 0

1 1 1 1 − 6 0 1 0 0 1

0 0 1 1 0 − 5 1 1 0 1

1 0 0 0 1 1 − 4 0 0 1

1 1 0 0 0 1 0 − 4 1 0

1 1 0 0 0 0 0 1 − 3 0

1 0 0 0 1 1 1 0 0 − 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A2 �

− 6 1 1 0 0 1 0 1 1 1

1 − 4 1 0 0 1 1 0 0 0

1 1 − 6 0 1 0 1 1 1 0

0 0 0 − 3 1 1 1 0 0 0

0 0 1 1 − 4 1 0 1 0 0

1 1 0 1 1 − 7 1 1 0 1

0 1 1 1 0 1 − 5 0 0 1

1 0 1 0 1 1 0 − 5 1 0

1 0 1 0 0 0 0 1 − 4 1

1 0 0 0 0 1 1 0 1 − 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(34)

where the parameters are set as a � 10, b � 30, c � 8/3, the
time-varying delays are selected as τ1(t) � 0.08 exp(t)/(1 +

exp(t)) and τ2(t) � 0.04 exp(t)/(1 + exp(t)). Note that,
Ai(i � 0, 1, 2) are randomly generated. (e control gains in

the controllers (23) are selected as di � 100. We choose Pi �

di ag 0.5, 0.4, 0.2{ } and Δi � diag 50, 50, 50{ } as [34], it is easy
to verify that satisfies Assumption 1 holds with the parameter
ξ � 43.48. Moreover, the initial values of the multilayer
systems are given as follows: x(0) � (3 + i, 5 + 2i, 7 + 2i)T,
y(0) � (− 2 + 7i, − 5 + 6i, − 7 + 8i)T(i � 1, . . . , 10).

As shown in Figure 1, the Lorenz system _xi(t) �

fi(xi(t)) has a chaotic attractor with the initial value
x(0) � (1, 2, − 2)T. Each time span t2k+2 − t2k(k≥ 0) is
randomly generated in the interval [0.3s, 0.5s], and the ratio
of the control time t2k+1 − t2k is randomly generated in the
interval [0.5s, 0.8s], the trajectories of the multilayer system
errors with aperiodically intermittent controllers (23) are
demonstrated in Figures 2–4.

Remark 7. To achieve the synchronization effect, we need to
set appropriate control parameters di(i � 1, 2, . . . , 10) in the
controllers (23), which are required to satisfy the conditions
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t

Figure 1: Trajectories of the synchronization errors ei1 roman for
number with control gains di � 100.
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Figure 2: Trajectories of the synchronization errors ei2 with control
gains di � 100.
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in (eorem 1. From these conditions, we can easily see that
the upper and lower bounds of each continuous function
bi(t)(i � 1, 2, 3, 4) exist, but the concrete values cannot be
given. However, we give the sufficiently large parameters di �

100(i � 1, 2, . . . , 10) to satisfy condition 1 in (eorem 1.

5. Conclusions

In this article, asymptotic synchronization of multilayer
neural networks with delays has been studied. By designing
strict aperiodically intermittent controllers and establishing
a set of novel Halanay-type inequalities, several criteria
formulated by linear progressing methods are to ensure
asymptotic synchronization. Our results can not only realize
asymptotic synchronization of multilayer neural networks
with delays by designing strict aperiodically intermittent
controllers but also are less conservative in determining the
control interval and designing the control gains. Numerical
simulation verified the validity of the results obtained here.

At present, by using the aperiodically intermittent
control with improved conditions(λ(t2k+1 − t2k)/ε(t2k+2
− t2k+1) � χk〉1), many excellent research results on finite-
time tracking of uncertain nonlinear systems [36] and finite-

time synchronization of delayed neural networks have
emerged [11, 19, 20, 24]. Note that, time delay or distributed
delay, as one of the vital factors affecting the dynamic be-
haviors of neural networks, cannot be neglected [8]. In
addition, the singularity [37, 38] and fractional-order [39]
that constantly appear in practical engineering are the focus
of current research. For example, singularly perturbed
complex networks with cyberattacks were been considered
in [40] and fractional-order nonlinear systems were been
discussed in [41]. (erefore, how to realize finite-time
synchronization of singularly or fractional-order complex
networks with delays or distributed delays is our further
research interest, which is also challenging.
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