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Integrating large intelligent re�ecting surfaces (IRS) into a millimeter-wave (mmWave) massive multi-input-multi-output
(MIMO) technique has been a promising approach to enhance the performance of the wireless communication system with the
channel state information (CSI). Most existing work assume that ideal channel estimation can be obtained, but the proposed high-
dimensional cascaded MIMO channels and passive re�ectors pose a great challenge to these methods. To address the above-
mentioned problems, we proposed a new method for the reduction of training overhead in IRS with a partial ON/OFF model and
an optimizing strategy for pilot design approach.  e energy consumption of large-scale antenna arrays and the pilot overhead in
the training phase of signal transmission are greatly reduced. Besides, we proposed an improved deep residual shrinkage denoising
network, which possesses better denoising performance with a soft thresholding model. e channel data can be denoised by deep
learning methods, which greatly improve the accuracy of channel estimation. Simulation results demonstrate that the superiority
of the proposed network over prior solutions.

1. Introduction

With the high-speed development of wireless communica-
tion systems, wave MIMO has been deployed around the
high-speed railway [1–3], which can sharply improve
spectral and energy e�ciencies [4]. However, training
overhead and hardware complexity would be signi�cantly
increased due to the use of a large number of antennas that
are deployed at the base station (BS); it will cost a lot of
resources to process data and is very expensive to implement
on account of hardware complexity [5, 6]. In order to solve
these problems, an intelligent re�ecting surface (IRS) is
presented as a promising technology to enhance connecting
quality and reduce the training and processing consumption
[7]. Global wireless data tra�c has grown dramatically in the
last few years. Accordingly, sixth-generation (6G) wireless
communication networks are being developed to accom-
modate the substantial growth in mobile data rates.  e IRS
transmission technique is to date considered a promising
technology tomeet the huge requirements for high data rates

in the future 6G networks [8, 9]. Specially, IRS consists of a
large number of arraying recon�gurable elements which are
passive and low-cost and can change the phase shifts of
received signals [10].

In order to realize the advantages of low cost and re-
duced energy consumption in IRS-aided MIMO systems, it
is essential to know the integra channel state information
(CSI) [11–13].  erefore, we denote that proceeding accu-
rate channel estimation with reduced expense in mmWave
MIMO systems is of great help to improve system perfor-
mance confronting with dire challenges. Due to the
re�ecting elements in the IRS being passive and unable to
perform signal processing [14], it is di�cult to estimate the
BS-IRS channel and the IRS-US channel, and this causes
serious trouble in obtaining accurate channel state infor-
mation. Previous channel estimation methods based on a
design of a re�ecting matrix by perfect CSI have been
proposed in References [11–14] but still face a lot of di�-
culties. In Reference [11], it is pointed out that the re�ection
matrix can be designed with perfect channel state
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information to complete the channel estimation. In Refer-
ence [12], the article proposes a kind of hybrid precoding
design for IRS-aided mmWave communication systems to
acquire perfect CSI. In Reference [13], an intelligent re-
flector-enhanced wireless network by joint active and pas-
sive beamforming is proposed. Due to the high complexity
of the abovementioned methods and the difficulty in
obtaining perfect channel state information in the actual
wireless communication environment, they are not suitable
for the actual high-speed scenarios. In addition, a channel
estimation method based on compressive sensing (CS) was
proposed in Reference [14] with the sparsity of cascaded
channels, which reduces much of the training overhead.
Subsequently, in Reference [15], the authors proposed a least
squares (LS) method that is based on channel estimation
with switching on the reflecting elements one by one to
reduce calculation complexity and resource consumption.
However, the methods in References [14, 15] are applied in
the frequency-flat systems with narrow-band channels.
Although the estimation method in Reference [14] uses
compressed sensing technology to reduce the complexity of
channel estimation, the complexity of channel estimation is
still high due to the existence of IRS elements. Although the
proposed switching mode in Reference [15] improves the
accuracy of channel estimation, it is not applicable in the
case of a large number of reflection elements.

To better acquire the reflecting property of the IRS, the
authors in Reference [16] deployed IRS elements in or-
thogonal frequency division multiplexing (OFDM) systems
and applied the LS to estimate cascaded channels with one
antenna in all BS and USs. In this paper, the IRS is intro-
duced into OFDM and its communication parameters are
analyzed by a simulation experiment, which resolved IRS
deployment issues in a frequency-flat system with broad-
band channels. Nevertheless, in the massive MIMO com-
munication system, the cascaded MIMO channels between
them can be extremely high-dimensional because of the
large number of antennas, so that the pilot training expense
and channel dimension will become especially huge. *e
authors in Reference [17] proposed a channel estimation
scheme based on deep learning (DL) and CS with a deep
denoising network-aided CS. However, the denoising net-
work model based on deep learning proposed in this lit-
erature has the problem of insufficient noise extraction and it
takes a huge amount of time to process when the training
sample size is large. In References [18, 19], two channel
estimation schemes, respectively, based on compressive
sensing and deep learning (DL) were proposed, whereby the
angular domain channel sparsity was utilized for reduced
pilot overhead, the problems of the high cost of pilot
training, and high complexity of channel estimation are
solved. However, the accuracy of channel estimation is low
because noise is not considered.

It is clear from the abovementioned literature that the
IRS-enhanced massive MIMO system has a huge overhead
problem in pilot training, and it is difficult to accurately
obtain channel state information through traditional
channel estimation techniques due to the influence of noise
in the wireless channel environment. *e major

contribution of this paper is to propose a reduction of
training overhead based on grouping elements in the IRS
with partial ON/OFF and an optimizing strategy for pilot
design approach which reduces the training overhead in the
communication system. *e pilot optimization algorithm
consists of deducing the best pilot sequence of the first
antenna and then applying the shift mechanism (SM) [20] to
calculate the pilot matrix of the other antennas. On this
basis, we propose an improved deep residual shrinkage
denoising network to further enhance the accuracy of
channel estimation which possesses better denoising per-
formance with a soft thresholding model [21].

*e remainder of this paper is organized as follows.
Section 2 presents the system model and basic knowledge of
handover in the IRS-aided mmWave massive communica-
tion system. Section 3 introduces the grouping strategy of
IRS elements with a partial ON/OFF model, pattern opti-
mization of pilots based on CS, and an improved deep re-
sidual shrinkage network. Simulation and performance
analysis are presented in Section 4. Finally, the paper is
concluded in Section 5.

2. System Model

As shown in Figure 1, we consider that the IRS is set to
improve the property of communication between a BS and
a user [22]. In the IRS-aided mmWave massive com-
munication system, we assume that there are N number of
IRS elements at the IRS and the BS-IRS channel for the k-
th reflecting element can be defined as hb, and the BS-user
channel for the BS-User direct link is defined as hu.
Similarly, the IRS-user channel for the IRS-user is defined
as gu.

Specially, each element of the IRS uses an independent
reflection coefficient to re-scatter the received signals, which
is expressed as ϕ � [ϕ1, . . . , ϕN] ∈ CN×1, and ϕNcan be
written as ϕN � βNejθN , where βN denotes the amplitude
coefficient and θNdenotes the phase shift. *e concatenation
of BS-IRS-user channels is defined ashb ∗ ϕN ∗gu.*erefore,
the composite BS-IRS-user channel for all IRS elements can
denoted by hr, which can be represented as follows:

hr � Vϕ, (1)

where V � [v1, . . . , vN] and vN � ϕN ∗gu. Hence, the
channel impulse response (CIR) in the BS-user channel,
which includes the BS-user channel and the BS-IRS-user
channel, can be expressed as follows:

h � hr + hu. (2)

In this mmWave communication system, pilot signals
are sent from the user, then reflected by IRS to the BS, which
estimates the channels and calculates design parameters.
Without loss of generality, we attract attention on uplink
communication from the user to the BS in this paper.
Moreover, for downlink communication, the design pa-
rameters can be computed by channel reciprocity and
leveraging time division duplexing (TDD) based on the
channel information get from uplink training.
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3. Proposed Channel Estimation Technique

In this part, we propose a new improved deep residual
shrinkage network (IDSRN) with grouping IRS elements
which is partial ON/OFF to enhance the accuracy of channel
estimation and a kind of pilot optimization method based on
CS to reconstruct the channel. *is method based on CS and
DL can reduce the training expense and channel estimation
complexity.

3.1. Grouping IRS Elements with the Partial ON/OFF Model.
Because the adjacent elements are usually packed together in
the uniform planar array, the channels in mmWave MIMO
communication systems with IRS have a practical correla-
tion [23]. *erefore, as shown in Figure 2, we propose a
grouping design for adjacent IRS elements that form a block,
in which we consider that the grouping IRS elements have a
similar reflection coefficient and we switch on part of the
groups instead of opening the whole elements.

*e whole IRS elements’ set is defined as N and we make
M denote the number of groups with 1<M<N. *erefore,
we denote that the size (number of IRS elements) of each
group is defined as K�N/M. Moreover, we define the
grouping ratio as J, with a 1/M orM/N, which could be used
to adjust the size of the grouping elements. For instance, as
shown in Figure 2, we consider that the whole IRS elements,
which has, respectively, Nx and Ny elements in each row and
column, and the grouping element ratio J is defined as 1/4,
which hasMx and My in each row and column. We can also
change the number of groups M by adjusting the grouping
ratio J andMx andMy. Because the grouping of IRS elements
has a common reflection coefficient, the IRS reflection co-
efficients can be re-expressed as follows:

ϕ � ϕ⊗ 1K×1, (3)

where ϕ � [ϕ1, . . . , ϕM] ∈ CN×1 denotes that the grouping
elements reflection coefficients, and ϕM denotes that the
common reflection coefficients in the M-th group. *ere-
fore, the consolidation of the BS-IRS channel, US-IRS
channel, and IRS reflection can be expressed as follows:

H � v1, . . . , vN ϕ⊗ 1K×1 � v1′, . . . , vM
′ ϕ � V′ ϕ, (4)

where H denotes that the reflecting channel frequency re-
sponse associated with theN-th IRS element, and vM

′ denotes
that the channel frequency response associated with the M-
th grouping of IRS elements.

In order to reduce the training cost and estimation
complexity further, we consider that switch on the part of the
grouping IRS instead of driving the whole IRS elements.
*erefore, we consider that M-th grouping elements with
their amplitude vector defined, as are switched on, and
others with their amplitude vector defined as θ � 0 repre-
sents in no reflection mode. *en, the received signal as-
sociated with M-th elements can be expressed as follows:

yk � θXHk + w, (5)

where X denotes the training signal, and Hk denotes the
channel of k-th grouping element; w denotes noise in the
communication environment.

3.2. Pattern Optimization of Pilots Based on CS. Due to the
BS-IRS channels with the sparsity feature, we propose a CS-
based optimization method which uses a compressed
sensing technique to optimize the pattern better to solve the
problem of the tremendous expense of pilot training in
mmWave MIMO communication systems while enhancing
the performance of signal reconstruction. *is method is a
kind of algorithm that can adaptively reduce the pilot vector
based on the autocorrelation matrix with the shift
mechanism.

We first assume that the column in the pilot matrix
X ∈ RM×N has been normalized and that the autocorrelation
matrix R of the pilot matrix is represented as R � XTX.
*erefore, R is a positive semi-defined matrix with similar
diagonalization that can be defined as follows:

1
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Elements in the IRS
IRS elements Group 

Nx

Mx

My

Ny

Figure 2: Introduction of the IRS reflect array and grouping IRS
elements. Nx and Ny denote that elements in each row and column
and the grouping elements, andMx andMy denote the elements in
the group.
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Figure 1: A single-user OFDM model in the IRS-aided MIMO
system.
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where λ1, λ2, · · · , λM, 0 denotes that the M eigenvalue of
matrix R is greater than zero, and because matrix R is a real
symmetric matrix, it denotes that R � RT, and Q is an N-
order orthogonal matrix. On account of that all diagonal
elements in matrix R are one, the sum of the eigenvalues
squared can be represented as follows:

λ21 + λ22 + · · · + λ2M � trace R
2

  � trace RR
T

  � ‖R‖
2
F

� N + 
i,j�1,2,,,N an d i≠ j

rij




2
.

(7)

*en, we assume that function f on the basic of the
Lagrangian multiplier method which is defined as follows:

f λ1, λ2, · · · , λM, β(  � λ21 + λ22 + · · · + λ2M
+ β N − λ1 − λ2 − · · · − λM( .

(8)

*e partial derivative of λ1, λ2, · · · , λMcan be acquired by
calculation as follows:

2λ1 − β � 0, λ1 > 0

2λ2 − β � 0, λ2 > 0

. . .

2λM − β � 0, λM > 0

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

. (9)

It denotes that a pole can be acquired in λ1 �

λ2 � · · · � λM, and in the first situation, when λ1 � N,

λ2 � . . . � λM � 0, λ21 + λ22 + · · · + λ2M � N2. In the other
situation, when λ1 � λ2 � · · · � λM � N/M, λ21 + λ22 + · · · +

λ2M � N2/M<N2.*erefore, λ1 � λ2 � · · · � λM is the only
pole and not the maximum point, and it is the global min-
imum point. We can deduce (10) from the above formulas:
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where bd represents that the optimal lower bound which the
sum of each row’s autocorrelation in the pilot matrix could
reach, and we average the optimal lower bound of auto-
correlation to every element defined as follows:
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. (11)

Moreover, the average column correlation of the matrix
to be optimized is defined as follows:

Pt �

����������������
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. (12)

To achieve the goal of reducing pilot matrix X column
correlation, we consider that set a reduced autocorrelation
matrix parameter asPs, and make Pd ≤Ps <Pt as the form of
reduction to curtail elements in the autocorrelation matrix
R. *e rule of reduction is defined as follows:

rij � ps × sign rij , rij



>Ps

rij � rij, rij



<Ps

⎧⎪⎨

⎪⎩
. (13)

Usually the reduced autocorrelation matrix becomes a
nonsingular matrix, but R � XTX limits that the pilot matrix
is singular, we need to restore the nonsingular polit matrix.
We apply cropping to small eigenvalues to reserve the values
in the original matrix.

We can deduce formula (14) by R � XTX � QΛQT �

QΛ1/2(QΛ1/2)T:

X � QΛ1/2 
T
. (14)

We can restore the pilot matrix by reserving the M
maximal values in Λ matrix. *en, we assume the pilot
matrix in the first antenna is matrix X and use the shift
mechanism to calculate the pilot matrix of other antennas,
which defines that if X � y1, y2, · · · , yM  is the best pilot
matrix of the first antenna and the pilot matrix of other
antennas is the shift mechanism asXi � y1 + ii − 1, y2 + ii−

1, · · · , ym + ii − 1}, eachXi has common autocorrelation.*e
last output pilot matrix is Xi 

C

i�1, where C is the total
number of transmitting antennas.

At least we apply simultaneous orthogonal matching
pursuit (SOMP) [24] to estimating the channels with the
grouping partial ON/OFF and we can acquire the estimation
channel H � [H1, H2, · · · , HK].

3.3. Improved Deep Residual Shrinkage Network. Because of
the property that elements of the channel matrix in
mmWave MIMO communication which possess high cor-
relation, we denote that the channel matrix can be recon-
structed as a two-dimensional noisy image with double
channels. *erefore, we can apply the improved deep re-
sidual shrinkage network to improve the estimation accu-
racy. *e estimation channel matrix can be represented as
follows:

H � H + n, (15)

where His the estimation channel matrix, H is the true
estimation channel, and n is the noisy matrix.

In order to input Hinto the denoising network, we
should extract the real-valued matrix and the imaginary
value matrix from these estimation channel matrixes
H ∈ CN separately which can be defined as follows:

O � [I(H), R(H)] ∈ R
N×2

, (16)

where I(H) denotes the imaginary value matrix and R(H)

denotes the imaginary value matrix.
*en, we can reconstruct the channel matrix Ointo a

two-dimensional noisy image with double channels as the
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input of this network, which will be introduced in this
section. Figure 3 shows the process of the denoising channel
image.

3.3.1. 9e Architecture of the Network. *e improved deep
residual shrinkage network (IDRSN) is a new multiscale
method based on the common deep residual shrinkage
network (DRSN). Recently, residual networks [25](ResNet)
have attracted much attention of people in the field of deep
learning. As shown in Figure 3, the residual basic unit (RBU)
consists of batch normalization (BN) layers, two rectified
linear units (ReLU), two convolutional layers, and an
identity shortcut which is the most important component of
ResNet. However, in the IDRSN, the basic component of
which is shown in Figure 4 and which consists of two ReLUs,
two convolutional 2D layers [26], a shortcut, and a soft
thresholding model. As shown in Figure 4, the whole ar-
chitecture of IDSRN consists of an input layer, a convolu-
tional 2D layer, ten numbers of IDRSN-RBUs, a
deconvolution layer, and an output layer.

In (c), Conv denotes the complicated convolutional
layer, and DeCon denotes the deconvolutional layer which is
used to reconstruct the channel image.

In the improved deep residual shrinkage network, we
apply a complicated convolutional layer named the con-
volutional 2D layer instead of a conventional layer to better
processing the data in the complex domain, which is
expressed as follows:

R(W∗ h)

I(W∗ h)
  �

A − B

B A
 ∗

x

y
 , (17)

where W � A + Br· denotes the complex filter matrix and
h � x + ry denotes a complex vector as the input of the
convolutional layer.

3.3.2. IDSRN Units. On account of that the BN layer has
terrible influence in the network of picture processing which
can break the correlation of the signal, we consider to apply
DSRN units without BN layers to construct IDSRN units and
replace all common convolutional layers with multiscale
convolutional layers so that improving the property of
extracting feature. Figure 5 shows that the IDSRN units,
which use the soft thresholding to remove noise in features

maps and which as a nonlinear transformation layer into the
network units.

*e function of soft thresholding in Figure 6 is expressed
as follows:

Y′ �

Y − b,Y> b

0, − b≤Y≤ b

Y + b,Y< − b

⎧⎪⎪⎨

⎪⎪⎩
, (18)

where Y′is the output feature map, Yis the input feature
map, and bis the threshold. Moreover, we can consider that
the derivation of the output on input between processing of
the soft thresholding is either one or zero, which can be
represented as follows:

zY′
zx

�

1, Y> b

0, − b≤Y≤ b

1, Y< − b

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

, (19)

which means that the threshold can keep off the gradient
vanishing and exploding problems that can be acquired by
the soft thresholding module.

In this module, the feature map as the input of this module
passed the global average pooling (GAP) to get a one-di-
mension vector. *en, a two-fully connected (FC) layer net-
work with a sigmoid function is applied to the one dimension’s
vector to acquire a scaling parameter which is scaled to the
range of (0,1). *e parameters can be expressed as follows:

α �
1

1 + e
− t , (20)

where t is the output of the soft thresholding module, andα
denotes the corresponding scaling parameter. *e threshold
can be acquired by the scaling parameter multiplying the
average value of |t|. After the soft thresholding module, we
input t to the deconvolution layer to get the original size
noiseless image.

In the IDSRN, each ReLU can be expressed mathe-
matically as follows:

y � max (x, 0), (21)

where x and y are the input and output of the activation
function, respectively, and it accelerates the training process
and solves the problem of gradient disappeared.

AWGN

CS
Estimation

IDSRN

Channel imagePilot image Noisy image Denoised image

Figure 3: (a) *e process of denoising channel image. We apply the channel estimation method based CS to acquiring channel image, and
AWGN represents noisy environment, and IDRSN is the proposed network.
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3.33. Training Network. In the improved deep residual
shrinkage network, we consider adopting the mean square
error (MSE) as the loss function of this network, which is be
defined as follows:

L(ξ) �
1
N



N

i�1
ρ H

i
; ξ  − H

i
− H

i
 

������

������

2
, (22)

where N denotes the total number of samples and i denotes
the data index, and ξ denotes the parameters in IDSRN, and
ρ denotes a residual mapping for noise, such as ρ( H

i
) ≈ n

which should be learned in a deep learning network. We
consider to apply the simulated channel dataset generated by
the classical channel model [27] to avoid the contingency of
training samples and train the IDSRN offline. *e trained
network in this paper can learn the mapping from H to the
channel noise neas ρ( H) ≈ n and the enhanced channel
estimation can be represented as follows:

H
e

� H − ρ( H) � H + n − n
e
. (23)

*e IDSRN uses the Adam optimizer to optimize weight
in the network, and the batch size is set as 16 with 800
epochs. We consider to feed the network with 4,000 training
samples in the training process, and the initial learning rate
is set as 0.01 and descends to 0.8 times of the last epoch with
patience 20.

4. Simulation and Results

We consider to adopt the normalized MSE as an evaluation
index of denoising property in IDSRN, which can be
expressed as follows:

NMSE �
1
N



N

i�1

H − H
e

����
����
2
F

‖H‖
2
F

. (24)

In our simulation, we consider the mmWave MIMO
system carrying out at 28GHz with the bandwidth is f �

100MHz and the number of OFDM’s subcarriers K � 256
in the phase of training pilot. *e number of IRS elements
are set as 64 and the cyclic prefix (CP) is set to:LCP � 32. We
consider that L � 6 and azimuth/elevation AoAs and AoDs
are set as uniform distribution u(− π/2, π/2).

*e deep learning-related settings used in this paper are
shown in Table 1.

First of all, in order to investigate the feasibility of pilot
training reduction, we applied different pilot optimization
methods in communication systems with 4 antennas or 8
antennas and acquired the NMSE of preliminary estimation
by the SOMP algorithm (β� 4). In order to prove the ef-
fectiveness of pilot optimization algorithm based on SM and
compressed sensing technology, we named SM-enhanced
corresponding adaptive autocorrelation (CAA-SM) pilot
matrix optimization algorithm in the second part of this
paper. *e proposed method and pilot optimization re-
construction algorithms based on random Gaussian matrix,
the Elad method, and the corresponding adaptive auto-
correlation (CAA) method are, respectively, used for
channel estimation using the SOMP estimation algorithm.

As shown in Figure 7, it can be observed that as the SNR
increases, CAA-SM performs nearly with CAA in the
communication system processing of 4 antennas and ac-
quires better performance than others. Meanwhile, the
CAA-SM also achieves better performance in the commu-
nication system processing of 8 antennas. In the case of
multiple antennas with high SNR, the CAA-SM achieves a
performance gain of around 3 dB with CAA, indicating that
which can obtain better channel estimation performance
under the condition of multiple antennas with high SNR.
*is is because with the enhancement of SM, the compu-
tational complexity is greatly reduced, and the efficiency and
accuracy of channel estimation are greatly improved. In
either case, the estimation error of the Elad algorithm and
the random Gaussian matrix method is large. *e random
Gaussian matrix method has a large variance of column
correlation, which is not conducive to channel recon-
struction and estimation. *e setting of reduction param-
eters of the Eladmethod will seriously affect the performance
of pilot optimization, which has great limitations. We
consider to choose CAA-SM to optimize the pilot matrix
with training reduction and time consumption for the
following simulations.

In order to analyze the influence of the packet strategy of
the IRS reflection element on channel estimation and the
feasibility of the SOMP estimation algorithm, simulation
experiments are carried out under the conditions that the
number of reflecting elements is 10×10 and the packet
strategy is 1, 2, and 4.

*e packet policy parameters are shown in Table 2.
In this experimental analysis, the channel achievable rate

is used as the evaluation index, and the number of mea-
surements of the SOMP estimation algorithm is 100. *e
simulation results are shown as follows:

As can be seen from Figure 8, with the increase in SNR,
the achievable rates of the three different packet strategies
gradually increased. When the SNR is low, the channel
achievable rate under the J� 1 packet strategy is the lowest,
and it is more sensitive to the error in channel estimation.
*e channel achievable rate under the J� 1/25 packet
strategy is the highest. *ere is little difference in channel
estimation performance between the three packet strategies.
It can also be seen from Figure 8 that, regardless of high or
low SNR, when packet strategy J� 1, the gap between the
channel estimated achievable rate and that under perfect
channel state information is large, while when packet

Table 1: Parameter settings of the experimental test.

Name Specific parameters
CPU i5-7300HQ CPU @ 2.50GHz
Hard disk 1 TB SSD
Graphics card NVIDIA GeForce RTX 2060 SUPER
Memory 8G
Operating system Windows 10
Framework IDRSN
Accelerated environment CUDA 11.5
TensorFlow 1.0.1
Keras 2.2.1
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strategy J� 1/25 and J� 1/50, the gap between the channel
estimated achievable rate and that under perfect channel state
information is small and the estimation performance is good.
*is is because comparedwith the IRS reflection elements that

need to be turned on one by one before any grouping, the
packet strategy can be used to turn on more reflection ele-
ments at a time, which can receive higher SNR and have better
channel estimation performance. In the subsequent simula-
tion experiment analysis, the packet strategy with J� 1/25 will
be used for experimental simulation.

*e proposed network is simulated and analyzed to
prove the robustness and enhancement of accuracy for
preliminary estimation, as shown in Figure 9.

*e channel estimation algorithm based on the IDSRN
model proposed in this paper is compared with the channel
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Figure 7: MSE performance of CAA, Elad algorithm, randomGaussian matrix algorithm, and CAA-SM in the communication system with
different number of antennas. (a) Process of four antennas and (b) Process of eight antennas.

Table 2: Group parameter setting of IRS elements.

J 1 1/50 1/25
K 100 2 4
Mx×My 1×1 5×10 5×5

SOMP,J=1,est
SOMP,J=1/50,est
SOMP,J=1/25,est
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Figure 8: Achievable rates of different packet strategy of IRS re-
flection element with SOMP algorithm.
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Figure 9: Robustness of the proposed IDSRN network and pre-
trained with SNR� 10 dB and (L)� 6 is robust to various SNRs.

8 Computational Intelligence and Neuroscience



estimation algorithm with different sampling rates without
past noise processing, the channel estimation algorithm
based on deep learning, and Oracle-LS. As shown in Fig-
ure 9, our proposed algorithm shows a performance gain of
around 5 dB with CV-DNN accounting of which has a
powerful denoising ability and extraction performance in-
herent characteristics, acquired better estimation property
than other schemes. Compared with the OMP algorithm, the
proposed algorithm has higher accuracy, because the SOMP
algorithm synchronizes data and has higher accuracy
compared with the OMP algorithm. In the meanwhile,
compared with the channel estimation algorithm based on
deep learning, which is named the SR algorithm, the pro-
posed algorithm takes into account the bad influence of
noise factors in the wireless channel on the channel esti-
mation and performs denoising processing on the channel
data, resulting in better estimation performance.

5. Conclusions

In this paper, in order to reduce the consumption of pilot
training, we propose a CA-SSM pilot optimization method
based on CS to reconstruct the channel and optimize the
pilot matrix. Due to prior estimation algorithms’ existing
problem of poorer denoising property and estimation
performance, we propose an IDSRN network with Grouping
IRS Elements which is partial ON/OFF to enhance the ac-
curacy of channel estimation, which can reduce channel
estimation complexity. Meanwhile, the proposed network in
this work comprises of better extraction performance for
channel characteristics, which contributes to the enhance-
ment of a system property. Moreover, through the simu-
lation with the proposed pilot optimization method and
IDSRN model, we demonstrate that IDSRN has enough
robustness, which makes the model can be used in different
SNR scenarios by offline training.

Although the experimental analysis part of proposed
method is lack of data validation of the real scene, with the
continuous development of the IRS technology and appli-
cation, in the subsequent experiments in this article will
introduce the application of the IRS after experimental data
and the algorithm was demonstrated. At the same time, in
the future research, we will conduct channel estimation and
modeling analysis for the communication system with IRS
elements deployed in different terrains, such as hilly scene
and plain scene.

Abbreviations

BS: Base station
IRS: Intelligent reflecting surface
MIMO: Multi-input-multi-output
6G: Sixth-generation
CSI: Channel state information
CS: Compressive sensing
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OFDM: Orthogonal frequency division multiplex
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SM: Shift mechanism

TDD: Time division duplexing
IDSRN: Improved deep residual shrinkage network
SOMP: Simultaneous orthogonal matching pursuit
DRSN: Deep residual shrinkage network
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MSE: Mean square error
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